
The adoption rate of JavaCard features by
certified products and open-source projects

Lukas Zaoral1, Antonin Dufka2, and Petr Svenda2

1 Red Hat
lzaoral@redhat.com
2 Masaryk University

dufkan@mail.muni.cz, xsvenda@fi.muni.cz

Abstract. JavaCard is the most prevalent platform for cryptographic
smartcards nowadays. Despite having more than 20 billion smartcards
shipped with the JavaCard virtual machine and thirteen revisions since
the JavaCard API specification was first published more than two decades
ago, uptake of newly added features, cryptographic algorithms or their
parameterizations, and systematic analysis of overall activity is miss-
ing. We aim to fill this gap by mapping the activity of the JavaCard
ecosystem from publicly available sources with a focus on 1) information
available from security certification documents available under Common
Criteria and FIPS140 schemes and 2) activity and resources required by
JavaCard applets released in an open-source domain3.
The analysis performed on all certificates issued between the years 1997-
2023 and on more than 200 public JavaCard applets shows that new fea-
tures from JavaCard specification are adopted slowly. It typically takes
six or more years before a majority of certified products add correspond-
ing support. Open-source applets utilize new features even later, likely
due to the unavailability of recent performant smartcards in smaller
quantities. Additionally, almost 70% of constants defined in JavaCard
API specification are completely unused in open-source applets. The ap-
plet portability improves with recent cards, and transient memory re-
quirements (scarce resource on smartcards) are typically small. While
around twenty products have been consistently certified every year since
2009, the open-source ecosystem became more active around 2013 but
seemed to decline in the past two years. As a result, the whole smartcard
ecosystem is likely negatively impacted by limited exposure to new ideas
and usage scenarios, serving only well-established domains and poten-
tially harming its long-term competitiveness with other technologies.

Keywords: Smartcard · JavaCard · Security certification · Open-source

1 Introduction

A recent paper [12] mapped the difference between features (cryptographic al-
gorithms, key lengths) described in JavaCard API specification and features

3 Paper supplementary materials, full results of analysis and open tools are available
at https://crocs.fi.muni.cz/papers/cardis2023.

https://crocs.fi.muni.cz/papers/cardis2023

2 Zaoral L., Dufka A., and Svenda P.

actually supported by the real-world physical smartcards and documented a
large disparity. As implementation of cryptographic algorithms frequently re-
quires dedicated hardware co-processors to achieve acceptable performance and
secure execution, the decision about the level of support is left to a smartcard
vendor, with API specification intentionally listing the majority of the features
as optional to allow for such flexibility. But while JavaCard applets are sup-
posed to be binary portable between different smartcards, the uneven level of
feature support directly influences the actual portability and adoption of specific
algorithms by applets developed for the smartcards.

The analysis performed in paper [12] has two main limitations – although
more than 100 smartcards are analyzed, only the ones available to community-
maintained JCAlgTest database are considered (typically missing the recent or
uncommon smartcards), and actual use of algorithms in applet code running
on these cards is not evaluated. As a result, the impact of uneven support of
JavaCard API features on the whole JavaCard ecosystem and the rate of new
features adoption are not studied enough. We aim to fill this gap by answering
the following research questions:

Q1: What is the level and delay in adoption for cryptographic algorithms intro-
duced by specific versions of JavaCard specification by a) certified smartcards
and b) implementation of open-source applets?

Q2: How does the JavaCard open-source ecosystem evolve with respect to devel-
opment activity, requested JavaCard features, and memory utilization?

To answer these questions, we first performed an automatic analysis of doc-
uments accompanying security certification performed under the Common Cri-
teria and FIPS140 schemes for JavaCard API-related keywords and analyzed
the evolution in time for different API versions and cryptographic algorithms
included. That still left one angle unanswered – what algorithms are typically
required by applications (applets) running on these smartcards?

We addressed this question by analysis of more than 200 open-source JavaC-
ard projects. The resulting insight covers the evolution of cryptographic algo-
rithms in time, the expected time span before the algorithms from the given
version of JavaCard specification start to be available in practice, and the over-
all activity of the JavaCard open-source community. The results can be used
to inform the creators of the JavaCard specification regarding the features pop-
ularity and the possibility of features deprecation, the vendors of smartcards
with respect to the support for new features and comparison with competition,
and the developers with respect to the expected time of practical availability of
features included in a new version of the specification.

Paper contribution:

– Analysis of JavaCard API features adoption rate by products certified under
Common Criteria and FIPS140 schemes.

– Analysis of the evolution of the JavaCard open-source ecosystem of more
than 200 projects with respect to resources required (packages, crypto. algs.,
memory) and applets portability between multiple physical smartcards.

JavaCard feature adoption in open-source and certified products 3

The rest of this section introduces the JavaCard specification and surveys the
related work. Section 2 analyzes mentions of JavaCard technology by certifica-
tion artifacts issued under Common Criteria and FIPS140 certification schemes.
Section 3 surveys the JavaCard open-source ecosystem and analyzes its activity
in time and the portability of applets between different physical cards. Section
4 analyzes their memory and cryptographic resource requirements. Discussion
about observed trends and limitations is provided in Section 5 with conclusions
following in Section 6.

1.1 Related work

The closest work to ours is a recent publication by Svenda et al. [12]. In con-
trast to this paper, only support of JavaCard smartcards by direct testing is
performed in [12], certification reports are not analyzed and usage of the JavaC-
ard features in actual source code is not analyzed. A work by Hajny et al. [6]
presented performance measurement of selected basic cryptographic operations
on the three major smartcard platforms (JavaCard, .NET, and MultOS).

Apart from works focusing on smartcards, there have been a number of works
analyzing various software ecosystems. A systematic review of software ecosys-
tem literature was given in works by Barbosa and Alves [1] and Manikas and
Hansen [7]. An analysis focusing on mobile software ecosystems was performed
by Fontão et al. [3]. Ecosystem of open-source software for drones was surveyed
by Glossner et al. [5]. Furthermore, there have been a number of analyses per-
formed by mainstream developer platforms like StackOverflow4 and GitHub5

who produce yearly reports of their ecosystems and developers.

2 JavaCard in Common Criteria and FIPS140

The necessary prerequisite for an algorithm to be used in a production applet’s
code is its support by the used smartcard platform. As smartcards tend to be
used in environments imposing strict compliance requirements, the platform of-
ten needs to be certified, typically under FIPS140 or Common Criteria schemes.

We therefore performed an analysis of certification documents for any men-
tions of JavaCard API versions and algorithms to obtain further insight into
the current state of the certified devices ecosystem. These results support open-
source applet analysis presented later in Section 4. While existing work [12]
analyzed supported algorithms by direct testing of physical cards, only cards
available to authors were tested. The analysis based on certification documents
is therefore complementary to [12], as we analyze not only certificates for the
JavaCard platform and cryptographic libraries but also certificates for applets
built atop a base platform. Only certified items are analyzed here while the
authors of [12] test also smartcards with non-certified platforms (although fre-
quently based on certified underlying hardware).

4 https://survey.stackoverflow.co/2023/.
5 https://octoverse.github.com/.

https://survey.stackoverflow.co/2023/
https://octoverse.github.com/

4 Zaoral L., Dufka A., and Svenda P.

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024
0

10

20

30

3
.2
.0

3
.1
.0

3
.0
.5

3
.0
.4

3
.0
.1

2
.2
.2

2
.2
.1

2
.2
.0

2
.1
.1

2
.1
.0

YearN
u
m
b
er

o
f
ce
rt
ifi
ca
te
s
w
it
h
J
av
a
C
a
rd

v
er
si
o
n

JC 2.1.0 JC 2.1.1 JC 2.2.0 JC 2.2.1 JC 2.2.2

JC 3.0.1 JC 3.0.4 JC 3.0.5 JC 3.1.0

Fig. 1. The number of certification documents mentioning specific JavaCard API ver-
sion per year (the year 2023 only till June). In case multiple versions were detected in
a document, only the latest one was included in the plot.

To perform the analysis, we downloaded all public certification documents,
conveniently collected by the Sec-certs project6. The dataset already contained
JavaCard API version numbers extracted from the documents using regular
expressions. However, the second part of the analysis required more precise data
processing, which involved semi-manual filtering of raw data. We matched the
regular expression "ALG [0-9A-Z]+" against text content of all certification
documents and filtered only those that matched the pattern and corresponded
a JavaCard target (list of all matched certificates can be found in Table 5 in
the Appendix). In case a match was found, we compared the matching string to
known JavaCard API names and corrected values that were clearly incorrectly
read or input.

2.1 Analysis of certification documents

First, we analyzed the dependency of mentions of JavaCard API versions in
certification documents on a certificate issuance year. The distribution is shown
in Figure 1, where we display only the latest version detected per certificate
document (338 documents in total). We see that JavaCard API version 2.2.2
was in use for the longest period, starting in 2008, 2 years after its introduction,
and being commonly mentioned till 2017. Even in the year 2022, certificates
mentioning this API version were issued. Still, since the year 2010, API with

6 https://seccerts.org/.

https://seccerts.org/

JavaCard feature adoption in open-source and certified products 5

major version number 3 started gradually appearing, and by 2013, they were
mentioned in the majority of JavaCard certification documents. For the analysis
of new algorithm adoption, we focused on these newer versions, namely 3.0.1,
3.0.4, 3.0.5, and 3.1.0.

Among the 9872 certificate documents in the dataset, we have identified 59
that describe a JavaCard target and include references to strings prefixed with
ALG_, typical naming of JavaCard algorithm constants. Out of the 59 documents,
those issued before the year 2009 were certified only under FIPS140 scheme (6
certificates). After that, all subsequent documents (53 in total) were issued under
the Common Criteria scheme. In the documents, we identified 136 unique strings
that match the pattern; however, only 103 of them correspond to algorithms
included in the JavaCard API7.

Figure 2 displays mentions of JavaCard algorithms introduced in JavaCard
API 3.0.1 and later grouped by the certificate issuance year. In general, algo-
rithms start being mentioned in certification documents only two or more years
after the specification version is published. The only exception to this is the
certificate of an Oberthur smartcard8, which mentions algorithm ALG_SHA_224

even before its specification was released.

JavaCard API version 3.0.5 was released in 2015, and the first algorithm
added to the specification appeared in a certification document in 2017. Later,
an algorithm (ALG_EC_SVDP_DH_PLAIN_XY), allowing for efficient ECDH compu-
tation outputting full point, started appearing in 2018. This algorithm was the
most frequently mentioned in the documents in the year 2022, together with its
variant (ALG_EC_SVDP_DH_PLAIN) outputting only X-coordinate that was intro-
duced in API version 3.0.1. Version 3.0.4 introduced two new algorithms, which
first appeared in certification documents in 2016, five years after its publication.
Apart from the Oberthur anomaly, mentions of algorithms introduced in JavaC-
ard API version 3.0.1, released in May 2009, started appearing in 2011, but their
mentions became more frequent only after 2015.

We also inspected the remaining strings that matched the JavaCard algo-
rithm pattern but are not part of the JavaCard API. Many of these algorithms
are likely incorrectly input in the source documents; however, some of them
clearly denote algorithms unsupported by JavaCard API. The algorithm names
are presented in Table 1 with several interesting items like ALG_EC_SVDP_DH_GK
whose function is not known due to missing public documentation, referring
to Oberthur’s proprietary API extensions9. Another interesting mentions are
ALG_ED25519PH_SHA_512 in four certificates by NXP10, which most likely refers
to Ed25519 signature algorithm with prehashed input and SHA512 function. The
same four certificates also include string ALG_MONT_DH_25519, likely referring to
Diffie-Hellman key agreement on Curve25519 in the Montgomery form.

7 JavaCard API contains in total 151 constants with such name.
8 https://seccerts.org/fips/6d094db49a6e2242/.
9 https://seccerts.org/fips/6d094db49a6e2242/, /a5bef651c8e3fd6c/.

10 https://seccerts.org/cc/03aded94fb04c62e/, /45098872448f5816/, /03aded94f
b04c62e/, /b0e6f667d52402df/.

https://seccerts.org/fips/6d094db49a6e2242/
https://seccerts.org/fips/6d094db49a6e2242/
https://seccerts.org/fips/a5bef651c8e3fd6c/
https://seccerts.org/cc/03aded94fb04c62e/
https://seccerts.org/cc/45098872448f5816/
https://seccerts.org/cc/ae175aa839dbf692/
https://seccerts.org/cc/ae175aa839dbf692/
https://seccerts.org/cc/b0e6f667d52402df/

6 Zaoral L., Dufka A., and Svenda P.

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

ALG_AES_BLOCK_192_CBC_NOPAD

ALG_AES_BLOCK_192_ECB_NOPAD

ALG_AES_BLOCK_256_CBC_NOPAD

ALG_AES_BLOCK_256_ECB_NOPAD

ALG_AES_CBC_ISO9797_M1

ALG_AES_CBC_ISO9797_M2

ALG_AES_CBC_PKCS5

ALG_AES_ECB_ISO9797_M1

ALG_AES_ECB_ISO9797_M2

ALG_AES_ECB_PKCS5

ALG_AES_MAC_192_NOPAD

ALG_AES_MAC_256_NOPAD

ALG_ECDSA_SHA_224

ALG_ECDSA_SHA_256

ALG_ECDSA_SHA_384

ALG_ECDSA_SHA_512

ALG_EC_SVDP_DHC_PLAIN

ALG_EC_SVDP_DH_PLAIN

ALG_RSA_SHA_224_PKCS1

ALG_RSA_SHA_224_PKCS1_PSS

ALG_RSA_SHA_256_PKCS1

ALG_RSA_SHA_256_PKCS1_PSS

ALG_RSA_SHA_384_PKCS1

ALG_RSA_SHA_384_PKCS1_PSS

ALG_RSA_SHA_512_PKCS1

ALG_RSA_SHA_512_PKCS1_PSS

ALG_SHA_224

ALG_DES_MAC4_ISO9797_1_M1_ALG3

ALG_DES_MAC8_ISO9797_1_M1_ALG3

ALG_AES_CMAC_128

ALG_AES_CTR

ALG_DH_PLAIN

ALG_EC_PACE_GM

ALG_EC_SVDP_DH_PLAIN_XY

ALG_FAST

ALG_KEYGENERATION

ALG_PRESEEDED_DRBG

ALG_SHA3_224

ALG_SHA3_256

ALG_SHA3_384

ALG_SHA3_512

ALG_TRNG

ALG_AES_CFB

ALG_AES_XTS

ALG_SM2

ALG_SM3

ALG_XDH

JC 3.0.1

JC 3.0.4

JC 3.0.5

JC 3.1.0

0

1

2

3

4

5

6

7

8

9

10

11

Fig. 2. Number of the Common Criteria and FIPS140 certificates that mention JavaC-
ard API 3.0.1+ algorithms, by year.

JavaCard feature adoption in open-source and certified products 7

Table 1. Algorithms detected in CC and FIPS certificates by search of prefix ALG_

that are not included in the official JavaCard API specification.

ALG AES BLOCK 128 CBC NOPAD STANDARD ALG DES CMAC8 ALG EC SVDP DHC GK

ALG AES CBC ISO9797 M2 STANDARD ALG DES ECB PKCS7 ALG EC SVDP DHC PACE

ALG AES CBC ISO9797 STANDARD ALG DES MAC128 ISO9797 1 M2 ALG3 ALG EC SVDP DH GK

ALG AES CBC PKCS7 ALG DES MAC 8 NOPAD ALG ED25519PH SHA 512

ALG AES CMAC128 ALG ECDSA RAW ALG MONT DH 25519

ALG AES CMAC16 ALG ECDSA SHA224 ALG RSA SHA256 PKCS1

ALG AES CMAC16 STANDARD ALG ECDSA SHA256 ALG RSA SHA256 PKCS1 PSS

ALG AES CMAC8 ALG ECDSA SHA256 LDS ALG RSA SHA 1 RFC2409

ALG AES ECB PKCS7 ALG ECDSA SHA384 ALG RSA SHA 256 ISO9796

ALG AES MAC 128 ISO9797 1 M2 ALG3 ALG ECDSA SHA384 LDS ALG SHA2 CHAIN

ALG DES CBC PKCS7 ALG ECDSA SHA LDS ALG SHA CHAIN

3 JavaCard open-source ecosystem

To analyze the overall focus, activity, and evolution of the JavaCard open-source
ecosystem, we built a database of all available public repositories relevant to
the JavaCard platform, performed a static and dynamic analysis of contained
JavaCard applets, and tested deployability on several physical smartcards.

3.1 Database of open-source projects

Since 2017, we periodically searched for JavaCard open-source repositories on
GitHub, SourceForge, and GitLab for the occurrence of ‘javacard.framework’
keyword and collected hits into a public curated list hosted on GitHub11. We
include almost all discovered repositories without assessing their maturity – only
obviously trivial, testing or unfinished applets are excluded. As some projects
are occasionally moved or removed, we create backups by forking each repository
when included. While a large majority (> 95%) of records were inserted by us,
some contributions were also made by the community.

We have manually examined all repositories from the curated list to create a
refined list with an explicit enumeration of JavaCard applets that we have found.
The refined list contains 139 repositories containing at least one JavaCard ap-
plet or library. The repositories are mainly found on GitHub, with a very small
number on SourceForge as well, and no repository has been detected on GitLab
so far. Many repositories are monorepos with multiple projects. Sources that
could not be parsed even with import resolution disabled were omitted from fur-
ther analysis. The list contains 206 JavaCard projects with 223 possible applet
entry points, of which 36 cannot be parsed precisely due to missing dependen-
cies or programming mistakes preventing code compilation with standard javac
compiler. For analysis of the usage of specification features, we excluded the
applet corresponding to JCAlgTest project12, which is designed to test the tar-
get smartcard and intentionally references (almost) all cryptographic algorithms
and parameterization constants found in the JavaCard specification [9].

11 https://github.com/crocs-muni/javacard-curated-list.
12 https://github.com/crocs-muni/jcalgtest.

https://github.com/crocs-muni/javacard-curated-list
https://github.com/crocs-muni/jcalgtest

8 Zaoral L., Dufka A., and Svenda P.

3.2 Activity of JavaCard open-source ecosystem in time

To analyze the activity of the JavaCard open-source ecosystem in time, we an-
alyzed each project’s state with respect to its git commits closest to (but prior)
the next date interval. For a yearly activity, we analyzed the commit closest to
the 1st of January of the next year, whereas for monthly activity, we used the
commit closest to the 1st day of the next month.

20
04
20
05
20
06
20
07
20
08
20
09
20
10
20
11
20
12
20
13
20
14
20
15
20
16
20
17
20
18
20
19
20
20
20
21
20
22
20
23
20
24

0

10

20

30

40

Year

N
u
m
b
er

o
f
a
ct
iv
e
p
ro
je
ct
s

Monthly

Yearly

Fig. 3. Number of open-source projects with at least one commit per month (black
line) or per year (red line) respectively. The year 2023 is only till end of June.

The number of projects with at least one commit in a given period (year or
month) is shown in Figure 3. While the oldest commits are from the year 2004,
the number of active projects was very low (around three projects) until the year
2013, when the number of active projects increased significantly to more than 20
projects, reaching more than 40 active projects in years 2015 and 2017. Figure
4 visualizes included repositories based on a number of forks and stars with the
most popular repositories annotated.

While the development activity fluctuates significantly between years (the
year 2019 had only around 50% of active projects with respect to 2017 and
2020), there seems to be a significant activity decrease following the year 2020,
with only 7 active projects till the first half of the year 2023. Would the trend
continue, we may be witnessing a decline of open-source activity in the JavaCard
ecosystem, despite a still high number of newly certified JavaCard products (see
Section 2).

An intriguing possibility might be a correlation with the trends observed in
the JavaCard-related certification artifacts but with a lag of about four to six
years. The lag can be explained by the delayed availability of capable certified
smartcards to open-source developers for purchase in smaller quantities. If this
correlation is genuine, we may observe increased activity in the open-source
ecosystem in the following years again, as activity in the certification ecosystem
dipped in the year 2019 and increased again since then.

JavaCard feature adoption in open-source and certified products 9

Yubico/ykneo-openpgp

seek-for-android/pool

status-im/status-keycard

philipWendland/IsoApplet

LedgerHQ/ledger-javacard

mar�npaljak/AppletPlayground

LedgerHQ/ledger-u2f-javacard

crocs-muni/JCAlgTest/

github-af/SmartPGP

Yubico/ykneo-oath

Toporin/SatochipApplet

vletoux/GidsApplet

arekinath/PivApplet

JavaCardOS/OpenEMV

makinako/OpenFIPS201

OpenCryptoProject/JCMathLib

darconeous/gauss-key-card

divegeek/JavaCardKeymaster

OpenJavaCard/openjavacard -ndef

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80

N
u

m
b

er
 o

f
st

ar
s

Number of forks

Fig. 4. The scatter plot of JavaCard repositories popularity using number of forks and
stars on the GitHub platform. Projects with at least 20 forks are annotated by name.

3.3 Open-source applets compatibility and portability

To test the possibility of deployment of open-source applets to physical smart-
cards, we attempted the following steps for all open-source applets from the
open-source database described in Section 3.1:

1) Compile applet using standard javac compiler, resulting in *.class file(s).
The step fails if the source code is not compatible with Java language (typ-
ically 1.8) or references proprietary packages.

2) Convert compiled *.class files using Oracle JavaCard converter for specific
version of JC SDK, resulting in a *.cap file. The step fails if the bytecode
violates JavaCard language specification or references proprietary packages.

3) Upload contents of the cap file to smartcard using the GlobalPlatform
interface via gppro tool [10]. The step fails if cap file references unsupported
packages or is rejected by the on-card verifier for other reasons.

4) Install applet instance from previously uploaded package (content of the
cap file). The step fails if an exception is emitted in the applet’s construc-
tor, typically caused by instantiation of an unsupported algorithm (e.g.,
ALG_SHA3_512), unsupported parameters (e.g., of LENGTH_RSA_4096 or in-
valid curve domain parameters), or excessive memory allocation (typically
RAM memory via JCSystem.getTransientByteArray()). Occasionally, the
exception may be caused by other programming mistakes or platform limi-
tations (e.g., the limited size of the card’s transaction buffer).

5) Select the installed applet instance, making it active for subsequent com-
mands from a host controller. The step typically fails when additional custom
code like delayed allocation or reset of the temporary state is executed.

The next step is performed only if the previous one succeeds. Steps 1) and
2) do not require any physical smartcard. Steps 3), 4), and 5) were performed
on three physical smartcards and on the virtual card via jCardSim [2].

10 Zaoral L., Dufka A., and Svenda P.

3.4 Applet compatibility with a simulated card

We first analyzed the possibility of performing applet conversion resulting in
cap file, but with load, install, and select steps performed only for the jCardSim
simulator. Such test detects applets that are compatible with (some) version
of JavaCard specification and can be converted into a valid cap file. Yet no
limitations of actual support of the required algorithms by the target physical
card are imposed. Additionally, applets with programming errors that could be
fixed easily (e.g., missing typecast from int to short, etc.) are listed in a separate
column. The results are shown in Table 2.

Table 2. The number of applets with successful finalization of particular development
step on virtual card simulated by jCardSim. Steps 1) and 2) are independent of any
smartcard; steps 4) and 5) are tested on a simulated card provided by jCardSim.

Step Count (with fixes)

1) Compilation 174 187

2) Conversion (any JC SDK version) 145 176

3) Upload (does not apply for jCardSim) - -

4) Installation 121 150

5) Applet selection 111 144

Table 3. The portability of applets to different smartcards. The jCardSim simulator
is listed as a theoretical upper bound of convertable and executable applets without
resource limitations imposed by the particular physical platform. The numbers pre-
sented in this table also correspond to the applets with success/failure of measurement
of entry point class constructor memory usage on physical smartcards. All skips corre-
spond to applets that require a newer JavaCard API than supported by a given card.

Card API Success
Failure

Skip
Upload Install Select

jCardSim simulator 3.0.5 144 0 0 0 0

NXP JCOP4 J3R180 (2020) 3.0.5 124 7 13 0 0

Feitian JavaCOS A22 3.0.4 98 3 41 0 2

G+D StarSign Crypto USB Token S 3.0.4 64 3 73 1 2

3.5 Applet portability between physical cards

Secondly, we tested the deployability and portability of applets among three
different smartcards, all relatively commonly available to open-source develop-
ers. The results are shown in Table 3 with the number of applets deployable
to cards simulated via jCardSim serving as a baseline. The largest number of
applets (124) are deployable to NXP JCOP4 J3R180 (CC certificate13 issued

13 https://seccerts.org/cc/2a45531c2dbd1ab8/.

https://seccerts.org/cc/2a45531c2dbd1ab8/

JavaCard feature adoption in open-source and certified products 11

on 01. 03. 2020), which is currently the most performant card available at on-
line shops (2023 YTD) in small quantities. The decreasing number of deployable
applets to other smartcards illustrates the limited portability of open-source
applets among smartcards of different vendors.

4 Resources required by JavaCard applets

Having the large list of open-source JavaCard projects available via git reposi-
tories allows us to analyze the packages, classes, methods, and constants using
static analysis of their source code. The analysis relies heavily on the functional-
ity provided by the Spoon library [11] designed for analysis and transformation
of Java source code. Spoon parses the input source code into a complete abstract
syntax tree (AST). Therefore, the source code can be analyzed and instrumented
more reliably than in the case of the regex-based approaches searching for target
keywords. The results are provided in Section 4.1

The Spoon library also allows for automatic instrumentation of the applet’s
code usable for the dynamic analysis of memory requirements by the target
applet with results presented in Section 4.2.

AL
G
EC
DS
A
SH
A
25
6

19

AL
G
RS
A
SH
A
PK
CS
1

15

AL
G
EC
DS
A
SH
A

9

AL
G
DE
S
MA
C8
IS
O9
79
7
1
M2
AL
G3

9

AL
G
DE
S
MA
C8
IS
O9
79
7
M2

9

AL
G
HM
AC
SH
A
25
6

5

AL
G
HM
AC
SH
A
51
2

4

AL
G
RS
A
SH
A
25
6
PK
CS
1
PS
S

4

AL
G
AE
S
MA
C
12
8
NO
PA
D

3

AL
G
EC
DS
A
SH
A
51
2

3

AL
G
RS
A
MD
5
PK
CS
1

3

AL
G
RS
A
SH
A
25
6
PK
CS
1

3

AL
G
AE
S
CM
AC
12
8

2

AL
G
EC
DS
A
SH
A
38
4

2

Fig. 5. javacard.security.Signature ALG constants with at least two usages.

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024
0

5

10

15 JC 3.0.1JC 2.2.1

Year

N
u
m
b
er

o
f
a
c
ti
v
e
p
ro
je
ct
s

ALG_ECDSA_SHA (2.2.1)

ALG_ECDSA_SHA_256 (3.0.1)

ALG_ECDSA_SHA_512 (3.0.1)

Fig. 6. Histogram of the adoption of ALG_ECDSA_SHA constants.

12 Zaoral L., Dufka A., and Svenda P.

LE
NG
TH
AE
S
12
8

39

LE
NG
TH
AE
S
25
6

24

LE
NG
TH
AE
S
19
2

5

LE
NG
TH
DE
S

13

LE
NG
TH
DE
S3
2K
EY

26

LE
NG
TH
DE
S3
3K
EY

13

LE
NG
TH
EC
FP
25
6

20

LE
NG
TH
EC
FP
19
2

8

LE
NG
TH
EC
FP
16
0

2

LE
NG
TH
HM
AC
SH
A
25
6
BL
OC
K
64

4

LE
NG
TH
HM
AC
SH
A
51
2
BL
OC
K
12
8

2

LE
NG
TH
RS
A
10
24

28

LE
NG
TH
RS
A
20
48

27

LE
NG
TH
RS
A
51
2

12

LE
NG
TH
RS
A
76
8

5

LE
NG
TH
RS
A
19
84

2

Fig. 7. javacard.security.KeyBuilder LENGTH constants with at least two usages
sorted by the corresponding algorithms.

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024
0

5

10
JC 2.2.1

Year

N
u
m
b
er

o
f
a
c
ti
v
e
p
ro
je
ct
s

LENGTH_DES

LENGTH_DES3_2KEY

LENGTH_DES3_3KEY

Fig. 8. Histogram of the adoption of LENGTH_DES constants from JavaCard 2.2.1.

Gl
ob
al
Pl
at
fo
rm

15

ET
SI
/3
GP
P
SI
M
To
ol
ki
t

9

NX
P

6

Th
ot
hT
ru
st

KM
10
1

6

VI
SA

Op
en
Pl
at
fo
rm

2

Gi
es
ec
ke
+D
ev
ri
en
t

1

Wo
oK
ey

1

AL
G
SE
CU
RE
RA
ND
OM

79

AL
G
PS
EU
DO
RA
ND
OM

23

AL
G
KE
YG
EN
ER
AT
IO
N

2

AL
G
TR
NG

2

Fig. 9. Usage of third-party APIs and javacard.security.RandomData constants.

4.1 JavaCard packages and cryptographic algorithms required

The combination of git history and algorithms extracted from the source code
at the given date (e.g., the latest commit in a given year) allows us to analyze
the rate of adoption for every constant defined in the JavaCard specification.

Figure 5 shows the popularity of both symmetric and asymmetric cryptog-
raphy signature schemes. The ECDSA signature algorithm, together with RSA
with PKCS#1 padding, is the most popular, followed by the 3DES-based and
HMAC-based MAC schemes. Relatively few applets utilize other options. Re-
lated Figure 6 shows the adoption of different variants of hash functions in com-
bination with ECDSA over time, and Figure 10 compares time of introduction
and use of two frequently used signature algorithms – ALG_RSA_SHA_PKCS1 and
ALG_ECDSA_SHA_256.

JavaCard feature adoption in open-source and certified products 13

The popular key lengths are shown in Figure 7 and they are mostly as ex-
pected – AES-128/256b and 3DES-112/168b are used frequently for symmetric
cryptography, EC-FP-256b and RSA-2048b for asymmetric one. The only sur-
prise is still a high usage of RSA-1024b. Related Figure 8 demonstrates the trend
for DES algorithm with one (LENGTH_DES), two (LENGTH_DES3_2KEY) and three
(LENGTH_DES3_3KEY) keys in time, showing adoption of longer keys later.

The usage of 3rd-party, sometimes proprietary, APIs is shown in Figure 9.
GlobalPlatform/OpenPlatform API is used mostly for the handling of secure
channel messages or accessing global card state. If proprietary API is used (NXP,
Giesecke+Devrient), the applet can be statically analyzed for the usage of JavaC-
ard features but cannot be dynamically analyzed due to the missing proprietary
SDK. The results for other relevant classes are available in supplementary ma-
terials14.

2000 2005 2010 2015 2020
0

5

10

JC 2.2.1

Year

N
u
m
b
er

o
f
p
ro
je
ct
s

ALG_RSA_SHA_PKCS1 (2.2.1)

New

Active

Inactive

2000 2005 2010 2015 2020

JC 3.0.1

Year

ALG_ECDSA_SHA_256 (3.0.1)

New

Active

Inactive

Fig. 10. Comparison of the adoption of ALG_RSA_SHA_PKCS1 and ALG_ECDSA_SHA_256

constants. The ECDSA signature was adopted only in 2013 and is still being added to
the source code of active projects, while the RSA signature was included already since
2008, but overall less frequently and not after the year 2020.

We also analyzed the adoption of different constants from JavaCard API up
to 3.2 with 583 values in total. A surprisingly high number of 404 constants are
completely unused (69.3%), and 488 constants are used in less than six projects
(83.7%). Only 42 constants are used in more than 25 (7.2%) projects. Table 4
provides complete statistics.

Table 4. The usage of constants from JavaCard API by the set of all applets.

applets using constant no use 1 2-5 6-10 11-25 26-50 51-75 76-100 100+

API constants (583) 404 36 48 20 33 21 7 4 10

14 https://crocs.fi.muni.cz/papers/cardis2023

https://crocs.fi.muni.cz/papers/cardis2023

14 Zaoral L., Dufka A., and Svenda P.

4.2 Memory requirements analysis

The memory requirements by a given applet can be inferred from the differ-
ence in reported available memory right after the applet’s constructor method
is entered and just before it is finished. Automatic code instrumentation using
Spoon library [11] was used to insert the corresponding memory measurements
methods JCSystem.getAvailableMemory() into every analyzed applet.

When an instrumented code line is reached, the instrumented applet stores
the amount of free memory for all memory types at the given point in time
(persistent, transient reset, and transient deselect), due to the limitations of
the JCSystem.getAvailableMemory() JavaCard API, the gathered values are
capped at 32 kB (3.0.3 and older) or 2 GB (3.0.4 and newer). Hence, usage of
smartcards with JavaCard 3.0.4 or newer is preferable for analysis of applet’s per-
sistent memory. After the applet instance creation is finished, all measurements
are transferred to the host controller using an additionally added custom com-
mand. Note that the method described measures not only memory consumption
by allocated primitive arrays but also transient and persistent memory consumed
by instances of cryptographic objects (keys, engines) created.

0 10,000 20,000 30,000 40,000 50,000 60,000
0

5

10

15

(80)

#
a
p
p
le
ts

MEMORY_TYPE_PERSISTENT

0
50
0

1,
00
0

1,
50
0

2,
00
0

2,
50
0

0

5

10

(60)

Allocated bytes

#
a
p
p
le
ts

MEMORY_TYPE_TRANSIENT_DESELECT

MEMORY_TYPE_TRANSIENT_RESET

Fig. 11. Histograms of memory allocation in entry point class constructors per applet
on NXP JCOP4 J3R180 with maximum available transient memory around 3.8 kB.
Note that the first largest bin is clipped in both graphs.

JavaCard feature adoption in open-source and certified products 15

The evaluation was performed on three physical cards and was restricted only
to the 144 applets that were previously successfully tested using the jCardSim
simulator in Section 3.4, which is the minimum prerequisite for successful instal-
lation on the physical cards. All three selected cards support at least JavaCard
API 3.0.4 and thus have more precise memory measurements.

The representative results for the NXP JCOP4 J3R180 card with the most
applets installable (124 in total) are shown in Figure 11 for the transient and
persistent memory types, respectively. The results obtained for other cards were
closely matching these results with only small differences. The differences are
caused by slightly different memory requirements of cryptographic objects on
different cards. The large majority of applets require less than 1 kB of tran-
sient memory, with 59 applets requiring less than 70 bytes. Only a handful
of applets required more than 2 kB of transient memory, notably the project
eVerification-215 (2.6 kB).

Note that we cannot detect applets requiring more memory than available
on the target smartcard using this methodology as the installation will fail, and
the measured memory values are not retrieved. We have manually analyzed the
20 applets, which failed to install and assessed the reason for failure, and found
out that nine applets likely failed due to transient memory requirements larger
than what is available on the JCOP4 card.

Similarly, a large majority of applets required less than 10 kB of persis-
tent memory, with only ten applets requiring more, notably applets from the
PinSentry-OTP16 project (67 kB) and the smart card TLS17 project (34 kB).
Twenty-seven applets required only 100 B or less of persistent memory.

5 Discussion and limitations

JavaCard’s open-source ecosystem is relatively long-running, with the first com-
mits made already in the year 2004, although only infrequently. It became
sharply more active from the year 2013, reaching more than 30 active projects
(code changes done to actual JavaCard code) in the years 2015, 2017, and 2020
(maximum of 44 in 2015), although with significant variability between the years.
However, there seems to be a significant decline after the year 2020, with only
18 and 16 projects active in years 2021 and 2022, respectively, and only 7 in
the whole first half of the year 2023. We do not have a good explanation for
this trend, especially given the increased supply of smartcards available in small
quantities, which are often used by open-source developers. It will be interesting
to observe if the trend confirms in coming years. A decrease in the develop-
ment activity of the JavaCard open-source ecosystem may be only temporary
if the open-source ecosystem is generally copying the trends in the certifica-
tion ecosystem. The certification activity increased in 2009, peaked in 2013 (32
certificates), and experienced a local minimum in 2019 (12 certificates issued),
increasing again since then. Open-source ecosystem gained activity similarly, but
with a delay of about four years, so we may see growth in activity again soon.

New algorithms from JavaCard specification are slow to be adopted. It takes
at least two and up to five years for smartcards with support for the algorithms

15 https://github.com/CRISES-URV/eVerification-2.
16 https://github.com/Celliwig/PinSentry-OTP.
17 https://github.com/gilb/smart_card_TLS.

https://github.com/CRISES-URV/eVerification-2
https://github.com/Celliwig/PinSentry-OTP
https://github.com/gilb/smart_card_TLS

16 Zaoral L., Dufka A., and Svenda P.

introduced in the new version of the JavaCard specification to be certified. An
additional delay of an algorithm used in open-source implementations is caused
by the unavailability of freshly certified cards in small quantities to open-source
developers. Even if it is reasonable to assume that commercial closed-source
applets may adopt a new algorithm sooner as pre-certification testing sample
smartcards may be available, the widespread use of an implementation based on
a not-yet-certified smartcard is unlikely.

Only a small subset of around 30% of algorithms and constants defined in
the JavaCard specification is used by open-source applets and it consists mostly
of the common ones – SHA1 and SHA256 for hashing, RSA 1024/2048b and EC
FP 256b for signing, AES128/256b, 3DES and RSA with PKCS1 or no padding
for the encryption.

The open-source cryptographic implementations (outside JavaCard domain)
tend to adopt new algorithms sooner than their closed-source counterparts serv-
ing more established and, thus, slower-moving domains. An example might be
the adoption of Curve25519 and related algorithms like Ed25519 or X25519,
which are long-time popular in more open domains yet only recently become
considered for adoption in mainstream domains like government-recognized sig-
natures or signatures of PDF documents in Adobe Reader. Similarly, JavaCard
open-source projects would likely utilize Curve25519 and related algorithms but
were not able to due to missing direct support for these features (optional sup-
port for X25519 and Ed25519 was introduced only in JavaCard API 3.1). As
Section 2 demonstrates, only a handful of products for API version 3.1 are now
certified and likely still not available to open-source developers. As implemen-
tation of these algorithms requires access to cryptographic co-processors, com-
pensating around missing features is not easy or even possible. For example,
open-source implementation of Ed2551918 become available only in 2022 and
is based on Curve25519 implementation19 utilizing host-side computation and
JCMathLib library [8]; having non-trivial RAM requirements and not provid-
ing a high level of security against side-channel attacks due to higher leakage
of JCVM in comparison to fully native implementation. We can conclude that
the JavaCard open-source ecosystem is significantly held back by the slow in-
troduction of new features in the specification and further by their availability
in actual physical smartcards. As a result, the whole smartcard ecosystem is
likely negatively impacted by limited exposure to new ideas and usage scenarios,
serving only well-established domains and harming its long-term competitive-
ness. The gradual replacement of functionality once delivered by smartcards by
software-only implementations is not caused only by easier deployment but also
by the inability of smartcards to deliver the functionality required.

Algorithms tend to stay in the source code once included as typical exam-
ple in Figure 10 demonstrates and is observed for almost all constants used.
As a result, the legacy algorithms typically continue to be supported by smart-

18 https://github.com/dufkan/JCEd25519.
19 https://github.com/david-oswald/jc_curve25519.

https://github.com/dufkan/JCEd25519
https://github.com/david-oswald/jc_curve25519

JavaCard feature adoption in open-source and certified products 17

cards, although they may be discouraged from use (e.g., single DES or MD5) to
maintain backward compatibility.

The open-source applets usually do not depend on the proprietary exten-
sion packages as their use is typically limited under a non-disclosure agreement
(NDA) which would prevent public availability of the applet’s source code. The
exceptions are GlobalPlatform, SIM toolkit, and ThothTrust KM101 packages
where NDA is not required. Despite NDA limitations, NXP and G+D propri-
etary packages are referenced from publicly available code, although without
export files necessary for the cap file conversion.

Memory requirements tend to be low due to the simplicity of applet tasks
and to fit into restrictions of widely available cards. Open-source applets tend
to utilize less than 1 kB of transient memory (RAM) and less than 10 kB of
persistent memory (EEPROM/flash). No measured applet uses more than 2.7 kB
of RAM and 70 kB of EEPROM. The exceptions are applets trying to implement
advanced features otherwise unavailable on cards like Ed25519 or multiparty
signature algorithms like FROST [4].

5.1 Known limitations

The analysis performed in this paper has its limitations, mainly stemming from
the limited access to non-public closed-source applets and detailed proprietary
documents about certified products.

The final date of the specification release is not the date when the specifi-
cation becomes available for the first time to the smartcard manufacturers, as
manufacturers are typically involved in the draft preparation of the new release.
The actual span for adoption from the first availability of a given feature by a
specific card is, therefore, likely longer than reported in this paper. Similarly,
the date of the certification is not the date when the card becomes available
to potential customers. Engineering preview samples or production-ready but
not-yet-certified cards might be available earlier. This decreases the time span
between the availability of the given feature by a specific card.

An algorithm might be available sooner in the proprietary packages provided
by a vendor than standardized in the public JavaCard API. Closed-source applets
may adopt features earlier than open-source ones or keep using the proprietary
variants after the feature is available in the public API.

Only open-source applets are analyzed. The closed-source proprietary code
may exhibit different usage patterns and are likely to use proprietary extension
packages more frequently. However, the usage will still be limited by the algo-
rithms available on the underlying platform as partially mapped by the JCAl-
gTest project [12] and certification analysis from this paper in Section 2.

Memory consumption for closed-source applets may be smaller than for some
more complex open-source ones, especially when features unavailable in the
public API are required. The prime example might be the utilization of the
JCMathLib library [8] with relatively large RAM requirements to expose lower-
level ECPoint operations, which are easily available in proprietary packages with
almost no overhead.

18 Zaoral L., Dufka A., and Svenda P.

We tested the deployability of applets on physical smartcards only up to the
select() method. The applet functionality may still systematically fail later,
even if provided with correct input data, for example, if the required engine is not
allocated in the applet’s constructor, but only when the functionality triggering
command is received. However, such a situation shall be relatively uncommon as
a good programming practice in the JavaCard world is to allocate all required
resources in the applet’s constructor. The full examination would require the
usage of the host-side controlling application, which is frequently not available.

Some algorithms from certification documents may be missed due to PDF
parsing errors, and not all supported algorithms may be explicitly listed in the
smartcard certificate. As the total number of JavaCard-related certificates is not
overwhelming (59 in total), we checked all the certificates for possible PDF-to-
text errors while we cannot compensate for the omitted ones.

6 Conclusions

The paper primarily provides data-based insight into the adoption rate of fea-
tures introduced by the JavaCard specification versions using security certifica-
tion reports and a large database of open-source applets.

The analysis of JavaCard-related constants from certification artifacts shows
increased certification activity since the year 2006, with around twenty certified
products every year for the whole last decade and taking 1-2 years before the
first certified product implements at least part of the newly released specification.
However, the speed of adoption of its features is relatively slow, typically six or
more years before a feature is widely supported by certified products. Around
70% of the features listed are never or only marginally supported.

The static and dynamic analysis of JavaCard open-source projects shows
increased activity from the year 2013 but possibly declining during the last two
years. Around 20 projects achieved wider popularity and development activity.
The rate of adoption of new specification features is slower, likely correlated
with the unavailability of recent performant smartcards in smaller quantities,
which also causes limited applet portability between different available physical
cards. The specification features tend to stay in the existing source code, making
feature deprecation more complicated, especially when a feature intended to
replace the deprecated one is not supported by the majority of cards. The open-
source applets typically require only a small amount of transient and persistent
memory, with some notable exceptions. The applets with large transient memory
requirements are typically the ones that need to complicatedly compensate for
the unavailability of some low-level features like ECPoint operations in the public
API. JavaCard open-source ecosystem is likely held back by the slow introduction
of new features into the specification and further delayed by their inaccessibility
of physical smartcards with desired algorithmic support.

Acknowledgments: We would like to thank reviewers for their valuable com-
ments. The authors were supported by Ai-SecTools (VJ02010010) project.

JavaCard feature adoption in open-source and certified products 19

References

1. Olavo Barbosa and Carina Alves. A systematic mapping study on software ecosys-
tems. Proc. Int’l Workshop on Soft. Ecos, 2011.

2. Licel Corporation. jCardSim — Java Card Runtime Environment Simulator.
https://jcardsim.org/, 2022. Accessed: 2023-09-29.

3. Awdren de Lima Fontao, Rodrigo Pereira dos Santos, and Arilo Claudio Dias-Neto.
Mobile software ecosystem (mseco): a systematic mapping study. In 2015 IEEE
39th Annual Computer Software and Applications Conference, volume 2, pages
653–658. IEEE, 2015.

4. Antońın Dufka and Petr Švenda. Enabling efficient threshold signature compu-
tation via Java Card API. In Proceedings of the 18th International Conference
on Availability, Reliability and Security, ARES ’23, New York, NY, USA, 2023.
Association for Computing Machinery.

5. John Glossner, Samantha Murphy, and Daniel Iancu. An overview of the drone
open-source ecosystem. arXiv preprint arXiv:2110.02260, 2021.

6. Jan Hajny, Lukas Malina, Zdenek Martinasek, and Ondrej Tethal. Performance
evaluation of primitives for privacy-enhancing cryptography on current smart-cards
and smart-phones. In Data Privacy Management and Autonomous Spontaneous
Security, pages 17–33. Springer, 2014.

7. Konstantinos Manikas and Klaus Marius Hansen. Software ecosystems–a system-
atic literature review. Journal of Systems and Software, 86(5):1294–1306, 2013.

8. Vasilios Mavroudis and Petr Svenda. JCMathLib: Wrapper cryptographic library
for transparent and certifiable javacard applets. In 2020 IEEE European Sympo-
sium on Security and Privacy Workshops, pages 89–96, Genoa, Italy, 2020. IEEE.

9. Oracle. Java card™ platform, application programming interface, classic edi-
tion version 3.2. https://docs.oracle.com/en/java/javacard/3.2/jcapi/api_

classic/index.html, 2023. Accessed: 2023-09-29.
10. Martin Paljak. GlobalPlatformPro. https://github.com/martinpaljak/

GlobalPlatformPro, 2023. Accessed: 2023-09-29.
11. Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel

Seinturier. Spoon: A Library for Implementing Analyses and Transformations of
Java Source Code. Software: Practice and Experience, 46:1155–1179, 2015.

12. Petr Svenda, Rudolf Kvasnovsky, Imrich Nagy, and Antonin Dufka. JCAlgTest:
Robust identification metadata for certified smartcards. In 19th International Con-
ference on Security and Cryptography, pages 597–604, Lisabon, 2022. INSTICC.

https://jcardsim.org/
https://docs.oracle.com/en/java/javacard/3.2/jcapi/api_classic/index.html
https://docs.oracle.com/en/java/javacard/3.2/jcapi/api_classic/index.html
https://github.com/martinpaljak/GlobalPlatformPro
https://github.com/martinpaljak/GlobalPlatformPro

20 Zaoral L., Dufka A., and Svenda P.

Appendix

JavaCard projects and certificates included in analysis

The following types of JavaCard open-source projects were included in the analy-
sis20: Electronic passports and citizen ID (8x), Authentication and access control
(29x), Payments and loyalty (20x), Key and password managers (15x), Digital
signing, OpenPGP and mail security (8x), e-Health (1x), NDEF tags (6x), Cryp-
tocurrency wallets (7x), Emulation of proprietary cards (8x), Mobile telephony
(SIM) (5x), Library JavaCard code (47x), Learning (school projects, etc.) (5x)
and Other (24x).

Table 5. Common Criteria and FIPS certificates used for algorithm analysis.

5G PK 5.2.2 Advanced SIM (D00233151F016B) https://seccerts.org/cc/cb872473562ed2cf/

Athena IDPass ICAO BAC avec AA sur composant SB23YR48/80B avec librairie cryptographique NesLib v3.0 https://seccerts.org/cc/d49988efd778ca9d/

Athena IDPass ICAO EAC avec AA sur composant SB23YR48/80B avec librairie cryptographique NesLib v3.0 https://seccerts.org/cc/337ece90615ed69d/

Athena IDProtect Duo v10 (in BAC Configuration) https://seccerts.org/cc/598e2a9978d3c79c/

Athena IDProtect Duo v10 (in EAC Configuration) https://seccerts.org/cc/4285d9b580f8a2a6/

Athena IDProtect Duo v5 avec application IASECC en configuration ICAO BAC sur composant AT90SC28880RCFV https://seccerts.org/cc/16b24ff1bf3c079b/

Athena IDProtect Duo v5 avec application IASECC en configuration ICAO EAC sur composant AT90SC28880RCFV https://seccerts.org/cc/e23f9c02819688f6/

Athena IDProtect Duo v5 avec applicationIASECC en configuration ICAO BAC surcomposant AT90SC28880RCFV https://seccerts.org/cc/797ea41cc2e95f08/

Athena IDProtect Duo v5 avec applicationIASECC en configuration ICAO EAC surcomposant AT90SC28880RCFV https://seccerts.org/cc/a49706f436a6873d/

Athena IDProtect/OS755 (release 0355, level 0602, correctif P6) avec application IAS-ECC sur composants SB23YR48/80B https://seccerts.org/cc/b168db2651cbc1d6/

Athena IDProtect/OS755 (release 0355, level0802, correctif P8) avec application IAS-ECC surcomposants SB23YR48/80B https://seccerts.org/cc/be9ca77bec616fe5/

Athena IDProtect/OS755 (release 4016, level0101) avec application IAS-ECC sur composantsSB23YR48/80B https://seccerts.org/cc/3cb89a7fc7672364/

Athena IDProtect/OS755 Key version 9.1.2 on AT90SC25672RCT-USB Microcontroller embedding IDSign applet https://seccerts.org/cc/82dce1546c69369d/

Athena IDProtect/OS755 avec application IAS-ECC sur composants SB23YR48/80B https://seccerts.org/cc/79f48541164e16ff/

Athena IDProtect/OS755 avec application ICAO BAC sur composants SB23YR48/80B https://seccerts.org/cc/ba521df2c728c5a2/

Athena IDProtect/OS755 avec application ICAO EAC sur composants SB23YR48/80B https://seccerts.org/cc/c8fc487eec95c21e/

Athena OS755/IDProtect v6 avec application IAS-ECC sur composant AT90SC28872RCU https://seccerts.org/cc/fca98ecd003e1b82/

Carte UpTeq NFC3.2.2 Generic v1.0 sur composant ST33G1M2-F https://seccerts.org/cc/60f0dd83c8f32b8c/

ID-One Cosmo 32 v5 https://seccerts.org/fips/fcf1e4bf9cc9c108/

ID-One Cosmo 64 v5 https://seccerts.org/fips/068814875fcdfb8f/

ID-One Cosmo 64 v5 https://seccerts.org/fips/4a30a219a9d7663f/

ID-One Cosmo 64 v5 https://seccerts.org/fips/6e2d4d3a3d4c4bb2/

IDeal Citiz v2.1 Open platform https://seccerts.org/cc/f67f3737a3b47208/

IDeal Citiz v2.1 STC Open Platform https://seccerts.org/cc/05c7e778528a1596/

IDeal Citiz v2.1.1 Open platform on M7892 B11 https://seccerts.org/cc/8782c7c292ef2759/

IDeal Citiz v2.1.1 Open platform on M7893 B11 https://seccerts.org/cc/29b0321ec6b75ebd/

IDeal Citiz v2.15-i on Infineon M7892 B11 Java Card Open Platform https://seccerts.org/cc/c301c38902477230/

IDeal Citiz v2.16-i on M7892 B11 - Java Card Open Platform https://seccerts.org/cc/4dc023ea2e3c4115/

IDeal Citiz v2.17-i on Infineon M7892 B11 Java Card Open Platform https://seccerts.org/cc/08408cbc394e7421/

IDeal Citiz v2.17-i on Infineon M7893 B11 Java Card Open Platform https://seccerts.org/cc/40fa0a4cb5193977/

Infineon SECORA™ ID S v1.1 (SLJ52GxxyyyzS) https://seccerts.org/cc/8c92d4b773f61ca8/

Infineon SECORA™ ID X v1.1 (SLJ52GxAyyyzX) https://seccerts.org/cc/cd4d1f03b2d3b1cc/

MultiApp v4.0.1 with Filter Set 1.0 Java Card Open Platform on M7892 G12 chip https://seccerts.org/cc/dcb259767b98f381/

NXP JAVA OS1 ChipDoc v1.0 SSCD (J3K080/J2K080) https://seccerts.org/cc/30120e4f3aa2f30a/

NXP JCOP 3 EMV P60 https://seccerts.org/cc/61832cb4291c343f/

NXP JCOP 3 P60 https://seccerts.org/cc/3feda0b8b5637540/

NXP JCOP 3 SECID P60 (OSA) https://seccerts.org/cc/d699ed2b1adc6be4/

NXP JCOP 3 SECID P60 (OSA) PL2/5 https://seccerts.org/cc/3e08a27e9d9c9b1e/

NXP JCOP 4 P71 https://seccerts.org/cc/3d8083b1e6c7b336/

NXP JCOP 4 SE050M https://seccerts.org/cc/5a71cce42550635e/

NXP JCOP 4.0 on P73N2M0 https://seccerts.org/cc/173704f0d2b8a02f/

NXP JCOP 4.5 P71 https://seccerts.org/cc/f0d94de8beabbd84/

NXP JCOP 4.7 SE051 https://seccerts.org/cc/6cd7a7a1cffaa67e/

NXP JCOP 4.x on P73N2M0B0.2C2/2C6 Secure Element https://seccerts.org/cc/5f12d355f8acb7cd/

NXP JCOP 5.1 on SN100.C48 Secure Element https://seccerts.org/cc/c8982f2e8de39b22/

NXP JCOP 5.2 on SN100.C58 Secure Element https://seccerts.org/cc/4526aa14337a2b0c/

NXP JCOP 6.2 on SN220 Secure Element, R1.01.1, R1.02.1, R1.02.1-1, R2.01.1 https://seccerts.org/cc/3b0d05e2fe06c803/

NXP JCOP 7.0 on SN300 Secure Element, JCOP 7.0 R1.62.0.1 https://seccerts.org/cc/b0e6f667d52402df/

NXP JCOP 7.0 with eUICC extension on SN300 Secure Element, JCOP 7.0 R1.64.0.2 https://seccerts.org/cc/45098872448f5816/

NXP JCOP on SN100.C25 Secure Element https://seccerts.org/cc/03aded94fb04c62e/

NXP JCOP6.x on SN200.C04 Secure Element https://seccerts.org/cc/ae175aa839dbf692/

Oberthur ID-One Cosmo 128 v5.5 D https://seccerts.org/fips/6d094db49a6e2242/

Oberthur ID-One Cosmo 128 v5.5 for DoD CAC https://seccerts.org/fips/a5bef651c8e3fd6c/

Plateforme JavaCard MultiApp V4.0.1 - PACE en configuration ouverte masquée sur le composant M7892 G12 https://seccerts.org/cc/40fc6ad0aed92913/

SafeNet eToken version 9.1.2 Athena IDProtect/OS755 on INSIDE Secure AT90SC25672RCTUSB embedding IDSign applet https://seccerts.org/cc/87a80325171d8add/
SafeNet eToken - Athena IDProtect/OS755 on Atmel AT90SC25672RCT-USB embedding IDSign applet https://seccerts.org/cc/c3d0eacd0639efb5/

Thales NFC422 v1.0 JCS https://seccerts.org/cc/e38c6956b53dfd36/

Thales TESS v3.0 Platform https://seccerts.org/cc/9be0c86102117436/

XSmart OpenPlatform V1.1 on S3CT9KW/S3CT9KC/S3CT9K9 https://seccerts.org/cc/cb203cf5d91b1ae3/

The JavaCard version reference analysis included all certification documents
from the dataset containing a match of the JavaCard API version using regular
expressions (338 documents in total).
20 https://github.com/crocs-muni/javacard-curated-list

https://seccerts.org/cc/cb872473562ed2cf/
https://seccerts.org/cc/d49988efd778ca9d/
https://seccerts.org/cc/337ece90615ed69d/
https://seccerts.org/cc/598e2a9978d3c79c/
https://seccerts.org/cc/4285d9b580f8a2a6/
https://seccerts.org/cc/16b24ff1bf3c079b/
https://seccerts.org/cc/e23f9c02819688f6/
https://seccerts.org/cc/797ea41cc2e95f08/
https://seccerts.org/cc/a49706f436a6873d/
https://seccerts.org/cc/b168db2651cbc1d6/
https://seccerts.org/cc/be9ca77bec616fe5/
https://seccerts.org/cc/3cb89a7fc7672364/
https://seccerts.org/cc/82dce1546c69369d/
https://seccerts.org/cc/79f48541164e16ff/
https://seccerts.org/cc/ba521df2c728c5a2/
https://seccerts.org/cc/c8fc487eec95c21e/
https://seccerts.org/cc/fca98ecd003e1b82/
https://seccerts.org/cc/60f0dd83c8f32b8c/
https://seccerts.org/fips/fcf1e4bf9cc9c108/
https://seccerts.org/fips/068814875fcdfb8f/
https://seccerts.org/fips/4a30a219a9d7663f/
https://seccerts.org/fips/6e2d4d3a3d4c4bb2/
https://seccerts.org/cc/f67f3737a3b47208/
https://seccerts.org/cc/05c7e778528a1596/
https://seccerts.org/cc/8782c7c292ef2759/
https://seccerts.org/cc/29b0321ec6b75ebd/
https://seccerts.org/cc/c301c38902477230/
https://seccerts.org/cc/4dc023ea2e3c4115/
https://seccerts.org/cc/08408cbc394e7421/
https://seccerts.org/cc/40fa0a4cb5193977/
https://seccerts.org/cc/8c92d4b773f61ca8/
https://seccerts.org/cc/cd4d1f03b2d3b1cc/
https://seccerts.org/cc/dcb259767b98f381/
https://seccerts.org/cc/30120e4f3aa2f30a/
https://seccerts.org/cc/61832cb4291c343f/
https://seccerts.org/cc/3feda0b8b5637540/
https://seccerts.org/cc/d699ed2b1adc6be4/
https://seccerts.org/cc/3e08a27e9d9c9b1e/
https://seccerts.org/cc/3d8083b1e6c7b336/
https://seccerts.org/cc/5a71cce42550635e/
https://seccerts.org/cc/173704f0d2b8a02f/
https://seccerts.org/cc/f0d94de8beabbd84/
https://seccerts.org/cc/6cd7a7a1cffaa67e/
https://seccerts.org/cc/5f12d355f8acb7cd/
https://seccerts.org/cc/c8982f2e8de39b22/
https://seccerts.org/cc/4526aa14337a2b0c/
https://seccerts.org/cc/3b0d05e2fe06c803/
https://seccerts.org/cc/b0e6f667d52402df/
https://seccerts.org/cc/45098872448f5816/
https://seccerts.org/cc/03aded94fb04c62e/
https://seccerts.org/cc/ae175aa839dbf692/
https://seccerts.org/fips/6d094db49a6e2242/
https://seccerts.org/fips/a5bef651c8e3fd6c/
https://seccerts.org/cc/40fc6ad0aed92913/
https://seccerts.org/cc/87a80325171d8add/
https://seccerts.org/cc/c3d0eacd0639efb5/
https://seccerts.org/cc/e38c6956b53dfd36/
https://seccerts.org/cc/9be0c86102117436/
https://seccerts.org/cc/cb203cf5d91b1ae3/
https://github.com/crocs-muni/javacard-curated-list

	The adoption rate of JavaCard features by certified products and open-source projects

