
Trust-minimizing BDHKE-based e-cash mint using secure
hardware and distributed computation

Antonín Dufka
dufkan@mail.muni.cz
Masaryk University
Brno, Czech Republic

Jakub Janků
jjanku@mail.muni.cz
Masaryk University
Brno, Czech Republic

Petr Švenda
svenda@fi.muni.cz
Masaryk University
Brno, Czech Republic

Abstract
The electronic cash (or e-cash) technology based on the founda-
tional work of Chaum [7] is emerging as a scalability and privacy
layer atop of expensive and traceable blockchain-based currencies.
Unlike trustless blockchains, e-cash designs inherently rely on a
trusted party with full control over the currency supply. Since this
trusted component cannot be eliminated from the system, we aim
to minimize the trust it requires.

We approach this goal from two angles. Firstly, we employ
misuse-resistant hardware to mitigate the risk of compromise via
physical access to the trusted device. Secondly, we divide the trusted
device’s capabilities among multiple independent devices, in a way
that ensures unforgeability of its currency as long as at least a single
device remains uncompromised. Finally, we combine both these
approaches to leverage their complementary benefits.

In particular, we surveyed blind protocols used in e-cash designs
with the goal of identifying those suitable for misuse-resistant, yet
resource-constrained devices. Based on the survey, we focused on
the BDHKE-based construction suitable for the implementation on
devices with limited resources. Next, we proposed a newmulti-party
protocol for distributing the operations needed in BDHKE-based e-
cash and analyzed its security. Finally, we implemented the protocol
for the JavaCard platform and demonstrated the practicality of the
approach by measuring its performance on a physical smartcard.

CCS Concepts
• Security and privacy→ Key management; Hardware-based
security protocols; Authorization; Multi-factor authentication.

Keywords
trust-minimization, smartcards, multi-party computation, e-cash

ACM Reference Format:
Antonín Dufka, Jakub Janků, and Petr Švenda. 2024. Trust-minimizing
BDHKE-based e-cash mint using secure hardware and distributed compu-
tation. In The 19th International Conference on Availability, Reliability and
Security (ARES 2024), July 30-August 2, 2024, Vienna, Austria. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3664476.3670889

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ARES 2024, July 30-August 2, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1718-5/24/07
https://doi.org/10.1145/3664476.3670889

1 Introduction
Decades-old designs of untraceable electronic cash [7] are resur-
facing as a second-layer solution to the anonymity and scalability
issues in modern, blockchain-based cryptocurrencies, allowing for
fully untraceable and cheap transactions with instant confirmation.

Instead of relying on the integrity of a public ledger to solve the
double-spending problem, an e-cash system relies on a centralized
server, called mint, that controls the issuance and redemption of
its e-cash tokens. The ownership of a token corresponds to the
knowledge of a mint’s signature on a unique number that has
not yet been redeemed. Once the signature is presented to the
mint, it adds the signed number to its database of already used
tokens, and the corresponding token may no longer be redeemed.
Until a token is redeemed, it can be transacted among users in
the system. To achieve untraceability of transactions, issuance and
redemption of a token should be unlinkable, which is realized using
blind signatures [7].

Amajor disadvantage of e-cash systems is their complete reliance
on a trusted mint which has full control over the supply of e-cash
tokens. If the mint misbehaves, it may issue an arbitrary number
of new tokens. The misbehavior can be detected by using various
auditing techniques, but they are only reactive measures, and in
the meantime, the underlying resources could be drained.

In contrast, a more preventative measure is to minimize the risk
of token forgery by reducing the trust in the mint. We consider two
approaches to this trust minimization: 1) utilizing secure tamper-
proof hardware for performing security-critical operations and 2)
dividing the mint capabilities among multiple independent devices.

Secure tamper-proof hardware is designed to be resistant to
various physical attacks, so even in the hands of untrustworthy
parties, the devices should be hard to compromise. Furthermore, as
the devices are typically programmed to perform just the security-
critical operations and no other, they feature only a minimal attack
surface, making it harder for the attacker to find and exploit its
vulnerabilities even if present.

A common issue of secure tamper-proof hardware, especially
smartcards, is that their computational resources are quite limited.
The devices are typically equipped with specialized cryptographic
coprocessors to accelerate a limited set of predefined operations,
which can be performed efficiently, but other computations cannot
benefit from them. For this reason, we conducted a survey of build-
ing blocks of e-cash systems, focusing on the suitability of their
implementation in resource-constrained devices.

The survey revealed that two building blocks are particularly
suitable for the implementation on smartcards—pairing-free blind
signatures, e.g., [12, 15, 17, 29], and a non-signature blind protocol
called BDHKE [32]. The former includes a whole class of blind

https://doi.org/10.1145/3664476.3670889
https://doi.org/10.1145/3664476.3670889

ARES 2024, July 30-August 2, 2024, Vienna, Austria Dufka et al.

signature protocols that do not rely on bilinear pairings, and the
latter is a blind protocol that does not support public verifiability
yet provides the functionality needed in an e-cash system. Since
BDHKE is the most efficient construction from the mint’s side and is
also compatible with the blind BLS protocol [4], a popular building
block of e-cash systems, we focused on it for further analysis.

The second approach—distributed computation—allows for min-
imizing the trust put in the mint by splitting its capabilities among
multiple independent devices in a way that all of them need to agree
on an operation before it can be completed. We propose a new pro-
tocol for securely realizing the BDHKE functionality distributed
among 𝑛 parties, aiming at the highest security configuration that
remains secure as long as there is a single non-corrupted party. We
analyzed the protocol’s security by reducing the problem of a token
forgery to the one-more gap Diffie-Hellman problem [16] in the
random oracle model [3].

Since both approaches are orthogonal, combining them yields
complementary benefits and further reduces the reliance on trust.
Additionally, the combination provides an option to use hardware
produced by different manufacturers to address the potential threat
of supply chain attacks in the form of hardware backdoors [19].

We implemented the protocol on JavaCard-based smartcards
both in the single-party and distributed variants and proposed
an optimization allowing a further increase in performance by
offloading certain computations to the host device. We evaluated
the performance of the implementation on a physical smartcard,
demonstrating the practicality of the solution. The source code is
publicly available and released under a permissive license1.

Paper contributions:
• Survey of blind protocols for e-cash systems focusing on
their suitability for resource-constrained devices.
• Design of a new multi-party protocol for distributing the
BDHKE functionality, which is also compatible with the
multi-party (blind) BLS scheme.
• Security analysis of the protocol by constructing a reduc-
tion of token forgery to the one-more gap Diffie-Hellman
problem [16] in the random oracle model [3].
• Proposal of an approach for secure offloading the used hash-
to-curve operation to increase performance on smartcards.
• Open-source implementation of the protocol for the Java-
Card platform and its evaluation on a physical smartcard.

1.1 Related Work
The outcome of this work is related to an earlier work byMavroudis
et al. [19], who used a set of smartcards to perform joint signing,
asymmetric decryption, and randomness generation. Their goal
was to achieve secure computation even in the presence of back-
doored components by relying on hardware produced by different
manufacturers. We extend this idea to e-cash mints.

The distributed computation of blind protocols has been widely
analyzed, with several designs for many constructions like blind
Schnorr-based signatures [12], blind BLS [31], or blind RSA [8, 25].
Nevertheless, to the best of our knowledge, no prior work has
focused on the distributed computation of BDHKE. Compared to

1Available at https://github.com/crocs-muni/JCMint.

the other distributed blind protocols, our protocol relies on the one-
more gap Diffie-Hellman hardness assumption, does not require a
pairing-friendly curve and features short outputs consisting of just
a single group element.

Tomescu et al. proposed [30] a complex system involving a dis-
tributed e-cash mint based on Pointcheval-Sanders signatures [24]
that can withstand corruption up to a third of servers by utiliz-
ing threshold cryptography and Byzantine fault tolerance protocol.
Baudet et al. [2] proposed a performant and scalable Byzantine fault
tolerant protocol for electronic payments that involves partially-
trusted sharded authorities. Rial and Piotrowska [27] designed a
distributed e-cash system that enables offline transactions and fea-
tures threshold issuance of the tokens. Apart from academic publi-
cations, Fedimint2 is a recently evolving project that utilizes blind
BLS signatures [4] to distribute computation and eliminate trust
in the mint. Compared to these solutions, we utilize a different ap-
proach aiming for compatibility with resource-constrained devices
communicating over a star topology.

2 Preliminaries
In this section, we describe the used notation and define digital
signatures and proofs of discrete logarithm equality.

2.1 Notation
Agroup description is a triplet (G, 𝑝,𝐺), whereG is a group of prime
order 𝑝 , and 𝐺 is its selected generator. A group description can be
generated using a probabilistic polynomial-time (PPT) algorithm
GrGen that on input 1𝜆 outputs a group description with 𝜆-bit
prime 𝑝 . We use the additive notation for the group operation and
denote group elements in upper-case. Conversely, we use lower-
case to denote Z𝑝 elements. Uniform sampling of an element 𝑒 from
a non-empty set 𝑆 is denoted as 𝑒 ←$ 𝑆 . ByA(𝑥), we denote the set
of outputs of probabilistic algorithm A given input 𝑥 . We reserve
𝑛 for the number of protocol participants.

2.2 Digital signatures
Digital signature DS is a tuple of probabilistic polynomial-time
algorithms (DS.Setup,DS.KeyGen,DS.Sign,DS.Verify) such that:
• DS.Setup(1𝜆) → par: On input a security parameter 𝜆 out-
puts a set of public parameters par which are implicitly pro-
vided to all other algorithms.
• DS.KeyGen() → (sk, pk): Generates and outputs a key pair
(sk, pk), where sk is the private key and pk is the public key.
• DS.Sign(sk,𝑚) → 𝜎 : On input a private key sk and a mes-
sage𝑚, signs the message using the private key and outputs
signature 𝜎 .
• DS.Verify(pk,𝑚, 𝜎) → 𝑏: On input a public key pk, a mes-
sage m, and a signature 𝜎 , output a bit 𝑏 indicating whether
the signature is valid with respect to the message and the
public key.

A digital signature should satisfy correctness, i.e., it should hold for
all𝑚 ∈ {0, 1}∗ and (sk, pk) ←$ DS.KeyGen(), Pr[DS.Verify(pk,𝑚,
DS.Sign(sk,𝑚)) = 1] = 1, and existential unforgeability against the
chosen message attack [21].

2https://fedimint.org/.

https://github.com/crocs-muni/JCMint
https://fedimint.org/

Trust-minimizing BDHKE-based e-cash mint using secure hardware and distributed computation ARES 2024, July 30-August 2, 2024, Vienna, Austria

2.3 Proofs of discrete logarithm equality
Non-interactive zero-knowledge proof of discrete logarithm equal-
ity DLEQ is a pair of probabilistic polynomial-time algorithms
(DLEQ .Prove,DLEQ .Verify) such that:
• DLEQ .Prove(𝑑,𝑋, 𝑃) → 𝜋 : On input scalar 𝑑 and elements
𝑋, 𝑃 , compute elements 𝑌 = 𝑑𝑋,𝑄 = 𝑑𝑃 and output a zero-
knowledge proof 𝜋 of the relationship log𝑋 𝑌 = log𝑃 𝑄 .
• DLEQ .Verify(𝜋,𝑋,𝑌, 𝑃,𝑄) → 𝑏: On input proof 𝜋 and ele-
ments 𝑋,𝑌, 𝑃,𝑄 output a bit 𝑏 indicating whether the proof
is valid with respect to the elements.

A non-interactive zero-knowledge proof of discrete logarithm equal-
ity should satisfy completeness, soundness, and zero-knowledge [21].

We will instantiate DLEQ with Chaum-Pedersen proof [10],
which we briefly recall. The proof system works with a group
description (G, 𝑝,𝐺) and uses a hash function 𝐻𝜋 : G6 → Z𝑝 . The
DLEQ .Prove(𝑑,𝑋, 𝑃) first samples 𝑟 ←$ Z𝑝 and computes 𝑌 = 𝑑𝑋 ,
𝑄 = 𝑑𝑃 , 𝐴 = 𝑟𝑋 , 𝐵 = 𝑟𝑃 , queries 𝑐 = 𝐻𝜋 (𝑋,𝑌, 𝑃,𝑄,𝐴, 𝐵), computes
𝑠 = 𝑟 − 𝑐𝑑 (mod 𝑝), and sets 𝜋 = (𝑐, 𝑠). The DLEQ .Verify(𝜋,𝑋,𝑌,
𝑃,𝑄) decomposes (𝑐, 𝑠) = 𝜋 , computes 𝐴 = 𝑠𝑋 + 𝑐𝑌 , 𝐵 = 𝑠𝑃 + 𝑐𝑄 ,
and outputs 1 if 𝑐 = 𝐻𝜋 (𝑋,𝑌, 𝑃,𝑄,𝐴, 𝐵), otherwise 0.

Such a DLEQ instantiation allows, in the random oracle model
[3], for proof forgery in simulations, which will be useful in reduc-
tion proof in Section 4.4. To forge a proof for inputs 𝑋,𝑌, 𝑃,𝑄 , the
simulator samples 𝑠, 𝑐 ←$ Z2𝑝 , computes𝐴 = 𝑠𝑋+𝑐𝑌 and𝐵 = 𝑠𝑃+𝑐𝑄
and programs the oracle to output 𝑐 for 𝐻𝜋 (𝑋,𝑌, 𝑃,𝑄,𝐴, 𝐵).

3 Electronic cash concepts
The concept of untraceable electronic cash was originally intro-
duced by Chaum as an application of blind signatures [7, 9]. The
proposal involves a trusted party issuing and redeeming tokens
against its own local ledger, containing a set of redeemed tokens to
prevent double-spending.

Mint implementations typically provide an interface for three
basic operations: 1) issuing a new token, 2) redeeming a token,
and 3) swapping an old token for a fresh one. The first two opera-
tions are self-explanatory. The third operation is needed to commit
transactions between users. During a transaction, the payee should
immediately swap the received token for a fresh one; otherwise, the
payer, knowing the same information, could still redeem the token
before the payee. For this reason, transactions require online inter-
action with the mint. Beyond these operations, other application-
specific operations can be provided, but they can be constructed
from these basic ones, so we do not discuss them further.

Token issuing and redeeming is typically performed in connec-
tion to a certain action performed by an external component, e.g.,
depositing or withdrawing the underlying collateral. To enable in-
tegration with such components without binding to a particular
solution, we consider a signature-based interface to communicate
these actions securely.

The interface assumes that the public keys of the mint and the
external component are exchanged upon their initialization. With
the interface, the external party must authorize each token issuance
by creating a signature for a token request. The mint later verifies
the signature, and if it is valid, a new token is created. Similarly, after
the mint completes a redemption, it creates a signature confirming
the successful redemption. This signature can be verified by the

external party to ensure the validity of the redemption. For an
illustration of such an interaction on an example usage with a
custodian holding the collateral, see Figure 1.

3.1 Blind protocol
E-cash systems have been instantiated with various blind protocols,
some of which rely only on private verifiability [32]. Therefore, we
include this notion and define a blind protocol as follows.

A blind protocol BP is a tuple of probabilistic polynomial-time al-
gorithms (BP.Setup,BP.KeyGen, {BP.Signj}𝑟𝑗=1,BP.Verify), param-
eterized by the number of exchanged messages 𝑟 , such that:
• BP.Setup(1𝜆) → par: On input a security parameter 𝜆 out-
puts a set of public parameters par which are implicitly pro-
vided to all other algorithms.
• BP.KeyGen() → (sk, pk): Generates and outputs a key pair
(sk, pk), where sk is the private key and pk is the public key.
• BP.Sign𝑗 (st, in) → (st′, out): On input a state st and input
in perform a single step of the blind signing protocol and
output new state st′ and output out. The state st′ is always
stored by the party computing the BP.Sign𝑗 procedure and
input to its next invocation BP.Sign𝑗+2, while the output out
is provided to the other party which uses it as its input in
computing BP.Sign𝑗+1. The initial state of the user/issuer
contains pk/sk, respectively. The user always computes the
last round BP.Sign𝑟 whose output out = (𝑚,𝑇) contains the
message𝑚 and the corresponding token 𝑇 .
• BP.Verify(sk,𝑚,𝑇) → 𝑏: On input a private key sk, a mes-
sage𝑚, and a token 𝑇 , output a bit 𝑏 indicating whether the
token is valid with respect to the message and the key.

A blind protocol should satisfy one-more unforgeability, just like
a blind signature [7, 26], a weakened variant of blindness assum-
ing an honest-but-curious signer due to lacking public verifiability,
and a modified correctness allowing for verification with the pri-
vate key, i.e., for every𝑚 ∈ {0, 1}∗ and (pk, sk) ←$ BP.KeyGen()
the exchange of messages during BP.Sign𝑗 results in 𝑇 such that
Pr[BP.Verify(sk,𝑚,𝑇) = 1] = 1.

We have surveyed blind protocols commonly used in e-cash con-
struction with the aim of identifying the ones suitable for computa-
tion on resource-constrained devices. The original blind signature
used in the e-cash proposal was based on the RSA algorithm [8, 25].
However, its outputs are inferior in size and efficiency to compara-
ble elliptic-curve-based schemes, which can have up to 8x smaller
outputs at the same 128-bit security level.

Currently, the most compact and feature-rich blind protocols
are constructed using pairing-friendly elliptic curves [4, 6, 18, 24],
allowing for very efficient signing. However, their verification is sig-
nificantly more costly, as it involves pairing function computation,
which is not feasible for resource-constrained devices.

A middle ground between these categories is offered by pairing-
free elliptic-curve-based blind signatures [12, 15, 17, 29], which pro-
duce outputs with around double the size of pairing-based schemes,
but with verification time of the same order of magnitude as signing.
Unfortunately, due to the threat of the ROS attack [15], the schemes
involve a more complex design and rely on a proof in the algebraic
group model [14]. Still, these schemes are likely a viable option for
resource-constrained devices.

ARES 2024, July 30-August 2, 2024, Vienna, Austria Dufka et al.

5

Deposit

Confirm
ation

1

2

10

9

Request withdraw

Withdraw

Request token

Issue token

Exchange token

4

3

6

7

8
Redeem Confirm

ation

Swap

Figure 1: An example of a mint backed by an external custody service. A user wanting to enter the system first deposits money
❶ to the custody service. In response, the custody service signs ❷ the user’s request for issuing an appropriate number of e-cash
tokens. The user then sends ❸ this signature along with the request to the mint, which will verify it and issue the e-cash tokens
❹. Subsequently, the tokens can be transferred among users of the system ❺, who validate the tokens with the mint and swap
them ❻ for fresh ones. Once a user wishes to withdraw the tokens, she requests a redemption by the mint ❼. The mint verifies
the tokens and confirms the success by issuing a signature ❽. The user then provides ❾ this signature to the custody service,
which in response releases ❿ an appropriate amount of the backing asset to the user.

Another alternative suitable for resource-constrained devices is
blind protocols that lack public verifiability. These protocols can
sometimes be constructed by transferring a pairing-based blind
signature into the pairing-free setting and verifying the output by
its reconstruction. An example of such a scheme is Blind Diffie-
Hellman Key Exchange (BDHKE) [32], although it was not orig-
inally constructed this way. The verification of this scheme is as
efficient as signing, which is evenmore efficient than that of pairing-
free blind signatures. For these reasons, we focus on BDHKE in the
rest of this work and expound on it in the following subsection.

3.1.1 Blind Diffie-Hellman Key Exchange. The BDHKE protocol
was originally mentioned on a cypherpunk mailing list by David
Wagner [32]. It was proposed as an alternative for the blind signing
protocol based on RSA used in the original e-cash proposal, and it
has been recently utilized in a project called Cashu3, developing an
e-cash system backed by Bitcoin [22].

The protocol is defined in Figure 2 as an instance of a blind
protocol. To get a token using BDHKE, a user generates a random
message𝑚 of 𝜆 bits, which is then hashed to a group element using
𝐻G : {0, 1}∗ → G and blinded by adding a blinding factor 𝑟𝐺 , where
𝑟 is a random scalar from Z𝑝 . The blinded point 𝐶 is then sent to
the signer, who multiplies it by its private key 𝑘 and returns the
resulting blinded token𝑇 ′. Once the user receives the response, she
can unblind it and get the token as𝑇 = 𝑇 ′−𝑟𝐾 , where𝐾 is the public
key of the signer. To verify the unblinded token later, the signer
needs to be provided (𝑚,𝑇) and then checks whether 𝑘𝐻G (𝑚) = 𝑇
holds. We are not aware of a published security analysis of the
protocol, so for completeness, we provide it in Appendix A.

The protocol is reminiscent of blind BLS [4], and it is virtually
the same, only lacking public verifiability, as it does not utilize a

3https://cashu.space/.

Setup(1_)
(G, 𝑝,𝐺) ← GrGen(1_)
Select 𝐻G : {0, 1}∗ → G
par← (G, 𝑝,𝐺,𝐻G, _)
return par

KeyGen()
𝑘 ←$Z𝑝

𝐾 ← 𝑘𝐺

return (𝑘,𝐾)

Sign1 (st, in)
𝑚 ←$ {0, 1}_

𝑟 ←$Z𝑝

𝐶 ← 𝐻G (𝑚) + 𝑟𝐺
return ((st,𝑚, 𝑟),𝐶)

Sign2 (st, in)
𝑘 ← st

𝐶 ← in

𝑇 ′ ← 𝑘𝐶

return (⊥,𝑇 ′)

Sign3 (st, in)
(𝐾,𝑚, 𝑟) ← st

𝑇 ′ ← in

𝑇 ← 𝑇 ′ − 𝑟𝐾
return (⊥, (𝑚,𝑇))

Verify(𝑘,𝑚,𝑇)
𝑉 ← 𝑘𝐻G (𝑚)
return𝑉 = 𝑇

ACM Reference Format:
. 2024. . In Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 1 page. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 2: Definition of BDHKE blind protocol.

group with computable bilinear pairings [5]. The only party that
can verify the output is the party that controls the private key.

The non-verifiability can be resolved by extending the protocol,
as Jarecki et al. [16] have shown. They have proposed a construc-
tion similar to BDHKE to which they added public verifiability
using a non-interactive zero-knowledge proof of discrete logarithm
equality [10]. This solves the problem only for the token recipient,
as the verification requires the blinding factor, but allows to make
the protocol blind even in the malicious setting.

3.2 Mint model
We model mint as a stateful systemM parameterized by a digital
signature scheme DS and a blind protocol BP. The system is ini-
tialized with its private key 𝑘 , redeem confirmation private key 𝑘′,
external party’s public key 𝐸, and an empty ledger 𝐿. The system
provides three operations:

https://cashu.space/

Trust-minimizing BDHKE-based e-cash mint using secure hardware and distributed computation ARES 2024, July 30-August 2, 2024, Vienna, Austria

• Issue(𝐶, 𝜎) → 𝑇 : On input a blinded challenge 𝐶 and its sig-
nature 𝜎 ,M checks if DS.Verify(𝐸,𝐶, 𝜎) = 1, and proceeds
with the BP.Signj message exchange to produce a token 𝑇 .
• Redeem(𝑚,𝑇) → 𝜎 : On input a message 𝑚 and a signed
token𝑇 ,M checks that𝑚 ∉ 𝐿, updates 𝐿 ← 𝐿 ∪ {𝑚}, and if
BP.Verify(𝑘,𝑚,𝑇) = 1, outputs DS.Sign(𝑘′,𝑚).
• Swap(𝑚,𝑇,𝐶) → 𝑇 ′: On input a message𝑚, a signed token
𝑇 , and a challenge𝐶 , checks that𝑚 ∉ 𝐿, updates 𝐿 ← 𝐿∪{𝑚},
and if BP.Verify(𝑘,𝑚,𝑇) = 1, produces a new token𝑇 ′ using
the BP.Signj message exchange.

The operations can consist of multiple sub-operations that are in-
voked in a sequence before obtaining the output. In case a verifica-
tion within the operations fails, or the sub-operations are invoked
in an incorrect order, no output may be given. DS, BP, and the
public keys of 𝑘 and 𝑘′ are publicly available.

4 Distributing mint functionality
The risk of compromise of an e-cash system can be decreased by dis-
tributing its mint functionality among multiple independent partial
mints in a way that unless all of them agree with an operation, the
operation cannot be successfully completed. Such a setting requires
the private key to be split among the partial mints using a secure
secret sharing and the produced shares to be used by the parties in
a secure multi-party computation protocol without reconstructing
the complete private key in a single place.

We consider a setup of 𝑛 partial mintsM𝑖 , where each is ini-
tialized with its private key 𝑘𝑖 , public keys of all partial mints
𝐾1, . . . , 𝐾𝑛 such that the mint key is defined as 𝐾 =

∑𝑛
𝑖=1 𝐾𝑖 , anal-

ogously for the redeeming key 𝑘′ and the corresponding public
keys, and a public key of an external component 𝐸. Additionally,
the partial mints can communicate with each other via a mediator
that can arbitrarily alter or drop messages (and thus cause a denial
of service). Beyond that, the partial mints behave exactly as regular
mints; only DS and BP are instantiated with a multi-party protocol.

4.1 Distributing BDHKE
We propose a new protocol for secure distributed computation of
BDHKE, called dBDHKE, in a way suitable for resource-constrained
devices. Interestingly, the proposed solution can also be used to
distribute the blind BLS protocol [4] to devices that hold key shares
but do not support pairing function computation.

The distributed variant of Sign operation is from mint’s side
(Sign2) the same as single-party one, since its outputs can be ag-
gregated non-interactively, just like in the BLS scheme [31]. The
aggregation is an additional task that needs to be performed by
the party performing the protocol in Sign3, who receives partial
tokens from the partial mints 𝑇 ′1 , . . . ,𝑇

′
𝑛 and aggregates them as

𝑇 ′ =
∑𝑛
𝑖=1𝑇

′
𝑖
before their unblinding.

Distributing the Verify computation is more complex, as pro-
duced tokens cannot be directly verified without having access
to the complete private key 𝑘 =

∑𝑛
𝑖=1 𝑘𝑖 . Therefore, we propose a

two-round protocol, during which the token is recreated and com-
plemented by non-interactive zero-knowledge proofs of its correct
construction. Using these proofs, partial mints can verify that the
provided token was valid. However, since the token has been recre-
ated during this process, it may no longer be accepted in the future,

Verify1 (st, in)
((𝐾𝑗)𝑛𝑗=1, 𝑘𝑖) ← st

(𝑚,𝑇) ← in

𝑉𝑖 ← 𝑘𝑖𝐻G (𝑚)
𝜋𝑖 ← DLEQ .Prove(𝑘𝑖 ,𝐺,𝐻G (𝑚))
return ((𝑚,𝑇, (𝐾𝑗)𝑛𝑗=1), (𝑉𝑖 , 𝜋𝑖))

Verify2 (st, in)
(𝑚,𝑇, (𝐾𝑗)𝑛𝑗=1) ← st

(𝑉𝑗 , 𝜋 𝑗)𝑛𝑗=1 ← in

for 𝑗 ∈ {1, . . . , 𝑛} do
if DLEQ .Verify(𝜋 𝑗 ,𝐺, 𝐾𝑗 , 𝐻G (𝑚),𝑉𝑗) ≠ 1 then
return 0

done

return
𝑛∑︁
𝑗=1
𝑉𝑗 = 𝑇

ACM Reference Format:
. 2024. . In Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 1 page. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 3: Definition of dBDHKE verification procedures.

independently of the verification result. The application utilizing
the protocol needs to enforce this behavior, which is achieved in
the mint case by adding the token to the ledger.

The verification protocol splits the Verify operation into two pro-
cedures (Verify1,Verify2), defined in Figure 3. In the first procedure,
verifiers (partial mints) are initialized with their state containing
their private key 𝑘𝑖 and public keys 𝐾𝑗 of all parties, and input con-
sisting of a message𝑚 and a token 𝑇 to verify. Using its key share
𝑘𝑖 , each verifier computes a verifying token 𝑉𝑖 and a DLEQ proof
𝜋𝑖 of its correct construction. The procedure outputs a state for
the next round, consisting of the verified token and public keys of
other parties, and a message to transmit, consisting of the verifying
token 𝑉𝑖 and proof 𝜋𝑖 . The messages are then transmitted to other
protocol participants.

The second procedure of each party is invoked with its state
from the previous round and messages of all parties as input. The
procedure verifies all received proofs and checks that the recon-
structed point corresponds to the token that is being verified. The
result of the verification is output.

4.1.1 Correctness. The token issued with the distributed protocol
is a valid token verifiable with the private key 𝑘 =

∑𝑛
𝑖=1 𝑘𝑖 as shown

in the following equation:

𝑇 = 𝑇 ′ − 𝑟𝐾 =

𝑛∑︁
𝑖=1

𝑇 ′𝑖 − 𝑟𝐾 =

𝑛∑︁
𝑖=1

𝑘𝑖 (𝐻G (𝑚) + 𝑟𝐺) − 𝑟𝐾

= 𝑘 (𝐻G (𝑚) + 𝑟𝐺) − 𝑟𝐾 = 𝑘𝐻G (𝑚) + 𝑟𝐾 − 𝑟𝐾 = 𝑘𝐻G (𝑚).
The distributed verification is correct since for a valid token 𝑇
of message 𝑚, 𝑇 =

∑𝑛
𝑖=1𝑉𝑖 =

∑𝑛
𝑖=1 𝑘𝑖𝐻G (𝑚) = 𝑘𝐻G (𝑚), which

satisfies the verification equation.

4.2 Distributing DS
To fully distribute the trust of all mint operations, even the DS.Sign
during Redeem operation needs to be computed using a multi-
party protocol. Multi-party signing is a common technique for

ARES 2024, July 30-August 2, 2024, Vienna, Austria Dufka et al.

which many standard protocols exist, e.g., [4, 23]. Focusing on the
compatibility with resource-constrained devices, we consider the
Schnorr multi-signature scheme by Nick et al. [23], as it can be
efficiently constructed and verified using smartcards. The protocol
consists of two communication rounds, which can be interleaved
with the verification rounds to eliminate the extra communication.
In case the verification on smartcards is not needed, BLS signatures
[4] may be a better solution, as they are more efficient to compute
and can be aggregated non-interactively.

4.3 DOS mitigation
Since dBDHKE requires a token to be added to the ledger during
verification, independently of its validity, an attacker may attempt
to spam the system with invalid tokens and fill up the available
memory. This is particularly troublesome for devices with limited
storage, which may need to rely on various storage offloading
techniques, significantly degrading the system’s performance.

This problem can be addressed in an account-based system by
constraining the user’s number of verification attempts within a
time window or by sanctioning users repeatedly attempting to
verify invalid tokens. Although such systems do not enable direct
tracing of users’ transactions, their metadata may reveal partial
information about users’ balances unless additional precautions to
avoid this analysis are taken.

A more private system would utilize a group-based authenti-
cation, for example, based on group signatures [11], which only
proves that the accessing user is one of the eligible users but does
not allow identifying which one. This setting, however, is only suit-
able for preventing an attack by outsiders, as eligible users cannot
be distinguished from each other.

In an entirely anonymous setting, the problem can be addressed
by disincentivizing spamming by increasing the cost of making a
request, similarly to the concept of HashCash [1]. For a distributed
BDHKE-based mint, the technique can be applied by requiring the
submitted token (output of𝐻G) to have a defined prefix. Given such
a requirement, users would need to search for an input that hashes
to a value with the prefix before submitting a request. A mint then
could efficiently verify whether a token satisfies the requirement
by recomputing the hash before proceeding with the protocol. The
complexity of the search could be parameterized so that the search
would take the user significantly more time than the verification.

4.4 Security properties
In this section we show that the dBDHKE protocol with DLEQ
instantiated using Chaum-Pedersen proof [10] satisfies the secu-
rity against one-more forgery, as defined in Figure 5, assuming the
hardness of the one-more gap Diffie-Hellman problem [16] in the
random oracle model [3]. Privacy-related properties are inherited
from the base scheme since users’ interactions remain the same.

In the attacker model, we assume that the initial generation
and distribution of private keys and corresponding public keys
were performed correctly and consistently. Then, the attacker was
given private keys of all but one honest partyM1 to simulate the
corruption of 𝑛 − 1 parties. The attacker has also an oracle access
toM1’s procedures Sign2, Verify1, and Verify2, and also random
oracles 𝐻G and 𝐻𝜋 .

4.4.1 Hardness assumption. The one-more gapDiffie-Hellman prob-
lem [16] is defined in Figure 4. A challenger provides an adversary
a group description (G, 𝑝,𝐺) and a public key 𝐾 = 𝑘𝐺 , where 𝑘
is known only to the challenger. Additionally, the adversary has
access to three oracles: Chal, which outputs a randomly sampled
challenge𝐶 from G, sDH, which on input𝐶 outputs 𝑘𝐶 , and sDDH,
which on input 𝐶,𝑇 from G outputs 1 if and only if 𝑘𝐶 = 𝑇 , i.e.,
(𝐶,𝐾,𝑇) is a valid DDH triple. The adversary wins if it outputs
more distinct valid solutions 𝑘𝐶𝑖 to challenges than is the number
of queries made to the sDH oracle.

OMGDHA (_)
(G, 𝑝,𝐺) ← GrGen(1_)
𝑘 ←$Z𝑝 ;𝐾 ← 𝑘𝐺

𝑐 ← 0; 𝑙 ← 0
(𝐶 𝑗 ,𝑈 𝑗)𝑐𝑗=1
←$AChal,sDH,sDDH (G, 𝑝,𝐺, 𝐾)

for 𝑗 ∈ {1, . . . , 𝑐 } do
if 𝐶 𝑗 ≠ 𝐶 𝑗 ∨𝑈 𝑗 ≠ 𝑘𝐶 𝑗 then

return 0
done

return 𝑙 < 𝑐

Chal()
𝑐 ← 𝑐 + 1
𝐶𝑐 ←$G

return𝐶𝑐

sDH(𝐶)
𝑙 ← 𝑙 + 1
return 𝑘𝐶

sDDH(𝐶,𝑇)
return 𝑘𝐶 = 𝑇

ACM Reference Format:
. 2024. . In Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 1 page. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 4: The (static) one-more gap Diffie-Hellman game.

OMUFAdBDHKE (_)
(G, 𝑝,𝐺,𝐻G, _) ← Setup(1_)
Select 𝐻𝜋 : G6 → Z𝑝
(𝑘𝑖 , 𝐾𝑖)𝑛𝑖=1 ← KeyGen𝑛 ()
𝐿 ← {}; 𝑙 ← 0

A𝐻G,𝐻𝜋 ,M1 (𝐾1, (𝑘 𝑗)𝑛𝑗=2)
return 𝑙 < 0
M1 .Sign2 (𝐶)
𝑙 ← 𝑙 + 1
(st,𝑇 ′) ← Sign2 (𝑘1,𝐶)
return𝑇 ′

M1 .Verify1 (𝑚,𝑇)
if 𝑚 ∈ 𝐿 then return ⊥
𝐿 ← 𝐿 ∪ {𝑚}
st← ((𝐾𝑗)𝑛𝑗=1, 𝑘1)
in← (𝑚,𝑇)
st′, out← Verify1 (st, in)
return out

M1 .Verify2 (proofs)
if 𝑠𝑡 ′ = ⊥ then return ⊥
𝑏 ← Verify2 (st′, proofs)
st′ ← ⊥
if 𝑏 then 𝑙 ← 𝑙 − 1
return 𝑏

ACM Reference Format:
. 2024. . In Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 1 page. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 5: The dBDHKE one-more unforgeability game.

4.4.2 Reduction. Given a PPT adversaryA that with non-negligible
probability wins the OMUF game, we construct a PPT adversary
B who wins the OMGDH game with non-negligible probability.
B is initialized with a group description (G, 𝑝,𝐺), the chal-

lenger’s public key 𝐾1, and Chal, sDH and sDDH oracles. B initial-
izes A using the same group description, 𝐾1 as the honest party’s
public key, and private keys of all other 𝑛 − 1 parties 𝑘2, . . . , 𝑘𝑛
which B generated. B answers A’s oracle queries as follows:

Trust-minimizing BDHKE-based e-cash mint using secure hardware and distributed computation ARES 2024, July 30-August 2, 2024, Vienna, Austria

• 𝐻G (𝑚): B checks whether the oracle has been queried with
the same input before. If not, it invokes its Chal() oracle and
its output 𝐶 is programmed into the 𝐻G oracle. Then, the
programmed value is output.
• 𝐻𝜋 (𝑋,𝑌, 𝑃,𝑄,𝐴, 𝐵): B checks whether the oracle has been
queried with the same input before. If not, a fresh 𝑐 ←$ Z𝑝
is sampled and programmed into the 𝐻𝜋 oracle. Then, the
programmed value is output.
• M1 .Sign2 (𝐶): B increments its counter 𝑙 , relays the request
to its sDH(𝐶) oracle, and returns the output 𝑘1𝐶 .
• M1 .Verify1 (𝑚,𝑇): B uses its sDDH oracle to check whether
𝑉 ′1 = 𝑇−∑𝑛

𝑗=2 𝑘 𝑗𝐻G (𝑚) is a valid tokenwith respect to𝑚 and
the challenger’s key 𝐾1. In case it is, the verifying point𝑉1 is
set to the extracted point 𝑉 ′1 . Otherwise, B queries the sDH
oracle for it. The DLEQ proof 𝜋1 is forged by programming
𝐻𝜋 , as described in Section 2.3. In case the value for given
inputs is already set, B aborts. Finally, (𝑉1, 𝜋1) is output.
• M1 .Verify2 (proofs):B checks that a verification is currently
in progress and proceeds according to the OMUF game. In
case a verification of the token with sDDH oracle failed, yet
Verify2 output 1, abort.

Throughout A’s execution, 𝑙 corresponds to the difference be-
tween the number of queries made to the sDH oracle and the num-
ber of challenge solutions known by B, as will be detailed in the
following paragraphs. Consequently, if 𝑙 turns negative and B does
not abort, B is able to win the OMGDH game.

For each query toM1 .Sign2, the 𝑙 value is incremented since
sDH was queried, and we have to assume that the output is not a
solution to a challenge, as A could have used blinding.

When A invokes the verification sequence with a valid token,
B is able to extract 𝑘1𝐻G (𝑚) without performing an sDH query, as
it can rely on the verification of the token using the sDDH oracle.
Since the token was valid, 𝑙 may be eventually decremented, but B
can already answer the corresponding challenge.

WhenA invokes the verification sequence with an invalid token,
B has to query the sDH oracle to provide the correct answer, but
since the token is invalid, the verification will fail with overwhelm-
ing probability due to the soundness of the DLEQ system. In that
case, 𝑙 will not be decremented, and since𝑚 was already included in
𝐿, the reconstructed token is no longer acceptable for verification,
and B learned the solution to the corresponding challenge.

If A attempts to invoke the verification with a message that is
already present in 𝐿, it will immediately return without making
any further queries or changes to 𝑙 .
A’s view in the simulation is indistinguishable from a real ex-

ecution. When A terminates, B looks up all challenges 𝐶𝑖 from
the Chal oracle, which may have been either included in 𝐿, or un-
used. For the former, B looks up the corresponding solutions 𝑈𝑖
obtained when simulating theM1 .Verify1 procedure. For the latter,
B queries its sDH oracle. Finally, B outputs all pairs (𝐶𝑖 ,𝑈𝑖). If the
output ofA is a valid solution to the OMUF game, then the output
of B is a valid solution to the OMGDH problem.

Consequently,Bwins theOMGDHwheneverA wins theOMUF
game and B does not abort. B aborts when it fails to program the
𝐻𝜋 oracle with a DLEQ forgery, which occurs with probability at
most 𝑞𝜋/𝑝 , where 𝑞𝜋 is the number of queries made to the 𝐻𝜋

oracle. The only other instance when B aborts is when there is
an inconsistency between at least one of the DLEQ proofs and the
sDDH oracle, each of which can occur with the probability of the
soundness error 𝜖𝜋 of the DLEQ system, which is negligible. There-
fore, both failure events occur only with negligible probability.

4.4.3 Avoiding trusted setup. In case the trusted setup is undesir-
able, the protocol can be modified to accommodate distributed key
generation at the cost of an additional communication round.

Without knowing the keys 𝑘2, . . . , 𝑘𝑛 , B would not be able to
simulate answers for valid tokens duringM1 .Verify1 queries. In
order to restore this ability, B would need to obtain the verifica-
tion points of all parties before outputting its answer. This can be
achieved by extending the protocol by an additional commitment
round, during whichB learns the verification points of other parties
before having to submit its answer.

5 Implementation on smartcards
In order to obtain the maximal benefits of using tamper-proof
devices, the devices need to run the full mint functionality as defined
in Section 3.2, involving all three operations Issue, Redeem, and
Swap, including the state management.

We implemented the BDHKE protocol on current JavaCard-based
smartcards both in the single-party and the distributed variant.
Since the JavaCard platform provides only a very restrictive in-
terface to hardware-accelerated operations, we utilize techniques
proposed in [20] and improved in [13] that enabled at least partial
acceleration using coprocessor. However, compared to using a differ-
ent smartcard platform (e.g., MULTOS) or relying on vendor-specific
proprietary interfaces, the implementation is portable among Java-
Card smartcards, and its source code can be fully public4.

We assume that smartcards are provisioned in a secure environ-
ment, i.e., initially loaded with an authentic applet implementation
and provided with its key and additional setup information, but
afterward can be used even in an adversarial environment.

5.1 Single-party implementation
The single-party BDHKE protocol from the signer’s side consists
of two operations: scalar multiplication and hashing to a curve.
Scalar multiplication with hardware-accelerated implementation
is commonly supported by the latest JavaCard smartcards [33],
so this operation can be computed close to the platform’s native
performance. However, hashing to a curve is more costly, as neither
the algorithm nor its underlying operations are available in the
JavaCard API.

There aremany hash-to-curve algorithms, but a relatively straight-
forward one (and used by the Cashu project) is the following: com-
pute the SHA256 hash of the input, concatenate a counter value
to the hash output, and hash it again. The result is taken as an
x-coordinate of a point. Afterward, the corresponding y-coordinate
is computed. Since the probability of such a point being valid is
only around 50%, it can fail. In that case, the counter is incremented,
and the process is repeated until a valid point is found.

4The applet’s source code is available at https://github.com/crocs-muni/JCMint.

https://github.com/crocs-muni/JCMint

ARES 2024, July 30-August 2, 2024, Vienna, Austria Dufka et al.

This whole process can be implemented on a smartcard, but it is
rather costly, as computing the y-coordinate requires several mod-
ular operations. These operations are relatively slow, especially
when using modular arithmetic that is only partially hardware-
accelerated. Although we implemented this operation fully on a
smartcard, we also propose a computation offloading approach in
the following section, which allows for a vastly improved perfor-
mance.

5.1.1 Offloading hash-to-curve computation. Since smartcards need
to be used with a typically much more computationally powerful
host device, the cards can offload costly computations to their host
as long as the card can efficiently verify the result.

The SHA256 computation can be done reasonably efficiently
on a smartcard [33] and the costly part is the reconstruction of a
point, which may need to be repeated several times due to the trial
and error attempts. To avoid this, the host device can compute the
output of the hash-to-curve operation and provide it to a smartcard.
The smartcard can efficiently verify that the provided output is a
valid point and that its x-coordinate is a hash of the input.

However, a problem with this approach is that it only works
if a valid point is found in the first iteration. Otherwise, the card
would not be able to know whether it received the first point that
matched, which could result in an incorrect point being provided.
If that would be the case, an attacker could convince the smartcard
that a point has a different pre-image, causing double-spending.

The issue can be avoided by putting a constraint on the message
that users use for their tokens. Messages that require more than
just a single iteration will be considered invalid. This shifts more
computation to users, as they have to search for such messages, but
as they run much more powerful devices, they should not notice
any delay as every attempt has around 50% chance to succeed.

5.2 Extension to multi-party setting
The multi-party setting adds the need for computation and verifica-
tion of a zero-knowledge proofs of discrete-logarithm equality, and
the addition of points to check whether the verifying points match
the received token. The support for point addition is already avail-
able in the latest JavaCard-based smartcards, but both the proof
computation and verification need to be implemented.

The DLEQ functionality instantiated with the Chaum-Pedersen
construction [10] requires scalar multiplications, point additions,
a hash function, and modular arithmetic. All these operations can
be computed using the JCMathLib library [20], but the modular
arithmetic exhibits significantly lower performance than a native
implementation could.

During the first round of the verification protocol, only a single
proof needs to be constructed. However, in the second round, all
proofs of the other parties need to be verified, incurring an over-
head linear in the number of parties. This computation becomes
rather restrictive with larger sets of signers, as it involves costly
operations.

Table 1: The average computation time (ms) and standard
deviation of signing a token (Sign2) and verifying it (Verify1,
Verify2) in dependence on the number of involved partieswith
and without hash-to-curve computation offloading (opt). In
the single-party setting, verification can be done in a single
round; therefore Verify2 is empty. The sum of the time of
the operations corresponds to the time a mint requires to
perform the Swap operation. Measured on NXP JCOP4 P71
JavaCard with a 256-bit elliptic curve.

𝑛 1 2 3 4 5

Sign2
52 52 52 52 52
(±1) (±0) (±0) (±0) (±0)

Verify1 (opt)
122 342 342 339 341
(±5) (±10) (±10) (±11) (±10)

Verify1
784 1002 1026 1028 995
(±285) (±303) (±326) (±331) (±287)

Verify2 — 287 535 787 1035
(±1) (±1) (±1) (±1)

Total (opt) 174 681 930 1178 1428
(±5) (±12) (±11) (±12) (±11)

Total 836 1340 1613 1866 2082
(±286) (±304) (±327) (±332) (±288)

6 Performance evaluation
We measured the performance of our JavaCard implementation
on NXP JCOP4 P71 smartcard5 with a 256-bit curve, both in the
single-party and the distributed variant with up to 5 parties, and
also with and without hash-to-curve computation offloading. We
measured separately the time required to issue and verify a new
token using the (d)BDHKE protocol. The sum of those operations
corresponds to the mint’s Swap operation. All the measurements
were repeated one hundred times and averaged. The results from
the smartcard are presented in Table 1 and visualized in Figure 6.

Due to the used measurement approach, the results include com-
munication overhead involving sending an APDU packet to the
smartcard and receiving the response, requiring 6-108ms, depend-
ing on the amount of transmitted data. On the contrary, they do
not include possible delays caused by the mediator computation
nor computation of other parties which can run in parallel.

The implementation turned out to be particularly efficient in
the single-party setting with enabled optimizations, allowing for
a token swap in just 174 (± 5)ms. This is close to the hardware’s
native performance level, as none of the involved operations re-
quire the use of reconstructed operations from JCMathLib. In case
the constraint on valid points from Section 5.1.1 cannot be applied,
the hash-to-curve computation cannot be offloaded and must be
computed on a card. This can result in multiple attempts of recon-
structing a point, each requiring around 232 (± 18)ms, leading to
high variation and computation time, resulting in 836 (± 286)ms.

In the distributed setting, swapping a token involves both dB-
DHKE verification rounds and also issuing a new token after suc-
cessful verification. This computation requires relying on the JC-
MathLib library independently on the hash-to-curve offloading.

5A widely available and performant smartcard with the JavaCard platform.

Trust-minimizing BDHKE-based e-cash mint using secure hardware and distributed computation ARES 2024, July 30-August 2, 2024, Vienna, Austria

Table 2: The number of operations needed to perform in
different parts of the protocol depending on the number
of parties 𝑛. The last row shows the number of operations
required in the verification of single-party BDHKE.

G mult G add Z𝑝 mult Z𝑝 add H2C
Sign2 1 0 0 0 0
Verify1 3 0 1 1 1
Verify2 4𝑛 − 4 3𝑛 − 3 0 0 0
Verify 1 0 0 0 1

1 2 3 4 5
Number of parties

0

500

1000

1500

2000

C
om

p
u

ta
ti

on
ti

m
e

(m
s)

Verify2

Verify1 (opt)

Verify1

Sign2

Figure 6: The time required to perform a token swap in de-
pendence on the number of parties. Left columns show time
with offloaded hash-to-curve computation and right columns
without. Measured on NXP JCOP4 P71 smartcard with a 256-
bit elliptic curve.

With the offloading enabled, a 2-party setup can swap a token in
681ms and each additional party adds around 250ms, being still
under 1.5 s for 5 parties. Without the offloading, the average com-
putation time is increased by around 700ms independently of the
number of parties.

The achieved results are acceptable for mints performing a single-
digit number of transactions per minute. Furthermore, the through-
put can be increased in solutions using multiple token denomina-
tions by adding smartcards dedicated to different denominations.

Still, the hardware is capable of achieving better results using
a proprietary interface. We counted the number of mathematical
operations used in the protocol (presented in Table 2) and esti-
mated the potential native performance of the protocol based on
the number of scalar multiplications (G mult), as it is by a large
factor the most costly operation in the protocol. The JavaCard API
exposes this operation directly; therefore, we can measure how fast
it can perform. By extrapolating from this value, we estimate that
in the two-party setting, the protocol should be computable on the
platform at around 400ms, and each additional party should add
around 200ms.

7 Conclusion
In this work, we have proposed an approach for trust-minimization
of e-cash mints based on BDHKE, which is a very efficient yet not
publicly verifiable blind protocol. The approach involves distribut-
ing the protocol computation among independent devices holding
secret shares of the mint’s key and computing the operations on
tamper-proof devices.

Although distributed signing with BDHKE is straightforward,
due to the tokens being aggregatable non-interactively, the verifica-
tion is more complex, as BDHKE tokens are not publicly verifiable.
Consequently, parties holding only a part of the key cannot verify
it alone. To circumvent this issue, we proposed a multi-party proto-
col during which the token is recreated and complemented with a
zero-knowledge proof of its validity.

The protocol is also of separate interest, as it is compatible with
the BLS scheme, enabling the verification of multi-party BLS on
resource-constrained devices that are not capable of computing
the pairing function, in a setting where the verifiers hold shares
corresponding to the private key.

We have implemented the protocol for the JavaCard platform and
measured its performance on a physical smartcard NXP JCOP4 P71.
The results show that BDHKE is the most practical in the single-
party setting. However, even a two-party variant can swap a token
in less than 700ms, making the results practical for mints perform-
ing a single-digit number of token swaps per minute. Furthermore,
we estimate that the two-party protocol could be computed in under
half a second with native access to the platform.

As a future work, we plan to extend the approach to enable com-
pleting the computation with some fraction of parties missing by
using Shamir’s secret sharing [28] instead of additive secret sharing.
Another perspective research direction is devising an approach for
batching the DLEQ proofs to enable more efficient verification for
large setups.

Acknowledgments
The authors were supported by the European Union under Grant
Agreement No. 101087529 (CHESS). We also thank Martin Paljak
for his comments on the initial idea and expertise with smartcards.

References
[1] Adam Back et al. 2002. Hashcash-a denial of service counter-measure. (2002).
[2] Mathieu Baudet, Alberto Sonnino, Mahimna Kelkar, and George Danezis. 2023.

Zef: low-latency, scalable, private payments. In Proceedings of the 22nd Workshop
on Privacy in the Electronic Society. 1–16.

[3] Mihir Bellare and Phillip Rogaway. 1993. Random oracles are practical: A para-
digm for designing efficient protocols. In Proceedings of the 1st ACM Conference
on Computer and Communications Security. 62–73.

[4] Alexandra Boldyreva. 2002. Threshold signatures, multisignatures and blind sig-
natures based on the gap-Diffie-Hellman-group signature scheme. In International
Workshop on Public Key Cryptography. Springer, 31–46.

[5] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short signatures from the Weil
pairing. In International conference on the theory and application of cryptology
and information security. Springer, 514–532.

[6] Jan Camenisch and Anna Lysyanskaya. 2004. Signature schemes and anonymous
credentials from bilinear maps. In Annual international cryptology conference.
Springer, 56–72.

[7] David Chaum. 1983. Blind Signatures for Untraceable Payments. In Advances in
Cryptology, David Chaum, Ronald L. Rivest, and Alan T. Sherman (Eds.). Springer
US, Boston, MA, 199–203.

[8] David Chaum. 1985. Security without identification: Transaction systems to
make big brother obsolete. Commun. ACM 28, 10 (1985), 1030–1044.

ARES 2024, July 30-August 2, 2024, Vienna, Austria Dufka et al.

[9] David Chaum, Amos Fiat, and Moni Naor. 1990. Untraceable electronic cash. In
Advances in Cryptology—CRYPTO’88: Proceedings 8. Springer, 319–327.

[10] David Chaum and Torben Pryds Pedersen. 1992. Wallet databases with observers.
In Annual international cryptology conference. Springer, 89–105.

[11] David Chaum and Eugène Van Heyst. 1991. Group signatures. In Advances in
Cryptology—EUROCRYPT’91: Workshop on the Theory and Application of Cryp-
tographic Techniques Brighton, UK, April 8–11, 1991 Proceedings 10. Springer,
257–265.

[12] Elizabeth Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi Zhu.
2023. Snowblind: A Threshold Blind Signature in Pairing-Free Groups. In Annual
International Cryptology Conference. Springer, 710–742.

[13] Antonín Dufka and Petr Švenda. 2023. Enabling efficient threshold signature
computation via java card API. In Proceedings of the 18th International Conference
on Availability, Reliability and Security. 1–10.

[14] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. 2018. The algebraic group model
and its applications. In Advances in Cryptology–CRYPTO 2018: 38th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018,
Proceedings, Part II 38. Springer, 33–62.

[15] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. 2020. Blind Schnorr
signatures and signed ElGamal encryption in the algebraic group model. In
Advances in Cryptology–EUROCRYPT 2020: 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10–14, 2020, Proceedings, Part II 30. Springer, 63–95.

[16] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. 2014. Round-optimal
password-protected secret sharing and T-PAKE in the password-only model.
In Advances in Cryptology–ASIACRYPT 2014: 20th International Conference on
the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, ROC, December 7-11, 2014, Proceedings, Part II 20. Springer, 233–253.

[17] Julia Kastner, Julian Loss, and Jiayu Xu. 2022. The abe-okamoto partially blind sig-
nature scheme revisited. In International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 279–309.

[18] Veronika Kuchta and Mark Manulis. 2015. Rerandomizable threshold blind
signatures. In Trusted Systems: 6th International Conference, INTRUST 2014, Beijing,
China, December 16-17, 2014, Revised Selected Papers 6. Springer, 70–89.

[19] Vasilios Mavroudis, Andrea Cerulli, Petr Svenda, Dan Cvrcek, Dusan Klinec, and
George Danezis. 2017. A Touch of Evil: High-Assurance Cryptographic Hardware
from Untrusted Components. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (Dallas, Texas, USA) (CCS ’17). ACM,
New York, NY, USA, 1583–1600. https://doi.org/10.1145/3133956.3133961

[20] Vasilios Mavroudis and Petr Svenda. 2020. JCMathLib: wrapper cryptographic
library for transparent and certifiable JavaCard applets. In 2020 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, 89–96.

[21] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. 2018. Handbook
of applied cryptography. CRC press.

[22] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.
[23] Jonas Nick, Tim Ruffing, and Yannick Seurin. 2021. MuSig2: Simple two-round

Schnorrmulti-signatures. InAnnual International Cryptology Conference. Springer,
189–221.

[24] David Pointcheval and Olivier Sanders. 2016. Short randomizable signatures. In
Topics in Cryptology-CT-RSA 2016: The Cryptographers’ Track at the RSA Con-
ference 2016, San Francisco, CA, USA, February 29-March 4, 2016, Proceedings.
Springer, 111–126.

[25] David Pointcheval and Jacques Stern. 1996. Provably secure blind signature
schemes. In International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 252–265.

[26] David Pointcheval and Jacques Stern. 2000. Security arguments for digital signa-
tures and blind signatures. Journal of cryptology 13 (2000), 361–396.

[27] Alfredo Rial and Ania M Piotrowska. 2023. Compact and Divisible E-Cash with
Threshold Issuance. arXiv preprint arXiv:2303.08221 (2023).

[28] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[29] Stefano Tessaro and Chenzhi Zhu. 2022. Short pairing-free blind signatures

with exponential security. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 782–811.

[30] Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy Gueta,
Benny Pinkas, and Avishay Yanai. 2022. UTT: Decentralized ecash with account-
able privacy. Cryptology ePrint Archive (2022).

[31] Duc Liem Vo, Fangguo Zhang, and Kwangjo Kim. 2003. A new threshold blind
signature scheme from pairings. In SCIS2003. SCIS, 233–238.

[32] David Wagner. 1996. Chaumian ecash without RSA. https://cypherpunks.venona.
com/date/1996/03/msg01848.html. (accessed on 2024-01-18).

[33] Petr Švenda, Rudolf Kvašňovský, Imrich Nagy, and Antonín Dufka. 2022. JCAl-
gTest: Robust Identification Metadata for Certified Smartcards.. In SECRYPT.
597–604.

OMUFABDHKE (_)
(G, 𝑝,𝐺,𝐻G, _) ← Setup(1_)
(𝑘,𝐾) ← KeyGen() ; 𝑙 ← 0;𝐿 ← {}
(𝑚 𝑗 ,𝑈 𝑗)𝑙+1𝑗=1 ←$A𝐻G,𝐻𝜋 ,M (𝐾)
for 𝑗 ∈ {1, . . . , 𝑙 + 1} do
if 𝑚 𝑗 ∈ 𝐿 ∨ 𝑘𝐻G (𝑚 𝑗) ≠ 𝑈 𝑗 then return 0
𝐿 ← 𝐿 ∪ {𝑚 𝑗 }

done

return 1

M .Sign2 (𝐶)
𝑙 ← 𝑙 + 1
(st,𝑇 ′) ← Sign2 (𝑘,𝐶)
return𝑇 ′

M .Verify(𝑚,𝑇)
return Verify(𝑘,𝑚,𝑇)

ACM Reference Format:
. 2024. . In Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 1 page. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 7: The BDHKE one-more unforgeability game.

A BDHKE security analysis
The BDHKE protocol satisfies blindness assuming honest-but-curious
signer. It follows from the fact that in the Sign2 the signer receives
only random elements fromG, and, when the signer behaves accord-
ing to the protocol, it receives only 𝑘𝐻 (𝑚) = 𝑇 during verification,
which yields no information about the corresponding signing query.
The honest behavior can be enforced in the malicious setting by
requiring a DLEQ proof to be provided along the output of Sign2.

The one-more unforgability of BDHKE is achieved in the ma-
licious setting, assuming the hardness of one-more gap Diffie-
Hellman problem. Given a PPT adversaryA that with non-negligible
probability wins the OMUF game (Figure 7), we construct a PPT
adversary B who wins the OMGDH game with non-negligible
probability.
B is initialized with a group description (G, 𝑝,𝐺), the chal-

lenger’s public key 𝐾 , and Chal, sDH and sDDH oracles. B ini-
tializes A using the same group description and 𝐾 as the public
key. B answers A’s oracle queries as follows:
• 𝐻G (𝑚): B checks whether the oracle has been queried with
the same input before. If not, it invokes its Chal() oracle
and the output 𝐶 is programmed into the oracle. Then, the
programmed value is output.
• M .Sign2 (𝐶): B increments its counter 𝑙 , relays the request
to its sDH(𝐶) oracle, and returns the output 𝑘𝐶 .
• M .Verify(𝑚,𝑇): B checks using sDDH whether 𝑇 is a valid
token with respect to𝑚 and 𝐾 , and outputs the result.

For each query toM .Sign2, the 𝑙 value is incremented since sDH
was queried. When A invokes the verification oracle, the sDDH
oracle is used to provide the answer, so no additional sDH query
was needed. A’s view in the simulation is indistinguishable from a
real execution. When A terminates, B looks up all the remaining
challenges from the Chal oracle and solves them using the sDH
oracle. Then, B outputs all challenge-solution pairs. If the output
of A is a valid solution to the OMUF game, then the output of B
is a valid solution to the OMGDH problem. Consequently, B wins
the OMGDH whenever A wins the OMUF game.

https://doi.org/10.1145/3133956.3133961
https://cypherpunks.venona.com/date/1996/03/msg01848.html
https://cypherpunks.venona.com/date/1996/03/msg01848.html

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Digital signatures
	2.3 Proofs of discrete logarithm equality

	3 Electronic cash concepts
	3.1 Blind protocol
	3.2 Mint model

	4 Distributing mint functionality
	4.1 Distributing BDHKE
	4.2 Distributing DS
	4.3 DOS mitigation
	4.4 Security properties

	5 Implementation on smartcards
	5.1 Single-party implementation
	5.2 Extension to multi-party setting

	6 Performance evaluation
	7 Conclusion
	Acknowledgments
	References
	A BDHKE security analysis

