
Enabling Efficient Threshold Signature Computation via
Java Card API

Antonín Dufka
dufkan@mail.muni.cz
Masaryk University
Brno, Czech Republic

Petr Švenda
svenda@fi.muni.cz
Masaryk University
Brno, Czech Republic

ABSTRACT
Threshold signatures are becoming an increasingly popular method
of signing key protection, primarily due to their ability to produce
signatures that require the cooperation of multiple parties yet ap-
pear indistinguishable from a regular signature. This unique feature
allows for their easy integration with existing systems, making
them highly desirable in applications like national identity sys-
tems and transaction authorization, where they are being gradually
deployed; their growing importance is further attested by NIST’s
recently initiated efforts to standardize threshold schemes [19].

An issue often encountered in the deployment of threshold
schemes is that their execution is not supported by current secure
hardware, which is necessary for the secure handling of secrets, as
storing the shares in regular memory puts them at an increased
risk of compromise. This raises the question of whether it is possi-
ble to run state-of-the-art threshold protocols with current secure
hardware that we attempt to answer for cryptographic smartcards.

We analyzed algorithms available on smartcards with the Java
Card platform and repurposed them to construct operations needed
in threshold protocols. We use these derived operations to imple-
ment FROST, a state-of-the-art threshold signature scheme cur-
rently in a standardization process, making it the first open smart-
card implementation of a threshold protocol supporting an arbitrary
threshold. We demonstrate the practicality of this approach on the
latest smartcards with no requirement for proprietary libraries.

CCS CONCEPTS
• Security and privacy→ Hardware security implementation; Dig-
ital signatures; Multi-factor authentication; Key management.

KEYWORDS
threshold cryptography, Schnorr signatures, elliptic curves, smart-
cards, Java Card

ACM Reference Format:
Antonín Dufka and Petr Švenda. 2023. Enabling Efficient Threshold Sig-
nature Computation via Java Card API. In The 18th International Con-
ference on Availability, Reliability and Security (ARES 2023), August 29-
September 1, 2023, Benevento, Italy. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3600160.3600180

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ARES 2023, August 29-September 1, 2023, Benevento, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0772-8/23/08.
https://doi.org/10.1145/3600160.3600180

1 INTRODUCTION
Threshold signature protocols are being increasingly deployed in
practical applications to better secure private keys by decentral-
izing their storage and eliminating a single point of failure. With
threshold protocols, a private key is split using secure secret shar-
ing into multiple parts stored on different devices so that as long
as less than a certain threshold of the devices is compromised, the
private key remains secure. A signature is then created through
an interactive protocol conducted among devices controlling the
shares, during which they do not need to reveal their shares.

Since these protocols can produce signatures indistinguishable
from single-party ones, they are easily integrable with existing sys-
tems without introducing any incompatible changes. Thanks to this
property, threshold signatures are already deployed in applications
including national identity scenarios [25] or transaction autho-
rizations both in traditional finance and cryptocurrencies [16, 36].
Furthermore, the recently published call for threshold schemes by
NIST [19] testifies to their increasing importance.

A commonly faced problem in the practical deployment of thresh-
old schemes is that interfaces for their execution or their imple-
mentations are not available on secure hardware devices that are
otherwise used to handle secrets securely. Because of this, compu-
tation with the secret shares needs to be performed by a general-
purpose processing unit, increasing the risk of their compromise.
This situation raises the question of whether it is possible to exe-
cute threshold protocols with the current secure hardware devices
and interfaces they provide or if there is some limitation in their
capabilities or interface programmability.

We focus on answering this question in the area of cryptographic
smartcards, particularly those based on the Java Card platform
[22], as they have the largest market share. Even the most recent
revision (3.2) of the Java Card platform [21] has no explicit support
for threshold protocols. While there exist some implementations of
simpler 𝑛-party protocols [14, 17] for Java Card-based smartcards,
no open implementation of protocols with a threshold lower than a
total number of parties𝑛 is known. Therefore, whether the currently
available Java Card smartcards are capable of computing state-of-
the-art threshold protocols is an open question.

Java Card smartcards provide a generic programming interface
capable of arbitrary computations, yet quite slow to achieve cryp-
tographic computation at current security levels, especially for
asymmetric cryptography. For that reason, the devices are typically
equipped with cryptographic coprocessors, accelerating particular
operations needed by algorithms like RSA decryption or ECDH
key agreement. While the high-level algorithms can be accessed
via Java Card API, the underlying operations are not directly acces-
sible, severely limiting smartcard’s programmability. To mitigate

https://doi.org/10.1145/3600160.3600180
https://doi.org/10.1145/3600160.3600180


ARES 2023, August 29-September 1, 2023, Benevento, Italy Dufka and Švenda

this issue, we analyzed the high-level algorithms available on the
latest smartcards and repurposed them to compute lower-level
operations.

To identify which operations are commonly needed in thresh-
old protocols, we analyzed FROST [15], a state-of-the-art protocol
computing threshold Schnorr signatures (or EdDSA signatures)
currently in a standardization process [10]. FROST is an efficient
protocol consisting of two rounds, the first of which can be securely
precomputed, which is convenient for low-performance devices
like smartcards or when communicating over slow networks. The
second round, however, relies heavily on elliptic curve operations
that need to be computed in dependence on the message content
and are computationally demanding. Still, as we show later in this
work, these operations can be computed efficiently on the latest
smartcards.

Next, we implemented the FROST protocol, relying solely on
the public Java Card API while fully complying with the current
version of the standardization draft [10]. Additionally, we proposed
and incorporated smartcard-specific optimizations in the implemen-
tation, significantly improving its performance without introducing
any incompatibility. To the best of our knowledge, this is the first
public open-source implementation of a threshold protocol on cryp-
tographic smartcards supporting an arbitrary threshold.

We evaluated the efficiency of our implementation on three dif-
ferent smartcard models and dissected the computational cost of
its components. Our findings reveal that FROST can be computed
efficiently on the latest smartcards that provide elliptic curve al-
gorithms outputting plain points. Yet, we demonstrate that even
older smartcard models are capable of computing the protocol in
full compliance with its current specification, albeit substantially
slower.

1.1 Our contribution
This paper makes the following contributions:

(1) Identification of operations needed in FROST, a state-of-the-
art threshold Schnorr signature protocol, and their mapping
to operations computable via public Java Card API.

(2) Extension of capabilities of the JCMathLib library [18] to
support operations needed for FROST implementation.

(3) The first public threshold protocol implementation capable
of execution on Java Card-based smartcards with an arbitrary
threshold, compliant with the FROST specification [10].

(4) Performance evaluation on three smartcard models with
various threshold settings, demonstrating the practicality of
the implementation.

(5) Discussion of application scenarios for threshold protocols
computed on smartcards.

1.2 Related work
To the best of our knowledge, we are presenting the first public
threshold protocol implementation allowing an arbitrary threshold
and using only public Java Card API. However, there have been
previous works implementing multi-party protocols on Java Card-
based smartcards like 𝑛-party signatures and decryption [14, 17],
which are notably simpler and more efficient.

Apart from multi-party protocols, there have been various im-
plementations utilizing Java Card API to perform more complex
protocols focusing primarily on identity management and privacy
like anonymous credential scheme implementation by Bichsel et al.
[3], utilizing RSA algorithm accessible by public Java Card API to
achieve faster modular multiplication. A similar technique and its
variation has been used by Sterckx et al. [26] in the implementation
of direct anonymous attestation scheme on smartcards. Vullers
implemented self-blindable credentials while exploiting Java Card
API to perform scalar multiplication on an elliptic curve [30]. Balli
et al. [1] implemented a suite of protocols allowing a smartcard to
be used as a biometric identity document, building on elliptic curve
scalar multiplication and point addition implementation provided
by JCMathLib [18]. The most recent works in this area presents
an efficient implementation of revocable keyed-verification anony-
mous credentials [7] and privacy-preserving digital identity token
suitable for use in humanitarian aid distribution [31].

In parallel to these applications, there have been attempts to
create reusable libraries for the Java Card platform providing low-
level operations needed for cryptographic implementations relying
only on public Java Card API. One of the first such projects is the
implementation of modular arithmetic by Tews and Jacobs [29],
who first published the method for accelerating modular multipli-
cation by reusing RSA algorithm outputs. This library was used as
a foundation for JCMathLib [18], which extended it by including
support for elliptic curve operations, tools for improving memory
management and performance profiling. We further extend this
library as a part of this work by new operations that we use for the
implementation of the threshold signature scheme.

The rest of this paper is organized as follows. After the intro-
ductory section, Section 2 presents the relevant background, cov-
ering the Java Card platform, secure secret sharing, and threshold
signatures. In Section 3, we inspect the FROST signature scheme
specification [10], identify required operations to comply with the
specification, and describe how the computations can be realized
via public Java Card API. Sections 4 and 5 present the implemen-
tation and its experimental evaluation while discussing various
optimization options. In Section 6, we discuss possible applications
utilizing the unique combination of threshold schemes executed on
smartcards; and we conclude the paper with Section 7.

2 BACKGROUND
In this section, we briefly describe the basic characteristics of the
Java Card platform, introduce the necessary background and nota-
tion for secure secret sharing, and describe how it is involved in a
threshold signature computation.

2.1 Java Card platform
The Java Card platform allows for implementing Java-like appli-
cations and their execution on devices capable of running a Java
Card virtual machine, typically smartcards. The implemented ap-
plications (called applets) are portable to other devices that run
compatible virtual machines. This simplifies the development and
deployment of smartcard applications [8].



Enabling Efficient Threshold Signature Computation via Java Card API ARES 2023, August 29-September 1, 2023, Benevento, Italy

The Java Card specification [22] includes standard packages
that provide developers with a unified interface to various cryp-
tographic functionalities, including hash algorithms, symmetric
and asymmetric ciphers, signatures, key agreement protocols, and
random number generation. Via these interfaces, Java Card virtual
machine can provide algorithm implementations leveraging un-
derlying hardware accelerators, enabling significant performance
improvement of costly operations without having to introduce
platform-dependent interfaces. However, implementations of algo-
rithms not included in the standard packages cannot access these
accelerators, at least not directly.

2.2 Secret sharing and threshold protocols
Secure secret sharing allows for splitting a secret into 𝑛 shares
in a way that at least a certain number 𝑡 (called threshold) of the
shares is needed to reconstruct it, while any set of less than 𝑡 shares
provides no information about the secret. Secure secret sharing of
a secret 𝑠 from the finite field of 𝑞 elements F𝑞 is typically realized
using Shamir’s secret sharing [24]. In Shamir’s secret sharing, a
random polynomial 𝑓 (𝑥) of degree 𝑡 − 1 over F𝑞 is sampled so
that 𝑓 (0) = 𝑠 , and the shares are computed as evaluations of the
polynomial in points 1, . . . , 𝑛.

Given a set 𝑆 = {(𝑥1, 𝑓 (𝑥1)), . . . , (𝑥𝑡 , 𝑓 (𝑥𝑡 ))} of 𝑡 evaluations of
the polynomial in different points, it can be uniquely reconstructed
using Lagrange interpolation as:

𝑓 (𝑥) =
∑︁

(𝑥𝑖 ,𝑓 (𝑥𝑖 ) ) ∈𝑆
𝑓 (𝑥𝑖 )_𝑖 (𝑥)

where

_𝑖 (𝑥) =
(𝑥 − 𝑥1)
(𝑥𝑖 − 𝑥1)

· · · (𝑥 − 𝑥𝑖−1)
(𝑥𝑖 − 𝑥𝑖−1)

· (𝑥 − 𝑥𝑖+1)
(𝑥𝑖 − 𝑥𝑖+1)

· · · (𝑥 − 𝑥𝑡 )
(𝑥𝑖 − 𝑥𝑡 )

.

Evaluation of this reconstructed polynomial at 0 yields the secret.
We use _𝑖 to denote _𝑖 (0) in the rest of this work.

Threshold signature schemes allow a group of at least 𝑡 signers
holding secret shares of a private key to compute a signature ver-
ifiable with the public key corresponding to the securely shared
private key without having to reconstruct it, while any set of less
than 𝑡 parties is not able to do so. Signatures produced this way
may be indistinguishable from standard single-party signatures
and thus compatible with all preexisting applications that rely on
signatures of a particular form.

There have been proposed threshold protocols for all practically
used signature schemes; in particular, there have been recently
several works on threshold ECDSA [6, 11, 12] and threshold Schnorr
signatures [15]. In this work, we focus on threshold schemes based
on Schnorr signatures, which are becoming popular also due to
their properties suitable for threshold signature construction.

3 OPERATIONS REQUIRED BY FROST
In this section, we identify what operations are required in FROST
computation and discuss how they can be efficiently computed via
the public interface provided by the Java Card platform.

The current version of the specification [10] defines the scheme
FROST(𝐸, 𝐻 ) parameterized by two values – an elliptic curve 𝐸 and
a hash function 𝐻 , and describes five ciphersuites:

• FROST(Ed25519, SHA-512),
• FROST(Ed448, SHAKE256),
• FROST(ristretto255, SHA-512),
• FROST(P-256, SHA-256), and
• FROST(secp256k1, SHA-256).

We will discuss the required operations in general for FROST(𝐸, 𝐻 )
but highlight properties specific to particular instantiations when
necessary.

3.1 Modular arithmetic
Independently on a given parametrization, all instantiations of
FROST need to perform modular arithmetic with large numbers.
The modular arithmetic is used to construct the signature share of
party 𝑖 , defined as:

𝑠𝑖 = 𝑟0,𝑖 + 𝑏𝑖𝑟1,𝑖 + _𝑖𝑒𝑥𝑖 (mod 𝑞)
where 𝑟0,𝑖 and 𝑟1,𝑖 represent the hiding and binding nonces gener-
ated by signer 𝑖; the value 𝑏𝑖 is its binding coefficient; the Lagrange
coefficient _𝑖 corresponds to the signer’s secret share 𝑥𝑖 ; the sig-
nature challenge is denoted by 𝑒; and 𝑞 is the order of the elliptic
curve group. From the expression, it is apparent that FROST imple-
mentations need to perform modular additions and multiplications.
Furthermore, to compute _𝑖 the computation of modular subtrac-
tion and inversion is needed. Lastly, the computation of 𝑏𝑖 and 𝑒
involves hashing a bit string to a field element, requiring modular
reductions in compliance with the specification.

The Java Card platform does not provide any direct support for
modular arithmetic with large numbers. It natively supports only
word-sized arithmetic (typically 2- or 4-byte wide). Some imple-
mentations may optionally provide class BigNumber that allows
performing basic operations with larger integers, but it is typically
constrained to eight bytes and cannot perform modular arithmetic
required by cryptographic implementations.

Therefore, another approach has to be used to support modu-
lar arithmetic without relying on any proprietary interface. The
basic word-sized arithmetic may suffice for the computation of
simpler operations, but more complex operations require the aid
of cryptographic accelerators to achieve reasonable performance.
The accelerators are accessible only via high-level algorithms pro-
vided by the Java Card API. Fortunately, outputs of these algorithms
can often be repurposed for constructing more generic operations,
though with an unavoidable overhead.

Addition and subtraction. No algorithms in the Java Card API
allow accelerating modular addition and subtraction. However, as
long as the inputs to the computation are smaller than the modulus,
these operations can be computed efficiently with just the basic
word-sized arithmetic.

Multiplication. Modular multiplication can also be implemented
using word-sized arithmetic; however, its quadratic complexity sub-
stantially affects computation time. Java Card API provides two
algorithms that allow accelerating modular multiplication: RSA
decryption (ALG_RSA_NOPAD) and plain Diffie-Hellman key agree-
ment (ALG_DH_PLAIN). Both these algorithms compute modular
exponentiation, which is by an order of magnitude more complex
than multiplication. But since a dedicated coprocessor performs this



ARES 2023, August 29-September 1, 2023, Benevento, Italy Dufka and Švenda

computation, it is able to outperform multiplication implemented
with the basic arithmetic in a Java Card virtual machine.

The ability to perform modular exponentiation does not imme-
diately yield multiplication, but it can be transformed to it using
the well-known binomial formula:

2𝑎𝑏 ≡ (𝑎 + 𝑏)2 − 𝑎2 − 𝑏2 (mod 𝑞)
using which the modular multiplication can be constructed at the
cost of three squarings, one addition, two subtractions, and a divi-
sion by two, that can be efficiently realized by a bit shift. Counterin-
tuitively, this computation is still faster than software implementa-
tion of modular multiplication, and has been previously utilized in
a number of works [3, 18, 26, 29]. Furthermore, Sterckx et al. [26]
have proposed an alternative formula for the multiplication:

4𝑎𝑏 ≡ (𝑎 + 𝑏)2 − (𝑎 − 𝑏)2 (mod 𝑞)
but by their experiments, the division by four has turned out to be
slower than the additional squaring on some cards.

Inversion. Computation of modular inversion is equivalent to
the ability to perform modular exponentiation as by Fermat’s little
theorem 𝑎 ·𝑎𝑞−2 ≡ 1 (mod 𝑞) for prime 𝑞. The value 𝑎𝑞−2 (mod 𝑞)
can be computed directly with the aforementioned algorithms for
RSA decryption or plain Diffie-Hellman key agreement.

Modular reduction. The Java Card API does not provide any
algorithm thatwould allow speeding up the computation ofmodular
reduction, as all the algorithms require the base to be smaller than
themodulus to run the algorithm. Therefore, this operation has to be
implemented fully within the Java Card virtual machine, requiring
remainder division performed only with word-sized arithmetic.
The complexity of this computation is quadratic in the difference
between the bit lengths of the reduced number and the modulus,
rendering it very costly for large inputs.

3.2 Elliptic curves
Depending on the given parametrization, FROST(𝐸, 𝐻 ) needs to
perform computations with points in the group of 𝐸. The most
significant number of elliptic curve point operations is performed
in the aggregation of a group commitment:

𝑅 =

𝑡∑︁
𝑖=1

𝑅0,𝑖 +
𝑡∑︁
𝑖=1

𝑏𝑖𝑅1,𝑖

where 𝑏𝑖 is the same binding coefficient as in the signature share
computation; 𝑅0,𝑖 and 𝑅1,𝑖 are hiding and binding commitments,
corresponding to nonces generated by party 𝑖 for its signature
share. Apart from the group commitment aggregation, scalar multi-
plication is also needed for the computation of hiding and binding
commitments by a signing party. Additionally, the specification [10]
states that points should be encoded using SEC1 compressed encod-
ing [4] or a similar compressed encoding in case of curves Ed25519,
Ed448, and ristretto255, in which one of the point coordinates
has to be reconstructed.

Java Card platform supports specifying parameters of curves in
the short Weierstrass form, allowing for the direct support of curves
like secp256k1 and P-256. These curves can then be used with
algorithms for plain elliptic curve Diffie-Hellman key agreement
and the generic mapping computation according to specification

TR-03110 [5]1 used in electronic passports, both of which output
points without additional processing and thus can be used in further
computations.

As any elliptic curve whose field characteristic is different from
2 and 3 can be mapped to a curve in the short Weierstrass form
[32], it is possible to convert twisted Edwards curves like Ed25519
to their Weierstrass equivalents (like Wei25519 [27]) and perform
operations on them. This will incur additional overhead with point
transformations, but in some applications, the transformations can
be trustlessly offloaded to a different device. Such an approach has
already been demonstrated with Java Card smartcards [23].

Starting with Java Card API version 3.1 [20], a new API introduc-
ing a set of named elliptic curves became available. This API allows
using curves like Ed25519 and Ed448 directly, but their usage is
limited only to specific operations, e.g., EdDSA signing [2], which
do not allow reusing them to derive more generic operations.

Point addition. Algorithm ALG_EC_PACE_GM outputs the point
𝑠𝑃 +𝑄 , where 𝑠 is a scalar from F𝑞 and 𝑃,𝑄 are points of 𝐸. Since
the scalar can be set to 1, this algorithm can be used to perform
point addition on smartcards that do support it. Furthermore, in
case scalar multiplication and point addition operations need to be
performed in a sequence in some application, with this algorithm,
it can be achieved in a single API call without increasing the cost.

In case this algorithm is not supported, it is still possible to im-
plement point addition using modular arithmetic over the elliptic
curve’s field, requiring several modular subtractions and multi-
plications, and one modular inversion. However, this approach
is significantly more costly as the modular arithmetic has to be
constructed as described in the previous section.

Scalar multiplication. The generic mapping from the previous
paragraph can be repurposed for just scalar multiplication, though
another slightly more efficient algorithm can be used just for scalar
multiplication: ALG_EC_SVDP_PLAIN_XY. The algorithm is intended
for computing the elliptic curve Diffe-Hellman key agreement, but
as it outputs the resulting point without any further processing, it
can be directly used for scalar multiplication.

If the previous algorithms are not supported, it may still be
possible to compute the result using ALG_EC_SVDP_DH_PLAIN or
ALG_EC_SVDP_DHC_PLAIN2 algorithms, which, unlike the previous
algorithms, output just the 𝑋 coordinate of a point. In this case,
it is necessary to compute the corresponding 𝑌 coordinate, but
since there are two such values, additional checks to determine
the correct sign are needed. This computation is quite costly, as it
involves the computation of modular square root requiring modular
multiplications and exponentiations. Still, this approach has already
been successfully used [18, 30].

Point encoding and decoding. Although Java Card API supports
SEC1 encoding used with curves P-256 and secp256k1, the support
of compressed points is only optional and rarely available. Encoding
of Ed25519 and Ed448 points is supported only for the named
curves API, that does not seem usable for generic computations. In
any case, both encoding and decoding can be implemented using
modular arithmetic; however, decoding can be quite costly.

1Introduced in Java Card API version 3.0.5.
2This algorithm additionally performs cofactor clearing.



Enabling Efficient Threshold Signature Computation via Java Card API ARES 2023, August 29-September 1, 2023, Benevento, Italy

3.3 Hash functions
FROST(𝐸, 𝐻 ) uses the cryptographic hash function 𝐻 in many con-
texts, separating each of them by a different domain separation tag.
In total, the hash function is used in five parts of the implementa-
tion: three times to hash to a scalar in F𝑞 and two times as a hash
to a byte string. The defined ciphersuites include three different
hash functions: SHA-256, SHA-512, and SHAKE-256.

The Java Card API contains a wide range of standard crypto-
graphic hash functions, including SHA-256 and SHA-512; however,
SHAKE-256 is not among them, while similar hash functions from
the SHA-3 family are. Furthermore, even though SHA-512 is in-
cluded in the Java Card API specification, it is not available as
commonly as SHA-256 [28].

If the hash function of a ciphersuite is not supported by the Java
Card API on a particular card, it would require implementing the
hash function inside the application code executed by a Java Card
virtual machine. Such implementation would probably turn out to
be too slow in practice, especially since hashing is used heavily in
the FROST specification.

4 IMPLEMENTATION
Based on the requirements discussed in the previous section, we
decided to implement one of the ciphersuites that uses a curve
in the short Weierstrass form without the need for transforma-
tions, to get performance closer to a native implementation, and
SHA-256, as its support among available smartcards is more com-
mon and it is faster than SHA-512. Out of the two possible options
FROST(P-256, SHA-256) and FROST(secp256k1, SHA-256), we de-
cided to implement the latter, as the curve is used in Bitcoin, and
may be used for signing Taproot transactions (see Section 6). The
switch to the other curve is only a matter of changing a few con-
stants in the code. The resulting implementation3 is compliant with
the FROST specification [10] and was verified by the supplemented
test vectors.

4.1 JCMathLib extension and improvements
Our implementation is based on the JCMathLib library [18], an
open-source library for the Java Card platform providing modular
arithmetic with large numbers and operationswith points on elliptic
curves. The library depends only on public Java Card API, so it
resorts to some of the approaches described in the previous section.

However, as the library was originally developed and tested on
smartcards supporting only Java Card API 3.0.1 and it was not ex-
panded since, it lacked the support of new algorithms introduced
in later versions, especially in version 3.0.5, allowing much more
efficient point addition and scalar multiplication. Furthermore, con-
straints on inputs to the algorithms utilizing modular exponenti-
ation accelerators have changed in time, and input preprocessing
had to be reinvented for the latest smartcards. In the rest of this
subsection, we give an overview of changes made to the library to
enable the implementation of FROST.

Backward-compatible extensions. The main building block of
most of the functionality of JCMathLib is the modular exponentia-
tion utilizing the ALG_RSA_NOPAD algorithm. However, since then,

3The source code is available at https://github.com/crocs-muni/JCFROST.

the constraints on inputs passed to the API have evolved, and new
cards could not run the library. There are minor differences in
what various Java Card implementations are able to accept, and
it needs to be addressed on a per-card basis. We identified which
input transformations are needed for the API call to succeed for
each of our tested cards and changed the implementation to be
able to accommodate all permissible execution paths, depending on
which card it is being executed on. This way, we maintain backward
compatibility with older smartcards and are able to support various
constraints of the new ones.

To make the code compile even with older versions of Java Card
SDK that do not support constants defined in later versions, we
use the corresponding numbers directly. If an algorithm is not
supported and thus cannot be instantiated, the code either selects
an alternative implementation of the operation or fails. Further-
more, smartcards sometimes support algorithms introduced in later
versions of Java Card API even though they do not fully support
this API version, and they can be used this way. For example, this
approach allows us to use algorithms for efficient operations on
elliptic curves on an NXP J3H145 card with API version 3.0.4.

Compressed point encoding and decoding. As none of our tested
cards supported compressed points, and we wanted to fully com-
ply with the FROST specification [27], we had to implement SEC1
compressed point encoding and decoding [4]. Encoding is straight-
forward, as it only needs to output the 𝑋 coordinate prefixed with
a value depending on parity of 𝑌 . Decoding requires recomput-
ing the 𝑌 coordinate, which involves costly modular square root
computation and several modular multiplications and additions.

Hardware-accelerated point addition. When JCMathLib was origi-
nally implemented, Java Card API did not include the algorithm for
computing the elliptic curve generic mapping (ALG_EC_PAGE_GM),
and the point addition had to be computed usingmodular arithmetic.
We integrated the new algorithm into the library to enable more
efficient point addition on smartcards that support it, resulting in
more than 7x speedup on such cards. We also extended JCMathLib
API to expose multiplication and addition in a single call so that its
users can take advantage of a single Java Card API invocation in
their applications.

Faster scalar multiplication. Similarly to the previous paragraph,
the algorithm for elliptic curve Diffie-Hellman computation that
outputs full point (ALG_EC_SVDP_DH_PLAIN_XY) was not available
when the library was implemented; instead, the authors had to
resort to recomputing 𝑌 coordinate with significant impact on the
performance. We integrated this new API call in the library and set
it as the default option for scalar multiplication for smartcards that
do support it, resulting in more than 4x speedup on tested cards.

Faster modular multiplication. The original modular multiplica-
tion implementation in JCMathLib was based on the 2𝑎𝑏 formula
and performed the computations with a modulus of bit length
greater than (𝑎 + 𝑏)2, requiring an extra remainder division of
the result. This was done for two reasons. The first reason is that
constraints on inputs to the RSA algorithm on older smartcards
caused modular squaring with modulus of a lower bit length than

https://github.com/crocs-muni/JCFROST


ARES 2023, August 29-September 1, 2023, Benevento, Italy Dufka and Švenda

the minimal allowed by the RSA algorithm4 to be inefficient, as its
each output would need to get reduced using remainder division.
The second reason is that this way, the intermediary values would
not get reduced in any of the squarings, obtaining even 2𝑎𝑏 which
could be bit-shifted to get 𝑎𝑏.

For older smartcards, we changed this functionality to use the
4𝑎𝑏 formula, as the unreduced variant does not suffer from the issue
with slow division by four, reported by Sterckx et al. [26], as the
bit shift can be performed directly by 2 bits. This change resulted
in only 8% speed improvement as the cost is still dominated by the
remainder division.

For newer smartcards, we reimplemented the functionality so
that the computations are performed directly mod 𝑞, lowering the
cost of additions and subtractions and avoiding remainder division
entirely. Furthermore, we based the computation on the 4𝑎𝑏 formula
and managed to avoid dividing by four using the following trick:

𝑐 ≡ (𝑎 + 𝑏)/2 (mod 𝑞)
𝑎𝑏 ≡ 𝑐2 − (𝑐 − 𝑏)2 (mod 𝑞)

With this approach, we were able to achieve more than 4.5x speedup
over the previous implementation of which around 0.7x can be
attributed to using the 4𝑎𝑏 formula.

4.2 Implementation optimizations
We implemented the protocol in full compliance with the specifica-
tion [10], but in practical usage with smartcards, it is reasonable
to make minor compromises to achieve substantially better perfor-
mance. In particular, we propose the following two optimizations.

Decompressed points. Since smartcards are always used in com-
bination with a typically much more computationally powerful
host device, the device may perform additional precomputations
to decrease the computational load on the smartcard. This can be
used in the case of point decompression. As discussed in the pre-
vious sections, point decompression requires a sequence of (for a
smartcard) costly operations. We can rely on the host device to
decompress points as they are being sent to the smartcard. This
computation can be done without any impact on security, as smart-
card implementations should check the validity of points upon their
loading into its ECPublicKey object.

Additionally, if the implementation were to use a ciphersuite
that does not use an elliptic curve in the short Weierstrass form,
and thus needed to convert it (as discussed in Section 3.2), the host
could perform the conversion along with the decompression, saving
even more computation of the smartcard.

Efficient lambda computation. Lagrange coefficient computation
requires a number of modular multiplications linear in 𝑡 , which is a
significant factor for large signing groups. However, if the maximal
number of parties is reasonably small, most of the intermediate
multiplications can be performedwithoutmodular reductions (up to
𝑛 ≤ 57). Furthermore, with 𝑛 ≤ 12, the intermediate computations
can fit within a 4-byte wide type, and with 𝑛 ≤ 7, within a 2-byte
wide type. One additional subtraction needs to be performed if the
result is negative, but it is a minimal price for the performance gain.

4The ALG_RSA_NOPAD algorithm typically requires at least 512- or 1024-bit modulus.

Table 1: Time (ms) required to compute signature share on
the analyzed smartcards in dependence on threshold 𝑡 .

𝑡 J3R200 J3H145 J2E145
2 1290 2481 25724
3 1649 3219 38435
4 1940 4137 51180
5 2297 4933 63934
6 2597 5682 76597
7 2956 6481 89523
8 3257 7276 —
9 3544 8023 —
10 3902 8798 —
11 4196 9610 —
12 4556 10352 —

5 EXPERIMENTAL EVALUATION
We measured the performance of the signing round of the imple-
mentation on three smartcards by NXP: J3R200, J3H145, and J2E145.
The measurement was done using JCProfilerNext [35], with each
measurement repeated 100 times. All inputs to the protocol5 were
freshly sampled for each measurement and then fixed for the rest
of the profiling to obtain precise results. In this section, we present
only the results of the implementation with optimizations proposed
in the previous section; for measurement results of unoptimized
implementation, see the Appendix.

Table 1 shows the mean values of the measurements in depen-
dence only on threshold 𝑡 , as the computation is independent of
the group size 𝑛. From the results, we can see that smartcards that
do support efficient computation with elliptic curves are able to
produce a signature share within a few seconds for all measured
values of 𝑡 . In contrast, older smartcards with lower processing
speeds that do not support these algorithms require more than 25
seconds to complete the computation even in the simplest case.

To identify how different parts of the computation contribute to
the overall cost, we present Figure 1a (NXP J3R200) and Figure 1b
(NXP J3H145). These figures display the computation time divided
into its five components: binding factors computation, group com-
mitment computation, lambda computation, challenge computation,
and signature share computation. Figures for the remaining tested
cards are provided in the Appendix.

From the figures, it is apparent that computations of the resulting
signature share and challenge are not correlated with 𝑡 , thus setting
a lower bound on the computation time. It may appear that the
computation of lambda (the Lagrange interpolation coefficient _𝑖 )
is also uncorrelated with 𝑡 , but that is only due to the proposed
optimization that allows most of the computation to be performed
only with the platform’s native type. Otherwise, this computation
would cause a significant slowdown with increasing 𝑡 .

Group commitment computation is performing on the native
performance level on both J3R200 and J3H145 cards, as most of
the computational load of point addition and multiplication is real-
ized by the underlying hardware-accelerated algorithms. However,

5Except for the message, which was fixed to the string "frost".



Enabling Efficient Threshold Signature Computation via Java Card API ARES 2023, August 29-September 1, 2023, Benevento, Italy

2 3 4 5 6 7 8 9 10 11 12

Threshold

0

2000

4000

6000

8000

10000

T
im

e
(m

s)

Binding factors

Group commitment

Lambda

Challenge

Signature share

(a) NXP J3R200 (API version 3.0.5)

2 3 4 5 6 7 8 9 10 11 12

Threshold

0

2000

4000

6000

8000

10000

T
im

e
(m

s)

Binding factors

Group commitment

Lambda

Challenge

Signature share

(b) NXP J3H145 (API version 3.0.4)

Figure 1: Time measurement (average of 100 runs, in milliseconds) of signing round components with different threshold
values on smartcards that support efficient elliptic curve operations.

this computation is a major bottleneck for older cards that do not
support efficient elliptic curve operations.

Apart from the operations with elliptic curve points, binding
factor computation is the most demanding component. The compu-
tation requires deriving a binding coefficient for each of the 𝑡 parties
by processing inputs to the protocol using 𝐻 and then mapping the
result to a scalar in F𝑞 , requiring costly modular reduction. These
operations cannot be precomputed as they rely on fresh inputs, and
the modular reduction cannot cannot be avoided without diverg-
ing from the specification. The performance of hash computations
could be improved by storing the internal state of the hashing ob-
ject and reusing it, since many of the computations share the same
prefix. However, this cannot be done with MessageDigest class
provided by the Java Card API.

5.1 Further possible optimizations
Beyond the optimizations incorporated in the presented results, we
considered other optimizations, but decided to not include them in
the implementation, as they may deviate from the FROST specifica-
tion in the compatibility of the produced signature shares or even in
the protocol’s security model. Still, we present those optimizations
in this section in case they are suitable for some use cases.

Precomputed lambda. As long as the signing subgroup remains
fixed, the Lagrange interpolation coefficient _𝑖 remains the same.
This can be taken advantage of to speed up repeated signing by the
same subgroup by storing the intermediate result of the multiplica-
tion of _𝑖 and the secret key share 𝑥𝑖 . Furthermore, if the number of
eligible signing groups

(𝑛
𝑡

)
is small enough, the intermediate results

can be precomputed for all of them, decreasing the signature share
computation cost by the lambda computation and one modular
multiplication. This optimization would result in saving of more
than 250ms on the measured smartcards.

Binding factors without modular reduction. The most limiting
component of the compliant implementation of FROST is modular

reduction, which needs to be performed for each binding coefficient.
Binding coefficient computation involves hashing a sequence of
inputs of the protocol and thenmapping the result to a field element.
This mapping requires, by the specification [10], to produce 16
more bytes from the hash function than is the size of the field
and reduce it modulo the field’s order, to minimize the introduced
bias. However, as is also discussed in the specification [10], if the
order of the field to which the hash result should be mapped is
close to a power of two, it may be good enough to simply get the
corresponding number of bits from the hash function and interpret
it as a scalar. This change would allow for avoiding the modular
reduction in binding factor computation, significantly improving
the performance of our implementation. Nonetheless, since binding
factors are derived differently with this optimization, it would no
longer be compatible with the specified ciphersuites.

Offloaded group commitment aggregation. The group commit-
ment aggregation is a major bottleneck for smartcards that do not
support algorithms for efficient operations with points on elliptic
curves. This computation can be avoided at the cost of changing
the security model and enforcing sequential execution. Drijvers
et al. [13] have shown that threshold Schnorr signature schemes
accepting a group commitment computed externally can be secure
under stronger assumptions in a setting with limited concurrency.
Utilizing this result, the group commitment could be computed by
the host device and sent together with the signing request.

Furthermore, with this change, binding factors would not provide
any utility to the smartcard, so their computation could be avoided
and, consequently, even the generation of the binding nonce. Not
even the commitments of other parties would need to be received.
The computationwould be reduced to the bareminimum required to
construct a threshold Schnorr signature share, i.e., the computation
𝑟0,𝑖 + _𝑖𝑒𝑥𝑖 (mod 𝑞). Interestingly, as discussed in a related work
[14], such a signature share can be made compatible with signature
shares of other parties running compliant FROST implementations.



ARES 2023, August 29-September 1, 2023, Benevento, Italy Dufka and Švenda

6 APPLICATION SCENARIOS
The implementation presented in this work is primarily intended
to demonstrate that it is possible to efficiently compute a state-of-
the-art threshold signature protocol with current Java Card-based
smartcards, relying only on public Java Card API. As the implemen-
tation has not been properly analyzed and is most likely susceptible
to side-channel attacks due to implementation of modular opera-
tions aided by computations executed within a Java Card virtual
machine, it should not be deployed in practical applications where
side-channel attacks are part of the attacker model. With this in
mind, in the rest of this section, we discuss application scenarios
that would benefit from having threshold protocols run on smart-
cards or other secure hardware devices.

6.1 Cryptocurrency hardware wallets
Cryptocurrency hardware wallet designs have been utilizing multi-
ple secure elements to prevent a signing key breach in case one of
the elements turns out vulnerable [9]. However, the elements are
used only for storage in currently deployed devices. They do not
perform actual computations with the signing key, which is thus at
increased risk once loaded into the device’s memory. By utilizing
more programmable secure elements like Java Card-based smart-
cards, threshold signature protocol could be computed directly with
the elements without loading the key to an unprotected memory.

As a variant of Schnorr signatures [33] has been deployed in Bit-
coin since the activation of Taproot [34], our implementation can be
applied in this area with minor modifications. The signatures, spec-
ified in BIP 340 [33], are defined over the secp256k1 curve, which
is already used in our implementation, and the main difference is
in point encoding. By the specification, all points are encoded only
as their 𝑋 coordinate, leaving two options for 𝑌 coordinate when
decoding a point and implicitly choosing one of them. This may
require protocol participants to negate their nonces if a group com-
mitment cannot be decoded properly. Still, the introduced overhead
should be minor.

6.2 Security of keys on smartphones
Secure storage of keys on modern smartphones relies on specialized
interfaces6, often backed by secure hardware. While these inter-
faces support certain most common cryptographic algorithms like
ECDSA or RSA signatures, they may not support more recent or
application-specific schemes like EdDSA or BIP 340 signatures. In
case application developers need to use one of the unsupported
schemes, they cannot benefit from these secured interfaces and
have to resort to less secure key storage methods.

The security of those approaches can be enhanced using smart-
cards and threshold signatures by splitting the key into two shares,
one held by a smartphone and the other by a smartcard. Whenever
the key would need to be used, a user would tap the smartphone
with the smartcard, which would execute the signing protocol
and output a signature. In order to obtain the signing key, an at-
tacker would need to compromise both devices, thereby the overall
security would be increased. Even if the implementation on the
smartcard could be compromised, it would not weaken the security
beyond the original setup, and vice versa.
6Keystore on Android and Secure Enclave on iOS.

7 CONCLUSION
In this work, we have shown that it is possible to efficiently execute
a state-of-the-art threshold signature protocol FROST on currently
available smartcards, even using only the restrictive interface that
Java Card API provides.We achieved this by repurposing algorithms
exposed by the API that are accelerated on the hardware level to
compute operations required by the protocol. Our implementation
is the first open-source threshold protocol implementation for Java
Card smartcards supporting threshold values lower than the num-
ber of eligible parties, and it is compliant with the current version
of the protocol standardization draft [10].

While our performance results are practical for many applica-
tions, an implementation utilizing a low-level interface to the un-
derlying hardware could enable running the protocol significantly
faster. A rough estimate could bemade as the time required to create
two regular signatures plus the time required to compute the group
commitment (which is computed close to the native performance
on J3R200 and J3H145 cards).

Furthermore, this work can attest to the practicality of FROST to
the upcoming threshold scheme standardization process showing
that even with current secure hardware devices, which were not
designed to support threshold protocols, it is possible to execute
FROST protocol on them. On the other side, this implementation’s
bottlenecks should not influence FROST design decisions because
the cost of certain operations is magnified by the costly emulation
via public API.

During the work on this paper, we made several improvements
and extensions to the JCMathLib library [18] that are now merged
in the upstream repository7. The changes focused on making the li-
brary more efficient and usable, supporting more recent smartcards,
and allowing easy integration within other applets. We hope these
efforts enhance research and development of proof-of-concept ap-
plications utilizing smartcards, and help the ecosystem to be more
open.

ACKNOWLEDGMENTS
This research was supported by the Ministry of the Interior of the
Czech Republic under grant VJ01010084 in program IMPAKT I.
We also thank Jakub Janků for fruitful discussions on JCMathLib
improvements.

7Available at https://github.com/OpenCryptoProject/JCMathLib.

https://github.com/OpenCryptoProject/JCMathLib


Enabling Efficient Threshold Signature Computation via Java Card API ARES 2023, August 29-September 1, 2023, Benevento, Italy

REFERENCES
[1] Fatih Balli, F. Betül Durak, and Serge Vaudenay. 2019. BioID: A Privacy-Friendly

Identity Document. In Security and Trust Management: 15th International Work-
shop, STM 2019, Luxembourg City, Luxembourg, September 26–27, 2019, Proceed-
ings (Luxembourg, Luxembourg). Springer-Verlag, Berlin, Heidelberg, 53–70.
https://doi.org/10.1007/978-3-030-31511-5_4

[2] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
2012. High-speed high-security signatures. Journal of cryptographic engineering
2, 2 (2012), 77–89.

[3] Patrik Bichsel, Jan Camenisch, Thomas Groß, and Victor Shoup. 2009. Anony-
mous Credentials on a Standard Java Card. In Proceedings of the 16th ACM Confer-
ence on Computer and Communications Security (Chicago, Illinois, USA) (CCS ’09).
ACM, New York, NY, USA, 600–610. https://doi.org/10.1145/1653662.1653734

[4] Daniel R. L. Brown. 2009. Elliptic Curve Cryptography, Standards for Efficient
Cryptography Group, ver. 2. https://www.secg.org/sec1-v2.pdf. Accessed:
2023-06-27.

[5] BSI. 2016. TR-03110 Technical Guideline Advanced Security Mechanisms for
Machine Readable Travel Documents and eIDAS Token. https://www.bsi.bund.
de/dok/TR-03110-en. Accessed: 2023-06-27.

[6] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi
Peled. 2020. UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable
Aborts. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, USA) (CCS ’20). ACM, New York, NY,
USA, 1769–1787. https://doi.org/10.1145/3372297.3423367

[7] Raúl Casanova-Marqués, Petr Dzurenda, and Jan Hajny. 2022. Implementation of
Revocable Keyed-Verification Anonymous Credentials on Java Card. In Proceed-
ings of the 17th International Conference on Availability, Reliability and Security
(Vienna, Austria) (ARES ’22). ACM, New York, NY, USA, Article 140, 8 pages.
https://doi.org/10.1145/3538969.3543798

[8] Zhiqun Chen. 2000. Java Card Technology for Smart Cards: Architecture and
Programmer’s Guide. Addison-Wesley Longman Publishing Co., Inc., USA.

[9] Coinkite Inc. 2022. Dual Secure Elements. https://github.com/Coldcard/firmware/
blob/master/docs/mk4-secure-elements.md. Accessed: 2023-06-27.

[10] Deirdre Connolly, Chelsea Komlo, Ian Goldberg, and Christopher A. Wood. 2023.
Two-Round Threshold Schnorr Signatures with FROST. Internet-Draft draft-irtf-
cfrg-frost-13. Internet Engineering Task Force. https://datatracker.ietf.org/doc/
draft-irtf-cfrg-frost/13/ (WIP).

[11] Ivan Damgård, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Illeborg Pagter,
and Michael Bæksvang Østergaard. 2020. Fast Threshold ECDSA with Honest
Majority. In Security and Cryptography for Networks, Clemente Galdi and Vladimir
Kolesnikov (Eds.). Springer International Publishing, Cham, 382–400.

[12] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. 2019. Threshold
ECDSA from ECDSAAssumptions: The Multiparty Case. In 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, San Francisco, CA, USA, 1051–1066. https:
//doi.org/10.1109/SP.2019.00024

[13] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gre-
gory Neven, and Igors Stepanovs. 2019. On the Security of Two-Round Multi-
Signatures. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, San
Francisco, CA, USA, 1084–1101. https://doi.org/10.1109/SP.2019.00050

[14] Antonin Dufka, Vladimir Sedlacek, and Petr Svenda. 2022. SHINE: Resilience via
Practical Interoperability of Multi-party Schnorr Signature Schemes. In Proceed-
ings of the 19th International Conference on Security and Cryptography, Sabrina
De Capitani di Vimercati (Ed.). SCITEPRESS, Portugal, 305–316.

[15] Chelsea Komlo and Ian Goldberg. 2021. FROST: Flexible Round-Optimized
Schnorr Threshold Signatures. In Selected Areas in Cryptography, Orr Dunkel-
man, Michael J. Jacobson, Jr., and Colin O’Flynn (Eds.). Springer International
Publishing, Cham, 34–65.

[16] Yehuda Lindell. 2022. How Smart Cryptography Makes Coinbase More
Secure. https://www.coinbase.com/blog/how-smart-cryptography-makes-
coinbase-more-secure. Accessed: 2023-03-30.

[17] Vasilios Mavroudis, Andrea Cerulli, Petr Svenda, Dan Cvrcek, Dusan Klinec, and
George Danezis. 2017. A Touch of Evil: High-Assurance Cryptographic Hardware
from Untrusted Components. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (Dallas, Texas, USA) (CCS ’17). ACM,
New York, NY, USA, 1583–1600. https://doi.org/10.1145/3133956.3133961

[18] Vasilios Mavroudis and Petr Svenda. 2020. JCMathLib: Wrapper Cryptographic
Library for Transparent and Certifiable JavaCard Applets. In 2020 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, Genoa, Italy,
89–96. https://doi.org/10.1109/EuroSPW51379.2020.00022

[19] NIST. 2023. NIST First Call for Multi-Party Threshold Schemes. https://csrc.nist.
gov/publications/detail/nistir/8214c/draft. Accessed: 2023-06-27.

[20] Oracle. 2018. Java Card Platform 3.1 Specification Release Notes. https://docs.
oracle.com/en/java/javacard/3.1/specnotes/index.html. Accessed: 2023-06-27.

[21] Oracle. 2023. Java Card Platform 3.2 Specification Release Notes. https://docs.
oracle.com/en/java/javacard/3.2/specnotes/index.html. Accessed: 2023-06-27.

[22] Oracle. 2023. Oracle Java Card technology. https://www.oracle.com/java/java-
card/. Accessed: 2023-06-27.

[23] David Oswald. 2015. Repository jc_curve25519. https://github.com/david-oswald/
jc_curve25519. Commit: fa65318c. Accessed: 2023-06-27.

[24] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[25] Smart ID. 2017. The smart way to identify yourself. https://www.smart-id.com/

about-smart-id/. Accessed: 2023-06-27.
[26] Michaël Sterckx, Benedikt Gierlichs, Bart Preneel, and Ingrid Verbauwhede. 2009.

Efficient implementation of anonymous credentials on Java Card smart cards.
In 2009 First IEEE International Workshop on Information Forensics and Security
(WIFS). IEEE, London, UK, 106–110. https://doi.org/10.1109/WIFS.2009.5386474

[27] Rene Struik. 2022. Alternative Elliptic Curve Representations. Internet-Draft
draft-ietf-lwig-curve-representations-23. Internet Engineering Task Force. https:
//datatracker.ietf.org/doc/draft-ietf-lwig-curve-representations/23/ (WIP).

[28] Petr Svenda, Rudolf Kvasnovsky, Imrich Nagy, and Antonin Dufka. 2022. JCAl-
gTest: Robust identificationmetadata for certified smartcards. In Proceedings of the
19th International Conference on Security and Cryptography, Sabrina De Capitani
di Vimercati (Ed.). SCITEPRESS, Portugal, 597–604.

[29] Hendrik Tews and Bart Jacobs. 2009. Performance Issues of Selective Disclosure
and Blinded Issuing Protocols on Java Card. In Information Security Theory
and Practice. Smart Devices, Pervasive Systems, and Ubiquitous Networks, Olivier
Markowitch, Angelos Bilas, Jaap-Henk Hoepman, Chris J. Mitchell, and Jean-
Jacques Quisquater (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 95–111.

[30] Pim Vullers. 2014. Efficient Implementations of Attribute-based Credentials on
Smart Cards. Ph. D. Dissertation. Radboud University Nijmegen.

[31] Boya Wang, Wouter Lueks, Justinas Sukaitis, Vincent G. Narbel, and Carmela
Troncoso. 2023. Not Yet Another Digital ID: Privacy-preserving Humanitarian
Aid Distribution. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, Los Alamitos, CA, USA, 645–663. https://doi.org/10.1109/
SP46215.2023.00174

[32] Lawrence C. Washington. 2008. Elliptic Curves: Number Theory and Cryptography,
Second Edition (2 ed.). Chapman & Hall/CRC, USA.

[33] Pieter Wuille, Jonas Nick, and Anthony Towns. 2020. Schnorr signatures for
secp256k1. https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki. Ac-
cessed: 2023-06-27.

[34] Pieter Wuille, Jonas Nick, and Anthony Towns. 2020. Taproot: SegWit Ver-
sion 1 Spending Rules. https://github.com/bitcoin/bips/blob/master/bip-0341.
mediawiki. Accessed: 2023-06-27.

[35] Lukáš Zaoral. 2023. Automatic Performance Profiler for Security Analysis of Crypto-
graphic Smart Cards. Master’s thesis. Masaryk University, Faculty of Informatics.
https://is.muni.cz/th/v7l30/

[36] ZenGo Ltd. 2022. The smart way to identify yourself. https://zengo.com/mpc-
wallet/. Accessed: 2023-06-27.

A FURTHER MEASUREMENTS
In this section, we present the decomposition of computation mea-
surement for the remaining cardwith the optimized implementation
(Figure 2a) and also for all the cards with the unoptimized imple-
mentation. Measurements of the unoptimized implementation were
repeated only 10 times, as they take significantly longer to measure
with the used approach.

Table 2: Time (ms) required to compute signature share with
the unoptimized implementation depending on threshold 𝑡 .

𝑡 J3R200 J3H145 J2E145
2 3174 5041 41624
3 4676 7383 63184
4 6193 9739 84323
5 7662 12115 106090
6 9141 14450 127663
7 10652 16760 148783
8 12206 19072 170448
9 13620 21474 191292
10 15099 23816 213168
11 16711 26152 233887
12 18122 28467 254293

https://doi.org/10.1007/978-3-030-31511-5_4
https://doi.org/10.1145/1653662.1653734
https://www.secg.org/sec1-v2.pdf
https://www.bsi.bund.de/dok/TR-03110-en
https://www.bsi.bund.de/dok/TR-03110-en
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3538969.3543798
https://github.com/Coldcard/firmware/blob/master/docs/mk4-secure-elements.md
https://github.com/Coldcard/firmware/blob/master/docs/mk4-secure-elements.md
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/13/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/13/
https://doi.org/10.1109/SP.2019.00024
https://doi.org/10.1109/SP.2019.00024
https://doi.org/10.1109/SP.2019.00050
https://www.coinbase.com/blog/how-smart-cryptography-makes-coinbase-more-secure
https://www.coinbase.com/blog/how-smart-cryptography-makes-coinbase-more-secure
https://doi.org/10.1145/3133956.3133961
https://doi.org/10.1109/EuroSPW51379.2020.00022
https://csrc.nist.gov/publications/detail/nistir/8214c/draft
https://csrc.nist.gov/publications/detail/nistir/8214c/draft
https://docs.oracle.com/en/java/javacard/3.1/specnotes/index.html
https://docs.oracle.com/en/java/javacard/3.1/specnotes/index.html
https://docs.oracle.com/en/java/javacard/3.2/specnotes/index.html
https://docs.oracle.com/en/java/javacard/3.2/specnotes/index.html
https://www.oracle.com/java/java-card/
https://www.oracle.com/java/java-card/
https://github.com/david-oswald/jc_curve25519
https://github.com/david-oswald/jc_curve25519
https://www.smart-id.com/about-smart-id/
https://www.smart-id.com/about-smart-id/
https://doi.org/10.1109/WIFS.2009.5386474
https://datatracker.ietf.org/doc/draft-ietf-lwig-curve-representations/23/
https://datatracker.ietf.org/doc/draft-ietf-lwig-curve-representations/23/
https://doi.org/10.1109/SP46215.2023.00174
https://doi.org/10.1109/SP46215.2023.00174
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://is.muni.cz/th/v7l30/
https://zengo.com/mpc-wallet/
https://zengo.com/mpc-wallet/


ARES 2023, August 29-September 1, 2023, Benevento, Italy Dufka and Švenda

2 3 4 5 6 7

Threshold

0

50000

100000

150000

200000

250000

T
im

e
(m

s)

Binding factors

Group commitment

Lambda

Challenge

Signature share

(a) NXP J2E145 (with optimizations)

2 3 4 5 6 7 8 9 10 11 12

Threshold

0

50000

100000

150000

200000

250000

T
im

e
(m

s)

Binding factors

Group commitment

Lambda

Challenge

Signature share

(b) NXP J2E145 (without optimizations)

Figure 2: Time measurement (in milliseconds) of the optimized (average of 100 runs) and the unoptimized (average of 10 runs)
implementations of signing round components with different threshold values on NXP J2E145 smartcard (API version 3.0.1).
Note that this card does not support efficient elliptic curve operations.

2 3 4 5 6 7 8 9 10 11 12

Threshold

0

5000

10000

15000

20000

25000

T
im

e
(m

s)

Binding factors

Group commitment

Lambda

Challenge

Signature share

(a) NXP J3R200 (without optimizations)

2 3 4 5 6 7 8 9 10 11 12

Threshold

0

5000

10000

15000

20000

25000

T
im

e
(m

s)

Binding factors

Group commitment

Lambda

Challenge

Signature share

(b) NXP J3H145 (without optimizations)

Figure 3: Time measurement (average of 10 runs, in milliseconds) of the unoptimized implementation of signing round
components with different threshold values on smartcards that support efficient elliptic curve operations.

Table 2 shows the mean values of measurements of the unopti-
mized implementation depending on threshold values. By inspect-
ing the performance composition closer, we can see in Figures 2b,
3a, and 3b that the point decoding has a tremendous impact on the
computation time of the group commitment. Similarly, perform-
ing modular multiplications in F𝑞 during the lambda computation
significantly impacts the performance.


	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Related work

	2 Background
	2.1 Java Card platform
	2.2 Secret sharing and threshold protocols

	3 Operations required by FROST
	3.1 Modular arithmetic
	3.2 Elliptic curves
	3.3 Hash functions

	4 Implementation
	4.1 JCMathLib extension and improvements
	4.2 Implementation optimizations

	5 Experimental evaluation
	5.1 Further possible optimizations

	6 Application scenarios
	6.1 Cryptocurrency hardware wallets
	6.2 Security of keys on smartphones

	7 Conclusion
	Acknowledgments
	References
	A Further measurements

