Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
public:papers:spw2016 [2016-06-05 21:00] – created petrspublic:papers:spw2016 [2016-12-01 13:28] (current) – external edit 127.0.0.1
Line 2: Line 2:
 **Authors: Radim Ostadal, Petr Svenda, Vaclav Matyas** **Authors: Radim Ostadal, Petr Svenda, Vaclav Matyas**
  
-**Abstract:** FIXME //We review the most important secrecy amplification protocols, which are especially suitable for ad-hoc networks of devices with limited resourcesproviding additional resistance against various attacks +**Abstract:** //Our paper aims to move the research of secrecy amplification protocols for general ad-hoc networks to more realistic scenariosconditions and attacker capabilitiesThe extension of the current attacker models is necessary, including the differentiation based on types of attacker's manipulation with a node, monitoring capabilities and movement strategies. We also aim to propose suitable secrecy amplification protocols that can reflect the new attacker models in different examined scenarios, utilising genetic programming and manual post-processing.//
-on used cryptographic keys without necessity for asymmetric cryptography. We discuss and evaluate different designs as well as approaches to create new protocolsA special focus is given to suitability of these protocols with respect to different underlying key distribution schemes and also to open research questions.//+
  
-  * Conference page: FIXME  [[http://wistp2015.wistp.org/|WISTP 2015]] +  * Conference page: [[https://www.engr.mun.ca/~spw2016/|SPW 2016]] 
-  * Download author pre-print of the paper: FIXME  {{:public:papers:secamplif_wistp15.pdf|pdf}} +  * Download author pre-print of the paper: {{:public:papers:spw16_v13.pdf|pdf}} 
-  * Download extended version of paper: FIXME  {{:public:papers:secamplif_tr15_final.pdf|FIMU-RS-2015-01}} (technical report, FI MUNI) +  * Download presentation: {{:public:papers:saattacker_spw16_final.pdf|pdf}} 
-  * Download presentation: FIXME  {{:public:papers:secamplif_wistp15_svenda_slides.pdf|pdf}} +  * Download used simulator: {{:public:papers:kmsforwsn_src.zip|zip source code}} 
-  * Download used simulator and configuration filesFIXME  {{:public:papers:sensorsim.zip|zip source code}}{{:public:papers:sensorsim.exe.zip|executable file}}+  * Download simulator documentation: {{:public:papers:kmsforwsn_doc.zip|zip html documentation}}
  
 **Bibtex:** **Bibtex:**
-FIXME  +  
-   @inproceedings{secrecyamplif_wistp2015,+ 
 +   @inproceedings{attackermodels_spw2016,
      author = {Radim O\v{s}\v{t}\'{a}dal \Petr \v{S}venda \and V{\'a}clav Maty{\'a}\v{s}},      author = {Radim O\v{s}\v{t}\'{a}dal \Petr \v{S}venda \and V{\'a}clav Maty{\'a}\v{s}},
-     title = {On Secrecy Amplification Protocols}, +     title = {Reconsidering Attacker Models in Ad-hoc Networks}, 
-     booktitle = {The 9th WISTP International Conference on Information Security Theory and Practice (WISTP’2015)+     booktitle = {24th International Workshop on Security Protocols (SPW 2016)}, 
-     LNCS 9311}, +     year = {2016}, 
-     year = {2015}, +     publisher = {{\em To appear in Lecture Notes of Computer Science.} Springer}
-     pages = {3--19}, +
-     doi = {10.1007/978-3-319-24018-3 1}+
-     publisher = {Springer}+
    }    }
      
Line 32: Line 29:
  
 ===== What is this paper about? ===== ===== What is this paper about? =====
-FIXME+ 
 +Ad-hoc networks often handle highly sensitive information and security of such networks is a typical baseline requirement. Secure link communication is the building block for many security services maintained by a network. Ad-hoc networks also present several challenges like limited computational and storage resources or an energy source, usually in the form of a battery. 
 + 
 +The attacker in that environment is usually able to capture a node itself and read out all keying material as there typically is no tamper resistance. After the initial compromise, the global attacker is expected.  
 + 
 +The secrecy amplification (SA) protocols were proposed to re-secure some previously compromised communication links using non-compromised paths to deliver new secure keys. The comprehensive overview of SA protocols could be found [[http://crcs.cz/wiki/doku.php?id=public:papers:wistp2015|here]]. 
 + 
 +**In this paper, we:** 
 +  * Provided three additional attacker models compared to the one used (Random Key compromise): key exfiltration model, passive node control model, and active node control model. Based on attacker capabilities, we also distinguish the global and local attacker. 
 +  * Proposed different ways of evaluation of SA protocols: a ratio of compromised and non-compromised link keys, a percentage of secure communication among neighbours, or the percentage of secure communication from nodes to the base station. 
 +  * Extended the KMSforWSN framework. The whole framework including the documentation could be download {{:public:papers:kmsforwsn_src.zip|here}}. 
 +  * Discussed different attacker capabilities and behaviour to parametrise the attacker. 
 +  * Performed an initial comparison of a local and global attacker on Random key compromise and Random node compromise pattern. 
 +  * Performed an experiment for Passive node control model. 
 + 
 +{{:public:papers:infected_nodes.png?600|}} 
 + 
 +//A success rate of SA protocols for a different number of malware infected nodes. A decrease in the percentage of secured links is linear that is good considering the attacker's control over the node. One can obtain reasonably secure network (more than 85% of secure links) even in case of 7 malware infected nodes considering the hybrid designed protocols are used.//