
“They’re not that hard to mitigate”: What
Cryptographic Library Developers Think About

Timing Attacks
Jan Jancar∗, Marcel Fourné†, Daniel De Almeida Braga‡, Mohamed Sabt‡,

Peter Schwabe†§, Gilles Barthe†¶, Pierre-Alain Fouque‡ and Yasemin Acar‖†
∗Masaryk University, Brno, Czech Republic †MPI-SP, Bochum, Germany

‡Rennes University, CNRS, IRISA, Rennes, France §Radboud University, Nijmegen, The Netherlands
¶IMDEA Software Institute, Madrid, Spain ‖The George Washington University, Washington D.C., USA

Abstract—Timing attacks are among the most devastating side-
channel attacks, allowing remote attackers to retrieve secret
material, including cryptographic keys, with relative ease. In
principle, “these attacks are not that hard to mitigate”: the basic
intuition, captured by the constant-time criterion, is that control-
flow and memory accesses should be independent from secrets.
Furthermore, there is a broad range of tools for automatically
checking adherence to this intuition. Yet, these attacks still
plague popular cryptographic libraries twenty-five years after
their discovery, reflecting a dangerous gap between academic
research and cryptographic engineering. This gap can potentially
undermine the emerging shift towards high-assurance, formally
verified cryptographic libraries. However, the causes for this gap
remain uninvestigated.

To understand the causes of this gap, we conducted a survey
with 44 developers of 27 prominent open-source cryptographic
libraries. The goal of the survey was to analyze if and how
the developers ensure that their code executes in constant time.
Our main findings are that developers are aware of timing
attacks and of their potentially dramatic consequences and yet
often prioritize other issues over the perceived huge investment
of time and resources currently needed to make their code
resistant to timing attacks. Based on the survey, we identify
several shortcomings in existing analysis tools for constant-time,
and issue recommendations that can make writing constant-
time libraries less difficult. Our recommendations can inform
future development of analysis tools, security-aware compilers,
and cryptographic libraries, not only for constant-timeness, but
in the broader context of side-channel attacks, in particular for
micro-architectural side-channel attacks, which are a younger
topic and too recent as focus for this survey.

Index Terms—constant-time, timing attacks, cryptographic
library, survey, developer survey, expert survey, usable security,
human factors, cryptography

I. INTRODUCTION

Cryptographic protocols, such as TLS (Transport Layer
Security), are the backbone of computer security, and are
used at scale for securing the Internet, the Cloud, and many
other applications. Quite strikingly, the deployment of these
protocols rests on a small number of open-source libraries,
developed by a rather small group of outstanding developers.
These developers have a unique set of skills that are needed
for writing efficient, correct, and secure implementations of
(often sophisticated) cryptographic routines; in particular, they

combine an excellent knowledge of cryptography and of
computer architectures and a deep understanding of low-level
programming. Unfortunately, in spite of developers’ skills and
experience, new and sometimes far-reaching vulnerabilities
and attacks are regularly discovered in major open-source
cryptographic libraries. One class of vulnerabilities are timing
attacks, which let an attacker retrieve secret material, such
as cryptographic keys, “by carefully measuring the amount
of time required to perform private key operations“. Although
timing attacks were first described by Kocher in 1996 [1], they
continue to plague implementations of cryptographic libraries.
There are multiple aspects that make timing attacks special
in comparison to other side-channel attacks such as power-
analysis or EM attacks. First, they can be carried out remotely,
both in the sense of running code in parallel to the victim code
without the need of local access to the target computer, but also
in the sense of only interacting with a server over the network
and measuring network timings [2] or over the Cloud [3]. As
a consequence, unlike many other side-channel attacks, timing
attacks cannot be prevented by restricting physical access to
the target machine. Second, timing attacks do not leave traces
on the victim’s machine beyond possibly suspicious access
logs, and we do not know at all to what extent they are
being carried out in the real world, for example by government
agencies: victims are not able to reliably detect that they are
under attack and the attackers will never tell.

At the same time, and most importantly for this paper, we
know how to systematically protect against timing attacks. The
basic idea of such systematic countermeasures was already
described by Kocher in 1996 [1]: we need to ensure that all
code takes time independent of secret data. It is important here
to not just consider the total time taken by some cryptographic
computation, but make sure that this property holds for each
instruction. This paradigm is known as constant-time1 cryp-
tography and is usually achieved by ensuring that

• there is no data flow from secrets into branch conditions;

1The term constant-time, often referred as CT, is a bit of a misnomer, as
it does not refer to CPU execution time but rather to a structural property of
programs. However, it is well-established in the cryptography community.



• addresses used for memory access do not depend on
secret data; and

• no secret-dependent data is used as input to variable-time
arithmetic instructions (such as, e.g., DIV on most Intel
processors or SMULL/UMULL on ARM Cortex-M3).

Constant-timeness is no panacea, and the above rules may not
be sufficient on some micro-architectures or in the presence of
speculative execution, but essentially all timing-attack vulnera-
bilities found so far in cryptographic libraries could have been
avoided by following these rules. For this reason, the notion
of constant-time has grown in importance in standardization
processes and recent cryptographic competitions. For instance,
in the context of the ongoing Post-Quantum Cryptography
Standardization project, the National Institute of Standards and
Technology have stated in their Call for Papers [4]:

“Schemes that can be made resistant to side-channel
attack at minimal cost are more desirable than those
whose performance is severely hampered by any attempt to
resist side-channel attacks. We further note that optimized
implementations that address side-channel attacks (e.g.,
constant-time implementations) are more meaningful than
those which do not.”

Protection against side-channel attacks, including timing at-
tacks, is also routinely included as a requirement for Common
Criteria certification as well as a part of the newly approved
FIPS 140-3 certification scheme [5].

Programming highly optimized code that is also constant-
time can be very challenging. However, we know how to verify
that programs are constant-time. This was first demonstrated
by Adam Langley’s ctgrind [6], developed in 2010, the first
tool to support analysis of constant-timeness. A decade later,
there are now more than 30 tools for checking that code satis-
fies constant-timeness or is resistant against side-channels [7],
[8]. These tools differ in their goals, achievements, and status.
Yet, they collectively demonstrate that automated analysis
of constant-time programs is feasible; for instance, a 2019
review [8] lists automatic verification of constant-time real-
world code as one achievement of computer-aided cryptog-
raphy, an emerging field that develops and applies formal,
machine-checkable approaches to the design, analysis, and
implementation of cryptography.

Based on this state of affairs, one would expect that tim-
ing leaks in cryptographic software have been systematically
eliminated, and timing attacks are a thing of the past. Unfor-
tunately, this is far from true, so in this paper we set out to
answer the question:

Why is today’s cryptographic software not free of timing-
attack vulnerabilities?

More specifically, to understand how real-world crypto-
graphic library developers think about timing attacks and the
constant-time property, as well as constant-time verification
tools, we conducted a mixed-methods online survey with 44
developers of 27 popular cryptographic libraries / primitives2.
Through this survey, we track down the origin of the persis-
tence of timing attacks by addressing multiple sub-questions:

2We refer to both as “libraries” for readability.

RQ1: (a) Are timing attacks part of threat models of li-
braries/primitives? (b) Do libraries and primitives claim re-
sistance against timing attacks?
RQ2: (a) How do libraries/primitives protect against timing
attacks? (b) Are libraries and primitives being verified/tested
for constant-timeness? (c) How often/when is this done?
RQ3: (a) What is the state of awareness of tools that can
verify constant-timeness? (b) What are the experiences with
the tools?
RQ4: Are participants inclined to hypothetically use formal-
analysis-based, dynamic instrumentation, or runtime statistical
test tools, based on tool use requirements and guarantees?
RQ5: What would developers want from constant-time veri-
fication tools?

We find that, while all 44 participants are aware of timing
attacks, not all cryptographic libraries have verified/tested
resistance against timing attacks. Reasons for this include
varying threat models, a lack of awareness of tooling that
supports testing/verification, lack of availability, as well as a
perceived significant effort in using those tools (see Figure 1).
We expose these reasons, and provide recommendations to
tool developers, cryptographic libraries developers, compiler
writers, and standardization bodies to overcome the main
obstacles towards a more systematic protection against timing
attacks. We also briefly discuss how these recommendations
extend to closely related lines of research, including tools for
protecting against Spectre-style attacks [9].
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Fig. 1. Leaky pipeline of developers’ knowledge and use of tools for testing
or verifying constant-timeness.

II. BACKGROUND & RELATED WORK

A. Attacks

In 1996, Kocher introduced the concept of timing attacks as
a means to attack cryptographic implementations “by carefully
measuring the amount of time required to perform private
key operations“ [1]. He described successful timing attacks
against implementations of various building blocks commonly
used in asymmetric cryptography like modular exponentiation
and Montgomery reduction against RSA and DSS. Since this
seminal paper, timing attacks have been further refined and
continued to plague implementations of both asymmetric and



symmetric cryptography. Successful timing attacks are way too
numerous to list all, so we focus on a few relevant examples.

In 2002, Tsunoo et al. [10], [11] were the first to present
attacks exploiting cache timing to break symmetric cryptogra-
phy (MISTY1 and DES); they also mentioned a cache-timing
attack against AES. Details of cache-timing attacks against
AES were first presented in independent concurrent work by
Bernstein [12] and by Osvik, Shamir, and Tromer [13]. In
2003, D. Brumley and Boneh showed that timing attacks
can be mounted remotely by measuring timing variations
in response times of SSL servers over the network [2].
Canvel et al. showed in 2003 how to recover passwords in
SSL/TLS channels using padding oracle attacks [14]. In 2011,
B. Brumley and Tuveri showed that such remote attacks are
still possible [15]; i.e., that the underlying weaknesses in the
OpenSSL library had not been suitably fixed. SSL libraries
continued to be the target of timing attacks; examples include
the “Lucky 13” attack by AlFardan and Paterson, which ex-
ploits timing variation in the processing of padding in the CBC
mode of operation in multiple common SSL/TLS libraries [16]
similar in principle to the paper by Canvel et al. [14]. In
2015, Albrecht and Paterson presented a variant of the attack
targeting Amazon’s s2n implementation of TLS [17]. In 2016,
Yarom, Genkin, and Heninger presented the “CacheBleed”
attack, which showed that the “scatter-gather” implementation
technique recommended by Intel [18] and implemented in
OpenSSL as cache-timing attack countermeasure, is insuffi-
cient to thwart attacks [19]. In the same year, Kaufmann et
al. showed that even carefully implemented C code may be
translated to binaries that are vulnerable to timing attacks [20].

We conclude this paragraph with a few attacks related to
certification and standardization. Certification schemes such
as Common Criteria often require certified products to have
countermeasures to a range of side-channel attacks, including
timing attacks. However, certified hardware did not avoid be-
ing a target of timing attacks, as shown by the recent Minerva
group of vulnerabilities in ECDSA implementations, including
a Common Criteria certified smartcard [21]. In recent years,
various timing attacks were proposed against implementations
of post-quantum cryptography (PQC) including attacks against
the BLISS signature scheme used in the strongSwan IPsec
implementation [22]–[24] and attacks against candidates in
NIST’s PQC standardization effort [25]–[27].

Despite all these academic timing attacks, their practical ex-
ploitability is often questioned by practitioners. Security Audit
companies try to catch timing vulnerabilities in software [28].
However, they make the following statements:

“Even though there is basic awareness of timing side-
channel attacks in the community, they often go unnoticed
or are flagged during code audits without a true under-
standing of their exploitability in practice.”

B. Tools included in the survey

We provide a brief overview of the tools considered in our
survey. We classify tools according to the broad approach they
use: runtime statistical tests, dynamic-instrumentation based,

or formal-analysis based. Our approach as well as our choice
of included tools is based on an earlier paper [8], but amended
with tools some authors know to be in current use.

Broadly speaking, statistical test tools [29] compute the
execution time of a large number of runs of the target program
and verify whether secret data influences the execution time.
These tools are generally easy to install and run, even at scale,
and operate on executable code, ruling out the possibility
of compiler-induced violations of the constant-time policy.
However, they only provide weak, informal guarantees.

In contrast, dynamic instrumentation based tools [6], [30]–
[41] instrument programs to track how information flows
during (concrete or symbolic) execution of programs. They
are generally reasonably easy to install and to use, even at
scale, and can be implemented at source, intermediate, or
assembly levels, and provide formal guarantees. However, as
with all tools based on dynamic techniques, these guarantees
are generally limited; for instance, dynamic analysis of loops
may be unsound, i.e., miss constant-time violations.

Finally, formal-analysis-based tools [42]–[52] provide
strong guarantees that programs do not violate constant-
timeness; in addition, some tools are precise, in that they only
reject programs that violate constant-timeness. Their other
criterion is soundness, which ensures the absence of constant-
time violations. However, these tools are often implemented
at source or intermediate levels, frequently require user inter-
action, and are sometimes hard to install or use at scale.

Table I presents some key tools and summarizes their main
characteristics. Since our focus is not an in-depth technical
comparison of the features of the tools, we deliberately keep
descriptions simple, and only consider their target and whether
they provide some formal guarantees (No, Partial, Yes, Other).
For the cognizant, “Partial guarantees” cover tools that perform
dynamic analysis, whereas “Guarantees” cover tools that are
sound and detect all constant-time violations; in particular,
our classification does not reflect if tools are precise. Even for
such coarse criteria, classification is sometimes challenging
so we err on the generous side. Finally, we tag tools as
“Other” if they establish another property than constant-time;
comparing these properties with constant-time is often tricky,
so we choose not to qualify the difference.

While the CoCo-Channel authors wrote [33]: “We also
evaluate CoCo-Channel against two recent tools for detecting
side-channel vulnerabilities in Java applications, Blazer and
Themis. Neither are publicly available[...]”, their tool was not
found by us either.

We do not claim our list to be comprehensive, especially in
this currently active field of research. In particular, we did not
ask about Constantine [54], Pitchfork-angr [55], Cachefix [56],
and ENCoVer [57], just to name a few.

C. Libraries included in the survey

Cryptographic libraries have diverse threat models, but
with their usual use in protocols like TLS and connected
applications often running on shared hardware, resistance
against timing attacks is an important property. In our survey,



Tool Target Techn. Guarantees

ABPV13 [42] C Formal  
Binsec/Rel [30] Binary Symbolic G#
Blazer [43] Java Formal  
BPT17 [31] C Symbolic G#
CacheAudit [44] Binary Formal �
CacheD [32] Trace Symbolic #
COCO-CHANNEL [33] Java Symbolic  
ctgrind [6] Binary Dynamic G#
ct-fuzz [34] LLVM Dynamic #
ct-verif [45] LLVM Formal  
CT-WASM [46] WASM Formal†  
DATA [35], [36] Binary Dynamic G#
dudect [29] Binary Statistics #
FaCT [47] DSL Formal†  
FlowTracker [48] LLVM Formal  
haybale-pitchfork [37] LLVM Symbolic G#
KMO12 [49] Binary Formal �
MemSan [38] LLVM Dynamic G#
MicroWalk [39] Binary Dynamic G#
SC-Eliminator [53] LLVM Formal†  
SideTrail [50] LLVM Formal �
Themis [51] Java Formal  
timecop [40] Binary Dynamic G#
tis-ct [41] C Symbolic G#
VirtualCert [52] x86 Formal  

Targets: LLVM - intermediate representation, DSL - domain-specific language,
WASM - Web Assembly
Technique: † - also performs code transformation/synthesis
Guarantees:  - sound, G# - sound with restrictions, # - no guarantee, � -
other property

TABLE I
CLASSIFICATION OF TOOLS INCLUDED IN THE SURVEY.

we invited developers of all widely used TLS libraries and
other smaller but popular libraries and relevant primitives.
We focused on libraries implemented in C/C++ as it is the
target language of most tools and the most used language for
cryptographic libraries. However, we included some libraries
implemented in Java, Rust and Python if some tools can
analyse them or they contain parts implemented in C.

Our choice of libraries is underpinned not only by our
knowledge of them but also by quantitative data of user
and developer numbers. We included some newer primitives
not (yet) fulfilling this criterion to complement the answers
given by the first group. Nemec et al. [58] gave numbers for
OpenSSL: “The prevalence of OpenSSL reaches almost 85%
within the current Alexa top 1M domains and more than 96%
for client-side SSH keys as used by GitHub users.” We only
included libraries with an open development model to allow
us to get data for our recruiting choice.

Table II contains a list of libraries included in the survey
and whether at least one of their developers participated in our
survey. The table also lists the actions that the libraries perform
in their Continuous Integration (CI) pipelines. We draw this
information from documentation and the public CI pipelines
of the libraries. One author extracted this, a second author
double-checked, with disagreements discussed and resolved.

D. Additional Related Work

Having already discussed timing attacks and tools for
constant-time analysis, we briefly cover other related work.

Library Particip. Continuous integration
Build Test Fuzz‡ CT test

OpenSSL ¢ ¢ ¢ ¢ m
LibreSSL ¢ ¢ ¢ ¢ m
BoringSSL ¢ ¢ ¢ ¢ ¢
BearSSL ¢ ¢ ¢ m m
Botan ¢ ¢ ¢ ¢ ¢
Crypto++ ¢ ¢ m m
wolfSSL ¢ ¢ ¢ ¢ m
mbedTLS ¢ ¢ ¢ ¢ ¢
Amazon s2n ¢ ¢ ¢ ¢ ¢
MatrixSSL No public CI
GnuTLS ¢ ¢ ¢ ¢ m
NSS ¢ ¢ ¢ ¢ m
libtomcrypt ¢ ¢ ¢ m m
libgcrypt ¢ No public CI
Nettle ¢ ¢ ¢ ¢ m
Microsoft SymCrypt ¢ ¢ ¢ ¢ m
Intel IPP crypto No public CI
cryptlib ¢ No public CI
libsecp256k1 ¢ ¢ ¢ ¢ ¢
NaCl ¢ No public CI
libsodium ¢ ¢ ¢ ¢ m
monocypher ¢ ¢ ¢ ¢ m

BouncyCastle* ¢ ¢ ¢ m m
OpenJDK ¢ ¢ m m

dalek-cryptography† ¢ ¢ m m

ring† ¢ ¢ ¢ m

RustCrypto† ¢ ¢ ¢ m m

rustls† ¢ ¢ ¢ ¢ m
python-ecdsa ¢ ¢ ¢ m m
micro-ecc No public CI
tiny-AES-c ¢ ¢ ¢ m m
PQCrypto-SIDH ¢ ¢ ¢ m ¢
csidh ¢ No public CI
constant-csidh-
c-implementation ¢ No public CI

ARMv8-CSIDH No public CI
SPHINCS+ ¢ ¢ m m

Total = 36 27
(75%)

27
(75%)

27
(75%)

16
(44%)

6
(17%)

* Java
† Rust
‡ Includes being fuzzed by OSS-Fuzz or cryptofuzz.

TABLE II
LIBRARIES AND PRIMITIVES INCLUDED AND THE ACTIONS THEY

PERFORM IN THEIR PUBLIC CONTINUOUS INTEGRATION PIPELINES.

a) Foundations of constant-time programming:
Constant-time programming is supported by rigorous
foundations. These foundations typically establish that
programs are protected against passive adversaries that
observe program execution. However, Barthe et al. [52] show
that constant-time programs are protected against system-level
adversaries that control the cache (in prescribed ways) and
the scheduler. Recently, these foundations have been extended
to reflect micro-architectural attacks [59]–[62]. In parallel,
a large number of tools are being developed to prove that
programs are speculative-constant-time, a strengthening of
the constant-time property which offers protection against
Spectre [9] attacks. We expect that many of the takeaways of
our work are applicable to this novel direction of work.

b) High-assurance cryptography: High-assurance cryp-
tography is an emerging area that aims to build efficient
implementations that achieve functional correctness, constant-



timeness, and security. High-assurance cryptography has al-
ready achieved notable successes [8]. The most relevant suc-
cess in the context of this work is the EverCrypt library [63],
[64], which has been deployed in multiple real-world systems,
notably Mozilla Firefox and Wireguard VPN. The EverCrypt
library is formally verified for constant-timeness (and func-
tional correctness). However, the library is conceived as drop-
in replacements for existing implementations, and despite
relying on an advanced infrastructure built around the F*
programming language, this work does not explicitly target
open-source cryptographic library developers as potential users
of their infrastructure. Other projects that enforce constant-
time by default, such as Jasmin [65], [66] or FaCT [47], target
open source cryptographic library developers more explicitly,
but rely on domain-specific languages, which may hinder their
broad adoption. In contrast, we focus on tools that do not
impose a specific programming framework for developers.

c) Human factor research: Researchers have tried to
answer the question of why cryptographic advances do not
necessarily reach users. In a 2017 study, Acar et al. find that
bad cryptographic library usability contributes to misuse, and
therefore insecure code [67]. Krueger et al. developed and built
upon a wizard to create secure code snippets for cryptographic
use cases [68], [69]. Unlike these prior studies that investigate
users of cryptographic libraries, we study the developers of
cryptographic libraries, their threat models and decisions as
they relate to timing attacks.

Haney et al. investigate the mindsets of those who develop
cryptographic software, finding that company culture and
security mindsets influence each other positively, but also
that some cryptographic product developers do not adhere
to software engineering best practices (e.g., they write their
own cryptographic code) [70]. We expand on this research by
surveying open-source cryptographic library developers with
respect to their decisions and threat models as they relate to
side-channel attacks.

In the setting of constant-time programming, Cauligi et
al. [47] carry a study with over 100 UCSD students to
understand the benefits of FaCT, a domain-specific framework
that enforces constant-time at compile-time, with respect to
constant-time programming in C. They find that tool support
for constant-time programming is helpful. We expand on
their study by surveying open-source cryptographic library
developers and considering a large set of tools.

Very recently, there have been calls to make formal verifi-
cation accessible to developers: Reid et al. suggest “meeting
developers where they are” and integrating formal verification
functionality in tools and workflows that developers are al-
ready using [71]. To our knowledge, ours is the first survey
that empirically assesses cryptographic library developers’
experiences with formal verification tools.

III. METHODOLOGY

In this section, we provide details on the procedure and
structure of the survey we conducted with 44 developers of
popular cryptographic libraries and primitives. We describe

the coding process for qualitative data, as well as the approach
for statistical analyses for quantitative results. We explain our
data collection and ethical considerations, and discuss the
limitations of this work.

A. Study Procedure

We asked 201 representatives of popular cryptographic li-
braries or primitives to participate in our survey. The recruited
developers reside in different time zones and each may have
different time constraints. As we were mainly interested in
qualitative insights, based on the small number of qualifying
individuals and our past experiences with low opt-in rates
when attempting to recruit high-level open source developers
into interview studies, we opted for a survey with free-text
answers.

a) Questionnaire Development: We used our research
questions as the basis for our questionnaire development, but
we also let our experience with the development of cryp-
tographic libraries, constant-time verification tools (both as
authors as well as users), and conducting developer surveys in-
fluence the design. Our group of authors consists of one human
factors researcher and experts from cryptographic engineering,
side-channel attacks, and constant-time tool developers. The
human factors researcher introduced and facilitated the use
of human factors research methodology to answer experts’
research questions posited in this paper. In particular, the
human factor researcher explained methods when appropriate,
facilitated many discussions and helped the team to develop
the survey, pilot it, gather feedback, and evaluate the results.
While iterating over the questionnaire, we also collected
feedback and input from members of the cryptographic library
development community.

b) Pre-Testing: Following the principle of cognitive in-
terviews [72], we walked through the survey with three partic-
ipants who belonged to our targeted population, and updated,
expanded and clarified the survey accordingly.

c) Recruitment and Inclusion Criteria: We created a list
of the most active contributors to libraries that implement cryp-
tographic code, including those that implement cryptographic
primitives. If a library had any formal committee for making
technical decisions, we invited its members. The list of most
active developers was extracted from source control by taking
the developers with the largest amount of commits down to
a cut-off point that was adjusted per library. Table II gives
an overview of projects for which we invited participants. All
authors then identified those contributors that belonged to their
own personal or professional networks and invited those in a
personalized email. All others were invited by a co-author
who is active in the formal verification and cryptography
community, for whom we assumed that they would be widely
known and have the best chance of eliciting responses. All
contributors were sent an invitation with a personalized link.
We did not offer participants compensation, but offered them
links to all the tools we mentioned in our survey, as well as
the option to be informed about our results.



B. Survey Structure

The survey consisted of six sections (see Figure 2) detailed
below. The full questionnaire can be found in Appendix A.

1. Participant background
Explores participants' background in developing
cryptographic code.

2. Library / Primitive properties and decisions
Explores properties of participants's library and their
relationship.

3. Tool awareness
Explores participants' knowledge of tools for testing and
verifying the constant-time property.

4. Tool use
Explores participants' experience with using the tools.

5. Hypothetical tool use

5a. Dynamic instrumentation

5b. Statistical runtime tests

5c. Formal analysisR
a
n
d
o
m

iz
ed

o
rd

er

Explores participants' likeliness of using the tools
in hypothetical scenarios.

6. Miscellaneous
Asks for participant feedback and general comments.

Fig. 2. Survey flow as shown to participants.

1. Participant background: We asked participants about
their background in cryptography, their years of experience
in developing cryptographic code, and their experience as a
cryptographic library / primitive developer.

2. Library properties and decisions: We asked about
participants’ role in <library>’s development, how they are
involved in design decisions for <library>. We asked about the
intended use cases for <library>, <library>’s threat model with
respect to side-channel attacks, whether they consider timing
attacks a relevant threat for the intended use of <library>
and its threat model, and asked for an explanation for their
reasoning. We also asked whether and how <library> protects
against timing attacks, and whether, how, and how often they
test or verify resistance to timing attacks.

3. Tool awareness: We asked whether they were aware of
tools that can test or verify resistance to timing attacks. We
then listed 25 tools from Section II-B and asked them whether
they were aware of them, and how they learned about them.

4. Tool use: We asked participants about their past ex-
perience, interactions, comprehension, and satisfaction with
using tools to test/verify resistance to timing attacks, including
challenges with using them.

5. Hypothetical tool use: We showed participants a descrip-
tion of properties that their code would have to fulfill in order
to be able to use a group of tools and given a description

of the guarantees the tools would give them, asking them
about usage intentions and reasoning. The tools were grouped
into dynamic instrumentation based, statistical test based, and
formal analysis tools.

6. Miscellaneous: Finally, we asked about any comments
on (resistance to) timing attacks, our survey, and whether they
wanted us to inform them about our results.

C. Coding and Analysis

Those who engaged with participant responses came from
different backgrounds, with different views, contributing to
the multi-faceted evaluation. Three researchers familiar with
constant-time verification and open-source cryptographic li-
brary development conducted the qualitative coding process,
facilitated by one researcher with experience with human fac-
tors research with developers. We followed the process for the-
matic analysis [73]. The three coders familiarized themselves
with all free-text answers, and annotated them. Based on these
annotations, themes were developed, as well as a codebook.
The codebook was developed inductively based on questions,
and iteratively changed based on responses we extracted from
the free-text answers; all codes were operationalized based on
discussions within the team. The three coders then coded all
responses with the codebook, iterating over the codebook until
they were able to make unanimous decisions. The codebook
codifies answers to free-text questions, as well as identifying
misconceptions, concerns, and wishes. In some cases where
documentation was available, and participant answers were
incomplete or ambiguous, or when participants linked to
documentation, coders supplemented their code assignment
based on the documentation. Our coding process was only
one step in the quest for our goal: identifying themes and
answering our research questions. All codes were discussed,
and eventually agreed upon by three coders3. In line with
contemporary human factors research, we therefore omit inter-
coder agreement calculations [74]. For the comparison of the
likelihood of using certain tools with certain requirements in
exchange for guarantees (Q5.1, Q6.1, Q7.1), we used Fried-
man’s test with Durbin post-hoc tests [75] with Benjamini-
Hochberg multiple testing corrections [76].

D. Data Collection and Ethics

While our survey was sent to open-source contributors
without solicitation, we only emailed them up to twice. During
and after the survey, they could opt-out of participation.
We do not link participant names to results, nor participant
demographics to libraries to keep responses as confidential
as possible. We also do not link quotes to libraries or their
developers, and report mostly aggregate data. Quotes are
pseudonymized. Our study protocol and consent form were
approved by our institution’s data protection officer and ethics
board and determined to be minimal risk. Participant names
and email addresses were stored separately from study data,
and only used for contacting participants.

3Our codebook is available at https://crocs.fi.muni.cz/public/papers/
usablect_sp22.

https://crocs.fi.muni.cz/public/papers/usablect_sp22
https://crocs.fi.muni.cz/public/papers/usablect_sp22


E. Limitations
Like all surveys, our research suffers from multiple biases,

including opt-in bias and self-reporting bias. However, we
were pleasantly surprised that for 27 out of the 36 libraries
we selected, we received at least one valid response. Partici-
pants may over-report desirable traits (like caring about side-
channel attacks or protecting against them), and underplaying
negative traits (like making decisions ad-hoc). However, their
reporting generally tracked with official documents and our a
priori knowledge about the libraries. The projects represent
a selection, and are not representative of all cryptographic
libraries. However, we took great care in inviting participants
corresponding to a variety of prominent, widely used libraries
as well as smaller but popular libraries and primitives, as
assessed by multiple authors who work in this space.

F. Data cleaning & Presentation
We emailed 201 4 listed as most active contributors to 36

libraries/primitives, finding alternate emails for those emails
that bounced. 2 emailed us to tell us that they did not think
they could meaningfully contribute. In total, 71 started the
survey. We removed all 25 incomplete responses. We removed
two participants because they gave responses about a project
of their own, instead of the library we asked them about.
From here, we report results only for the 44 valid participants.
For statistical testing and figures for hypothetical tool use, we
report results for the 36 participants who gave answers for all
three tool groups. We merged answers of participants talking
about using a ctgrind-like approach but without the use of
ctgrind itself (as it is no longer necessary as Valgrind can
directly do this) into the ctgrind tool answers.

Participants spent an average of 32 minutes on the survey,
and left rich free text comments. We generally received
positive feedback and high interest in our work, and 35 asked
to be sent our results, with 33 agreeing to be contacted for
follow-up questions. Whenever we report results at the library
level, we merge qualitative answers given by all participants
corresponding to that library. Whenever the answers are addi-
tive, we add them together without reporting a conflict (e.g.
when one developer tests a library in one way while another
one tests it a different way, we report both). When the answers
are claims of a level (e.g. resistance to timing attacks) we
report the highest claimed. Otherwise, whenever we encounter
conflicting opinions, we report on this conflict.

IV. RESULTS

In this section, we answer our research questions based
on the results of our survey. Between full awareness and
low levels of protection against timing attacks, we identify
reasons for (not) choosing to develop and verify constant-time
code, including a lack of (easy-to-use) tooling, tradeoffs with
competing tasks, understandable concerns and misconceptions
about current tooling. We identify that participants would
generally like the guarantees offered by tools, but fear negative
experiences, code annotations and problems with scalability.

4From now on, we use the symbol to denote the participants.

A. Survey Participants

Library developers: We successfully recruit experienced
cryptographic library developers, including the most active
contributors and decision-makers. We ended up with 44
recruited via direct invitation. Of our participants, 4 were the
only developer in their project, 9 were project leads, 11 were
core developers, 19 were maintainers, 11 were committers,
3 were contributors without commit rights. These classes are
non-exclusive self-reports. 40 said they were involved in the
library decision processes, while only 4 were not involved.

Participants had strong backgrounds in cryptographic de-
velopment, reporting a median of 10 years of experience
(sd = 7.75), and qualitatively reporting strong engagement
with various projects, for example reporting involvement in
security certifications: “I’ve worked on open source and closed
source cryptography libraries, dealt with various Common
Criteria EAL4+ products” (P1). As for the participants’ con-
crete background in cryptography, 17 reported an academic
background, 15 took some classes on cryptography, 32
had on the job experience, 6 teach cryptography, for 15
cryptography is (also) a hobby, 27 have industry experience
in cryptography.

Libraries: We ended up with participants from 27 promi-
nent libraries, such as OpenSSL, BoringSSL, mbedTLS or
libgcrypt. Participants gave or linked to descriptions of a broad
range of use cases for cryptographic libraries. As intended
platforms, 23 gave servers, 22 desktop, 14 embedded device
(with OS, 32 bit), 4 mobile, and 1 micro-controller (no OS,
8/16 bit). For targets, 7 stated TLS, 12 protocols, 2 services,
1 cloud, 2 operating systems, 1 crypto-currency, and 2 corpo-
rate internal purposes. Libraries had varying decision-making
processes: 9 made decisions by discussion, 2 by voting, 3 by
consensus, and for 11, decisions were made by the project
leads who had a final say.

B. Answering Research Questions

1) Threat models (RQ1a): Here, we answer the research
question whether timing attacks are part of library developers’
threat models (RQ1a). We found that all participants were
aware of timing attacks. Generally, when a threat model is
defined for a cryptographic library, it mostly includes timing
attacks. However, strict and absolute adherence to constant-
time code is most often not required. In practice, developers
tend to distinguish vulnerabilities that are “easy” to exploit
(e.g. remote timing attacks) from the others (e.g. locally ex-
ploitable attacks). When asked specifically about the library’s
threat models with respect to side-channel attacks, 20 libraries
claimed remote attackers are in their threat model, 16 included
local attackers, 1 included speculative execution attacks, 2
included physical attacks and 2 included fault attacks. Some
libraries expressed that they consider some classes of attacks
in their threat model if they are easy to mitigate, 2 would do
so for local attacks and 1 for physical attacks. The general
attitude towards side-channel attacks varied, 2 said that all
side-channel attacks are outside their threat model and 10
said that their protections against side-channel attacks are best



effort. For example, one participant said: “Best-effort constant-
time implementations. CPU additions and multiplications are
assumed to be constant-time (platforms such as Cortex M3
are not officially supported).” (P2) Another one implied a
progressive widening of their threat model regarding timing
attack in their statement: “Protections against remote attacks,
and slow movement to address local side channels, though the
surface is wide.” (P3)

In a follow up question, 23 libraries agreed that timing
attacks were considered a relevant threat for the intended use
of the library and its threat model, while this was not true for
2 libraries. We did not get this information for 2 libraries.

Reasons for considering timing attacks as relevant for their
threat model were given as the ease of doing so (2), the threats
of key-recovery in asymmetric cryptography (3), user demands
(1), fear of reputation loss (1), use in a hostile environment
(6), that attacks get smarter (1), the (rising) relevance of timing
attacks (9), personal expectations (5), a connected environment
(2), or the large scope of the library/of timing attacks (3).

Reasons for not considering timing attacks as part of their
threat model were stated as this not being a goal of the library
(2) or that they only consider more “practical” attacks.

2) Resistance against timing attacks (RQ1b): Here, we
answer the research question whether libraries claim resis-
tance against timing attacks (RQ1b). Many libraries do not
have a systematic approach to address timing attacks; they
only consider fixing “serious” vulnerabilities that could be
exploited in practice. This might result in vulnerable code
that can be exploited later with better techniques of recovering
leaking information. We also encountered differing answers of
different participants regarding suitedness of random delays
as a mitigation. Out of the 27 total libraries, 13 claimed
resistance against timing attacks. An additional 10 claimed
partial resistance, 3 claimed no resistance, and for 1, we
obtained no information.

We also asked how the development team decided to protect
against timing attacks. For 4 libraries, participants reported
that one person made this decision, for 12 it was a team
decision, for 2 it was a corporate decision (where high-level
management makes a decision or the team decided locally
based on a corporate mission statement), for 14 libraries,
participants reported that a priority trade-off caused their
decision (e.g., lack of time to fully enact the decision) and
5 inherited the decision from previous projects or developers.

For 6 it was obvious that they needed to protect against
timing attacks. For example, one participant stated: “There
was no decision, not even a discussion. It was totally obvious
for everybody right from the start that protection against
timing attacks is necessary.” (P4) Another one said: “It’s just
how you write cryptographic code, every other way is the
wrong approach (unless in very specific circumstances or if
no constant-time algorithm is known).” (P5) Another stated

“It became clear that these attacks transition from being
an "academic interest" to a “real world problem” on a
schedule of their own development. If something is noticed
we now tend to favor elimination on first sight without
waiting for news of a practical attack.” (P6)

Contrarily, another said:
“Basically a tradeoff of criticality of the algorithm vs
practicality of countermeasures. Something very widely
used (eg RSA, AES, ECDSA) is worth substantial efforts
to protect. Something fairly niche (eg Camellia or SEED
block ciphers) is more best-effort” (P7)

This reasoning of waiting for attacks to justify expending
the effort was also reported by another participant: “For many
cases there aren’t enough real world attacks to justify spending
time on preventing timing leaks.” (P8)

3) Timing attack protections (RQ2a): Here, we answer the
research question how developers choose to protect against
timing attacks (RQ2a). Developers address timing attacks in
various ways, for example by implementing constant-time
hacks (e.g. constant selecting), implementing constant-time
algorithms of cryptographic primitives, using special hardware
instructions (CMOV, AES-NI), scatter-gathering for data ac-
cess, blinding secret inputs, and slicing. Many are interested
and willing to invest effort into this - to various degrees, as
P9 puts it: “[T]hey’re not that hard to mitigate, at least with
the compilers I’m using right now” (P9). Others are deterred
by the lack of (easy-to-use) tooling.

We asked developers of the 23 libraries who considered
timing attacks at least partially if and how their library protects
against timing attacks.

For 2 libraries, participants reported that they use hardware
features (instead of leak-prone algorithms) that protect from
timing attacks such as AES-NI. For example, P7 said: “AES
uses either hardware support, Mike Hamburg’s vector permute
trick, or else a bytesliced version.” (P7)

For 21 libraries, participants said that they use constant-
time code practices, which should in theory mean that code
is constant-time by construction, but may be vulnerable to
timing attacks after compilation. For example, P2 explained
that: “Conditional branches and lookups are avoided on
secrets. Assembly code and common tricks are used to prevent
compiler optimizations.” (P2)

For 9 libraries, participants explained that they choose
known-to-be constant-time algorithms, but may suffer from
miscompilation issues and end up non-constant-time. As an
example, P7 said: “If I know of a "natively" const time
algorithm I use it (eg DJB’s safegcd for gcd).” (P7)

For 7 libraries, participants said they use “blinding”, which
means using randomization to “blind” inputs on which com-
putation is performed, thereby destroying the usefulness of the
leak. As P7 said: “If blinding is possible [...] it is used, even
if the algorithm is otherwise believed constant-time. ” (P7)

For 2 libraries, participants said that they protect through
bitslicing, i.e., the implementation uses parallelization on parts
of the secrets, hiding leaks. As one participant described: “For
instance, the constant-time portable AES implementations use
bitslicing.” (P11)

For 2 libraries, participants reported protecting by “assem-
bly”, i.e., they have a specialized low-level implementation for
protecting against compilers doing non-constant-time trans-
formations. One participant noted the prohibitive cost of this
practice, explaining:



“We do not write all constant-time code in assembly
because of the cost of carrying assembly code. It is
possible that the compiler may break the constant-time
property. We spot-check that using Valgrind.” (P12)

For 1 library, timing leaks are made harder to detect by
adding random delays.

Most developers focus on asymmetric crypto. Some do not
consider old primitives, such as DES, which is still used in
payment systems as Triple-DES. For 5 libraries, participants
stated that they only protect a choice of modules: those
libraries have multiple implementations, of which only some
might be constant-time, maybe even insecure by default.

“Legacy algorithms like RC4 and DES are out of scope.
If you use the <libraries’> "BIGNUM" APIs to build
custom constructions, it’s probably leaky, since bignum
width management is complex.” (P13)

also mentions bignum libraries being specifically hard to
secure. This claim is supported by academic literature as well:
“lazy resizing of Bignumbers in OpenSSL and LibreSSL yields
a highly accurate and easily exploitable side channel” [77].

For 1 library, protection against timing attacks was reported
to be still in progress, e.g., they try to use constant-time coding
practices throughout the library, but this is still in development
due to large legacy code base.

“All decisions in a side project are limited by the available
resources. There’s a report about a new attack which
proposes a new counter-measure: Does someone have the
time to implement it? Yes - cool, let’s do it. No - fine, let’s
put it on the ToDo list.” (P15)

and “Very early on in its development these guarantees were
much weaker, and in a few cases, approaches were used that
turned out to be known to be imperfect.” (P16) were two
answers from participants of libraries being in very different
phases of solving this problem.

4) Testing of timing attack resistance (RQ2b, RQ2c):
In Software Engineering, testing code for the properties it
should achieve is commonplace and generally considered best
practice [78]. We therefore were interested in the practice of
testing and verification for constant-time also. Here, we answer
the research questions whether, how, and how often libraries
test for/verify resistance against timing attacks (RQ2b, RQ2c).

For 21 libraries, at least some type of testing was done, of
which 14 were fully, and 7 were partially tested. 6 were not
tested including the 2 libraries which claimed timing attacks
are not relevant. 24 personally tested their libraries.

Of those, 12 stated they have tested manually, and 11 stated
they tested automatically. Those two answers are not exclusive,
since 7 libraries which test code automatically have also been
tested manually. For manual testing, 6 libraries analyzed (parts
of) their source code, 4 libraries analyzed (parts of) their
binary, 5 did manual statistical runtime testing for leakage,
and 1 ran the code and looked at execution paths, debugging
as it ran. “Originally, me, a glass of bourbon, and gdb were a
good trio. But that got old pretty quick. (The manual analysis
part – not the whiskey.)” (P17) conveys the experience quite
graphically.

For those who did automated testing, 9 libraries used a
Valgrind-based approach, 2 used ctgrind, 1 used Memsan, 1

used TriggerFlow, 1 used DATA, and 1 reported automated
statistical testing without specifying further.

For the participants who did at least partial testing for
resistance to timing attacks, we asked for testing frequency.
For 1, the testing was only done once. For 11, participants
reported manual or occasional testing. For 4, participants re-
ported testing on release. For 6 libraries, participants reported
that testing for resistance to timing attacks was part of their
continuous integration. For 11 libraries, we did not obtain
information on testing or testing frequency. These varying
answers suggest that despite a common awareness of timing
attacks, cryptographic developers never came to a consensus
on the best way to address timing attacks in practice.

5) Tool awareness (RQ3a): In order to effectively test,
developers should be able to leverage existing tooling created
for the purpose of testing and/or verifying that source code,
or compiled code, runs in constant time. Here, we answer the
research question whether participants are aware of the exis-
tence of such tooling (RQ3a). We asked participants whether
they are aware of tools that can test or verify resistance
against timing attacks, also showing them a list of tools from
Table I. We asked them whether they had heard about any of
those tools with regards to verifying resistance against timing
attacks. Table III shows the results with 33 being aware of
at least one tool and 11 being unaware of any tool. ctgrind
was most popular (27 heard of it; 17 had tried to use it),
followed by ct-verif (17 heard of it; only 3 tried to use it)
and MemSan (8 heard of it; 4 tried to use it). DATA had
been used by 2 , all others by no more than 1 . Individual
tool awareness and use numbers can be found in Appendix B.

For those tools they had heard about, we asked them
where they had heard about them. Overall, participants were
recommended a tool by a colleague 33 times, heard of a tool
from its authors 20 times, read the paper of the tool 27 times,
read about the tool in a different paper or blog post 42 times
and heard of it some other way 24 times. 2 were involved
in a development of a tool. A general tool they are already
using can also be used for constant-time-analysis, which P18
learned through our survey:

“I already use MemSan primarily for memory fault detec-
tion. Was not aware of its use for side-channel detection
but will try it in future since it is already integrated with
my workflow to some extent.” (P18)

Again for the tools they were aware of, we asked which
(if any) they had (tried to) use in the context of verifying
or testing resistance to timing attacks. Table III displays the
results, with 19 having tried to use at least one tool and 25
having never tried any of the tools.

6) Tool experience and use cases (RQ3b): Here, we answer
the research question which experiences participants made
with tools (RQ3b). As we were anecdotally aware that tools
may be hard to obtain, unmaintained, and may be closer to
research artifacts than ready-to-use tooling, we were interested
in participants’ experiences, finding that experience varied by
tool, use cases and expectations. We therefore asked partici-
pants to describe the process of using the tools.



12 reported that they managed to get the respective tool to
work at least once, but not necessarily repeatedly, while 3
reported that the tool they attempted to use failed to work even
once, for various reasons, including excessive use of resources,
such as effort, time, RAM, CPU cores, machines etc. One
participant said of the DATA tool: “it uses a ridiculous amount
of resources” (P17).

2 reported that they had integrated the tool into CI and
were using it automatically. 12 reported that they used it
manually, of which 6 said they use it during development, and
6 said they use it after development, on release. A participant
said: “Periodically, and manually, used when altering / writing
code to check constant-time property.” (P12)

For those who had heard of specific tools, but had not
attempted to use them, we were also interested in their
reasoning. The reasons were varied, many including a lack of
resources such as time (26 ) or RAM, CPU cores and machine
(1 ). Participants also reported on bad availability (4 ), and
maintenance (5 ), as well as insufficient language support (4
), and other usability issues, such as problems with setting up
the tool (3 ), or getting it to work properly post setup (1 ).
The difficulty or impossibility of fulfilling the required code
changes, such as markup for secret/public values, memory
regions/aliasing, and additional header files was also a problem
(reported by 1 ), as was the inability to ignore reported issues,
once flagged by the tool (8 ).

Some reported not needing the respective tool (22 ), using
other tools (18 ), gave reasoning that to our understanding
was based on misconceptions of the respective tool (2 ), or
reported having been unaware of the tool’s capabilities in the
context of resistance to timing attacks (1 ).

One participant also said that the tool was also used to verify
a security disclosure. “Tried to use to reproduce results, verify
disclosures. Tried to use it to discover new defects in existing
code.” (P14) — since the tool is later stated as in use by
another member of the same project, this confirms that the
tool not only verified the initial defect, but works as planned.
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7) Potential Tool use (RQ4): In addition to understanding
participants’ current threat models and behaviors concerning
constant-time code, we were also interested in what they
thought about potential future use of testing/verification tools,
and whether they would potentially be willing to fulfill certain
requirements in exchange for guarantees (RQ4, see Figure 3).
Generally, they were most willing to use dynamic instrumen-
tation tools, and also spoke about them the most positively,
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Fig. 4. Participant reasoning behind their likelihood of tool use.

whereas they mostly mentioned drawbacks when asked about
formal analysis tools.

We presented the participants with the requirements and
guarantees offered by three categories of tools: dynamic in-
strumentation based tools, statistical runtime tests and formal
analysis tools.5 We then asked them to rate their likeliness of
using the presented group of tools on a 5-point Likert scale
from “1=very unlikely” to “5=very likely”. Figure 3 shows
a strong preference for dynamic tools, while formal analysis
tools are least likely to be used. We perform statistical tests on
these ratings to establish that these differences are statistically
significant. We find a significant difference in participants’
self-reported likeliness to use tools in the different categories
(Friedman Test-Statistic=18.477, p<0.0001). Post-hoc testing
showed that participants are significantly more likely to use
dynamic instrumentation based tools like ctgrind (mean=3.53,
sd=1.38) than statistical tools (mean=2.94, sd=1.31; p=0.023,
Durbin-post-hoc (DPH), Benjamini-Hochberg-corrected (BH))
and formal analysis tools (mean=2.38, sd=0.98; p<0.0001,
DPH, BH-corrected). The difference between statistical and
formal analysis tools was not significant (p=0.18, DPH, BH-
corrected). Specifically, while 21 reported being somewhat
likely or very likely to use a dynamic testing tool for resistance
to timing attacks in the future, 13 reported the same for
statistical runtime test tools, and only 5 said they were
somewhat likely to use formal analysis tools.

We also asked participants to clarify their reasoning by
choosing explanations (see Figure 4). Results show that partic-
ipants would like the guarantees formal analysis tools provide,
but perceive them as requiring too much effort (21 ) compared
to the other tools (9 statistical runtime tools, 5 dynamic
instrumentation tools). More participants think that the trade-
off of effort and guarantees is acceptable for dynamic (10
) and statistical tools (10 ) than formal analysis tools (2 ).
More details on participants’ reasoning follow.

a) Dynamic Instrumentation Tools: For dynamic instru-
mentation tools, some participants were happy with the limited
guarantees, understanding the trade-off clearly.

“We currently use MemSan and Valgrind because they
have very low maintenance since they pretty much come
with the operating system, and we could get useful results
from them with a few days’ work. We are aware of
their limitations (they miss non-constant-time parts, and

5For the survey questions see the Appendix sections A-E,A-F and A-G.



of course they can only test code in the conditions where
it is executed as part of the tests).” (P19)

The approach taken by tools like ctgrind is understandable
to developers, so much so that some came up with it indepen-
dently: “We independently came up with this approach and
were using it [before we] knew ctgrind existed.” (P9)

One participant specifically commented on the effort re-
quired to create and maintain annotations:

“A thing this survey might be underestimating is also
the cost of code annotations: it’s not just about having
someone annotating the code properly (which already is
quite a lot of effort) but there might be resistance for
inclusion of such annotations in the code base as they add
a maintenance burden for the project. Maintainers should
fully understand the notation syntax and get proficient in
it to spot instances where annotations need to be updated,
moved, etc.” (P20)

b) Statistical Tools: For tools based on statistical tests of
the runtime, 7 expressed that the guarantees provided by the
tools are limited. One participant explained:

“I am dubious that it would provide much value over
existing mechanisms. Also, CI currently runs on shared
hosts which are timing noisy. From this noise I would
expect [...] false positives [...]” (P21)

Another participant also expressed concern over the guaran-
tees and false positives / negatives: “The requirements seem
straightforward, but a statistical test seems likely to cause both
false negatives and false positives.” (P13)

c) Formal Analysis Tools: Participants had strong feel-
ings about the lack of usability of formal analysis tools:

“I’m very interested in these sorts of tools, but so far
it seems formal analysis tools (at least where we’ve
tried to apply it to correctness) are not really usable by
mere mortals yet. I would be happy to be proven wrong,
however!” (P13)

The fact that compiler optimizations can introduce timing
leaks that will not be detected by tools working at the source
code level was highlighted by a few participants: “Static
analysis on the source code in most programming languages
is NOT sound: it misses compiler optimizations that introduce
secret-dependent flows.” (P19) and another one explaining
“I’m much more worried about compilers failing to preserve
constant-time code, ...” (P13)

While 4 mentioned their expectation of a higher effort to
create the necessary markup for formal analysis-based tools,
expectations of the scalability of these tools seem to be in line
with other categories of tools.

Additionally, we found that participants were intimidated
by the theory-heavy approach by formal analysis-based tools,
thinking of formal verification in general. “I have no experi-
ence with formal verification toolchains” (P23).

More academically focused formal analysis tools also suffer
from a maintenance problem if the developers have moved
on to other research: “Who knows if the toolchain is still
maintained in a year?” (P5)

In conclusion, dynamic tools are mostly criticized for requir-
ing code annotation, while statistics ones are viewed critically
because of their poor guarantees. However, participants were

most critical towards formal analysis tools. Some doubt that
such tools would be maintained, or question that fact that
they would provide large support for different platforms.
While these drawbacks are real, they do concern all tools, but
participants point them out mainly for formal analysis tools.
Some participants mention that such tools have steep learning
curves, as they are not only unfriendly to use, but they also
require specific knowledge. We notice that developers using ct-
grind took their time to explain how it actually works (they we
were never asked to), while participants remain vague about
formal analysis tools. Only one participant actually uses such
a tool, only few have tried, but not succeeded. However, many
qualify such tools as uneasy to use, inefficient, lacking wide
support, unable to verify external code, based only on the code,
hard to be CI automated, adding very little confidence, and
possibly unmaintained in the future.

8) Misconceptions: Despite surveying an expert popula-
tion of cryptographic library developers, our study pointed
out some misconceptions and differences of opinion about
constant-timeness, timing attacks, and verification/testing
tools. Those may deter from analysis tool use, and may
contribute to more hidden timing vulnerabilites, ultimately
making it harder to solve the timing attack problem in practice.

Some participants seemed to think constant-time is easily
achieved. This logic implies if a project has a timing vulner-
ability, they have made a basic mistake.

“Writing constant-time code, contrary to writing [...]
memory-safe code, is not hard, if you do it explicitly from
start (caveat: when there’s Gaussian rejection sampling
in a lattice system, it _is_ hard[...]” (P11)

This ties in with code annotation not being usable when
secretness of variables changes, specifically as mentioned
with rejection sampling. This misconception is based around
most common use of annotations. If the annotations allow
for declassification of variables, this problem can be resolved
granularly. Not all tools allow this, though, so the misconcep-
tion that this is true for all tools may have taken root.

One participant suggested that they do not need to test
code if they write constant-time code correctly. “In that sense,
the guarantees offered by these tools are not worth putting
effort into running them, at least in the case of <library>,
where all code was designed to be constant-time” (P11). This
sentiment comes with several problems: on the one hand,
humans make mistakes, so testing code is a best practice in
software engineering for precisely this reason. Additionally,
compiling code that does fulfill the constant-time property
may create problems, as the compiler may change the original
control-flow while adding some optimizations.

While talking about compilation units and control-flow, a
partial misconception can be found in verification scope: “a
lot of code will exist outside of the boundaries of the library. A
project using <library> would be more likely to be successful.”
(P20) While the library may not know which inputs are secret
, looking at an API should make it clear which inputs can be
secret, and the constant-time criterion could be tested for all
of them without knowing the actual usage patterns.



Furthermore, the different answers about random delays and
statistical analysis tools show that there is no universal con-
sensus among the participants. A participant said: “Anything
involving secret data, and in particular private-key data, has
the timing dithered and with throttling of repeated attempts to
make attacks of this kind difficult.” (P24) We are skeptical
about this due to the results of Brumley and Tuveri [15].
If a side channel signal is measured as a timing difference
between executions, adding a random noise distribution to
these executions will reproduce a similar difference if enough
samples of the executions are obtained. This can be done
in parallel from different sources or over a long time, going
around the throttling defense. A more practical quote is from
P9:“We once tried to test actual execution timings, but it
wasn’t reliable. We no longer do that. Now we use Valgrind.”

Lastly, even if cryptography is rather heavy in mathematics,
some participants associate math/formal analysis as a barrier to
using tools from that research area. “[P]roving things like loop
bounds is often arcane. Also, it’s knowledge that would present
a barrier to new engineers joining the team.” (P12) This is
most likely a misconception, potentially caused by unclear
writing in formal analysis tools’ documentation, or scientific
publications that do not separate tool use from general formal
verification and theorem proving.

9) Developer Concerns and Wishlist (RQ5): In addition
to misconceptions, participants also voiced understandable
concerns about constant-time development, as well as wishes
for verification tools that would allow them to use these tools
more effectively (RQ5). Major concerns were voiced about the
tools’ resource usage being too high (see Section IV-B6).

In addition to these issues, P14 listed concerns as: “the
execution time of static and dynamic analyzers tailored for
SCA, the need for human interaction, the rate of false positives,
etc. are usually preventing a systematic adoption”. The issue
with flagging false positives and not linking false positives
and negatives was addressed by another participant also: “We
noticed a couple false positive, where there *is* a path
from the contents of the buffer to timings, but we decided
that doesn’t leak any meaningful secret.” (P9). They also
mentioned security concerns for tools based only on the source
code. These may miss vulnerabilities due to miscompilation,
as explained by P13: “Any "constant-time" code is an endless
arms race against the compiler”.

Interestingly, participants had many precise ideas for what
could be done to improve the status quo of testing/verification
tools. For example, for better usability, they ask for the ability
to ignore some issues and/or some part of the code, as noted
by P14: “Also, expect a lot of "noise" from BIGNUM behavior
that is not CT and requires a full redesign to be fixed.”

We saw many wishes for improvements concerning annota-
tions, asking for external annotations. Participants also asked
for easy maintenance of code annotations (see IV-B7a), and
requested that tools work on complex code, as P14 explained:
“even for expert users the chances of exposing something non-
consttime to remote attackers are high, especially given the
complex nature of <library> under the hood.” They also asked

for test cases to be fast to set up, to avoid a “non-trivial amount
of effort to set up comprehensive tests.” (P14)

To address the issue of scale, they want to be able to use
tools in CI. Otherwise, when the code changes, the guarantees
are lost. This means that error code outputs, easy CI setup and
runtime are important, as explained by P19: “Static analysis
tools tend to have a high engineering overhead: getting the
tool to run, deploying it to CI systems, maintaining the
installation over the years.” Similarly, participants demanded
that tools not require rewrites of their code: P2 ruled out an
“awesome tool”, because it “cannot verify existing code.” Par-
ticipants also required no restricted language or environment
for their code instead of “a pretty special-purpose language”
(P26). Similarly, they asked for no use of a specialized com-
piler; as P4 stated: “Requiring a dedicated compiler sounds
like a potential problem.” Generally, they asked for integration
into type system and APIs they are already using: “which
values are public and which private, we have flags on APIs
to allow the caller to specify this too” (P28), so the project
already has a form of security annotations for the users of their
API, which a tool should be able to integrate for its analysis.

They also requested long-term available source code and
longterm maintenance. As P25 stated, tools being unavailable
or unmaintained makes it impossible to use them.

V. DISCUSSION

Based on our findings, we make suggestions for four groups
of actors who can take action to make cryptographic code
resistant to timing attacks: tool developers, compiler writers,
cryptographic library developers, and standardization bodies.

A. Tool developers

In spite of the fact that we selected a subset of well-known
tools from the wide diversity of available tools, 25% of the
developers who answered our survey did not know about any
of them. Some developers learned about the tools from our
survey. Only 38.6% actually using any of the tools shows that
their adoption is limited. This can be partially explained by
the relative youth of the tools, as most tools are less than 5
years old. However, we believe that many other factors come
into play: tools may be research prototypes that are difficult
to install, not available or not maintained; they may not be
evaluated on popular cryptographic libraries, raising concerns
about applicability and scalability; they may be computation-
ally intensive, making their use in CI unlikely; they may not
be published in cryptographic engineering venues. In addition
to the specific recommendations from the previous section, we
recommend the community of tool developers to:

1) make their tools publicly available, easy to install, and
well-documented. Ideally, tools should be accompanied
with tutorials targeted to cryptographic developers; mak-
ing a tool easier to install by providing Linux distribution
packages lowers the barrier to adoption.

2) publish detailed evaluations on modern open-source li-
braries, creating or using a common set of benchmarks;
Supercop [79] is one such established benchmark;



3) focus on efficient analysis of constant-timeness, rather
than computationally expensive analysis of quantitative
properties, which seem to be of lesser interest. Ideally,
tools should be fast enough to be used in CI settings;

4) make their tools work on code with inline assembly and
generated binaries to be fully usable by all developers.

5) promote their work in venues attended by cryptographic
engineers, including CHES, RWC, and HACS.

Ultimately, we recommend tool developers to follow Reid et
al.’s recent advice to “meet developers where they are” [71].

B. Compiler writers

Developers are very concerned that compilers may turn
constant-time code into non-constant-time code. To avoid this
issue, developers often use (inlined) assembly for writing
primitives. This approach guarantees that the compiler will not
introduce constant-time violations but may negatively affect
portability and makes analysis more complex. In order to make
integration of constant-time analysis smoother in the developer
workflow, we recommend compiler writers to:

1) improve mechanisms to carry additional data along the
compilation pipeline that may be needed by constant-time
verification tools. This would allow cryptographic library
developers to tag secrets in source code and use constant-
time analysis tools at intermediate or binary levels;

2) support secret types, as used by most constant-time analy-
ses, throughout compilation, and modify compiler passes
so that they do not introduce constant-time violations,
and prove preservation of the constant-time property for
their compilers. This would allow cryptographic library
developers to focus on just their source code;

3) more generally, offer security developers more control
over the compiler, so that code snippets that implement a
countermeasure (e.g. replacing branching statements on
booleans by conditional moves) are compiled securely.

C. Cryptographic library developers

Cryptographic library developers are aware of timing attacks
and most consider them part of their threat model. In order to
eliminate timing attacks, we recommend library developers:

1) make use of tools that check for information flow from
secrets into branch conditions, memory addresses, or
variable-time arithmetic. Ideally the use of such tools is
integrated into regular continuous-integration testing; if
this is too costly, a systematic application of such tools for
every release of the library may be a suitable alternative;

2) eliminate all timing leaks even if it is not immediately
obvious how to exploit them. Attacks only get better
and many examples of devastating timing attacks in the
past exploited known leakages with just slightly more
sophisticated attacks techniques;

3) state clearly which API functions inputs are considered
public or secret. With a suitable type system, such infor-
mation becomes part of the input types, but as long as
mainstream programming languages do not support such
a distinction in the type system, this information needs to

be consistently documented. Doing so makes it easier to
use tools for automated analysis and harder for program-
mers to misuse library functions due to misunderstandings
about which inputs are actually protected.

D. Standardization bodies

A recent paper [8] advocates for the importance of adopting
tools in cryptographic competitions, standardization processes,
and certifications. We recommend that submitters are strongly
encouraged to use automated tools for analyzing constant-
timeness, and that evaluators gradually increase their require-
ments as constant-time analysis technology matures. Standard-
ization bodies should try to avoid the use of cryptographic al-
gorithms leaking timing information. In the case of Dragonfly
Password Authenticated Scheme used in WPA3 by the Wi-
Fi Alliance, many timing attacks have been discovered [80],
[81] as the algorithm leaks timing information. However, many
deterministic algorithms with no leaks are known [82].

VI. CONCLUSION

We have collected data from 44 developers of 27 cryp-
tographic libraries, and analyzed the data to gain a better
understanding of the gap between the theory and practice of
constant-time programming. One main finding of our survey
is that developers are extremely aware of and generally con-
cerned by timing attacks, but currently seldom use analysis
tools to ensure that their code is constant-time. While constant-
time testing may not be the most important thing on crypto-
graphic developers’ to-do list, it should become best practice.
We think that this is only feasible by making tools more
usable, supporting developers’ current workflows, requiring
little work overhead, and giving easy-to-understand outputs.
Based on our survey, we have identified recommendations
for tool developers, compiler writers, cryptographic library
developers, and standardization bodies. We hope that these
different communities will take up our recommendations and
collectively contribute to the emergence of a new generation of
open-source cryptographic libraries with strong mathematical
guarantees. Although our recommendations are stated for
timing attacks, we believe that many of our recommendations
remain valid in the broader setting of high-assurance cryptog-
raphy. In particular, all our findings are directly applicable to
the many ongoing efforts to protect against micro-architectural
side channels, as summarized in [60]. Another interesting topic
would be a quantitative analysis of the usability of some of
the better known tools collected in this study to gain insight
into the exact magnitude of the mentioned usability problems.
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APPENDIX A
SURVEY

A. Background

Q1.1: How many years have you been developing crypto-
graphic code?

[Numeric field]
Q1.2: What background do you have in cryptography?

� Academic
� Took some classes
� On the job experience
� Teach it

� Hobby
� Industry
� Prefer not to say

Q1.3: Can you tell us a little bit more about your back-
ground as a developer who works on cryptographic li-
braries/primitives?

[Free text field]

B. Library / Primitive

Q2.1: What’s your role in the development of library? (E.g.,
maintainer, project lead, core developer, commit rights, no
rights, etc.)

[Free text field]
Q2.2: How are you involved in design decisions (e.g., con-
cerning the API, coding guidelines and style, security-relevant
properties) for library?

[Free text field]
Q2.3: What are the intended use cases of library? (E.g.,
embedded use, servers, etc.)

[Free text field]
Q2.4: What is the threat model for library with regards to
side-channel attacks? (E.g., local/remote attackers, etc.)

[Free text field]
Q2.5: Do you consider timing attacks a relevant threat for the
intended use of library and its threat model? Please give a
brief explanation for why / why not. (If the execution time
of a program depends on secret data, a timing attack recovers
information about the secret by computing the inverse of this
dependency. The two most notorious sources for such depen-
dencies are secret dependent control flow and secret-dependent
memory access. Timing attacks include cache attacks where
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the attacker uses the cache to infer information about memory
accesses of a target.)

[Free text field]
Q2.6: Does library claim resistance against timing attacks?

◦ Yes
◦ No
◦ Partially

◦ I don’t know
◦ Not yet but planning to

Q2.7: How did the development team decide to protect or
not to protect against timing attacks? (We are interested
in the decision process and not the protection mechanisms
themselves (if any).)

[Free text field]
Q2.8: [only shown if Q2.6 is "Yes" or "Partially"] How does
library protect against timing attacks?

[Free text field]
Q2.9: Did you personally test for or verify the resistance of
library against timing attacks?

◦ Yes
◦ No
◦ Partially
◦ Not yet but planning to

◦ Not me but someone did
◦ I don’t know
◦ Prefer not to say

Q2.10: [only shown if Q2.9 is "Yes" or "Partially"] How did
you test or verify the resistance against timing attacks? (E.g.
using which tools, techniques, practices.)

[Free text field]
Q2.11: [only shown if Q2.9 is "Yes" or "Partially"] How often
do you test or verify the resistance of library against timing
attacks?

� Only did it once
� Do it occasionally
� During releases

� During CI
� Don’t know
� Prefer not to say

C. Tooling

Q3.1: Are you aware of tools that can test or verify resistance
against timing attacks?

◦ Yes ◦ No

Q3.2: Please tell us which of these you’ve heard of with
regards to verifying resistance against timing attacks.

[List of tools from Table I.]
Q3.3: How did you learn about them? (Check all that apply)

[Matrix question with subquestions being the tools the
participant selected in Q3.2 and the following answer options:]
� Recommended by colleague
� Heard from authors
� Read the paper
� Referenced in a blog/different paper
� Was involved in the development
� Other

Q3.4: Which of these (if any) have you tried to use in the
context of resistance against timing attacks?

[Multiple choice question among the tools selected by the
participant in Q3.2.]
Q3.5: Why have you not tried to use these?

[Multiple free text fields for all of the tools the participant
did select in Q3.2 but not in Q3.4.]

D. Tool use

[All of the questions in this group are matrix questions with
subquestions for all of the tools the participant did select in
Q3.2 and Q3.4, i.e. those tools that the participant knows and
tried to use.]
Q4.1: Please describe the process of using the tools.

[Free text field]
Q4.2: I was satisfied with the installation process. (Please rate
your agreement with the above statement.)
◦ I quit using the tool before I got to this point
◦ I quit using the tool because this was a problem
◦ Strongly disagree
◦ Disagree
◦ Neither agree or disagree
◦ Agree
◦ Strongly agree

Q4.3: I was satisfied with the prerequisites that the tool needed
to work with my code. (Please rate your agreement with the
above statement.)

[Same answer options as Q4.2]
Q4.4: In my understanding the tool is sound. (Please rate your
agreement with the above statement. A sound tool only deems
secure programs secure, thus has no false negatives.)

[Same answer options as Q4.2]
Q4.5: In my understanding the tool is complete. (Please rate
your agreement with the above statement. A complete tool
only deems insecure programs insecure, thus has no false
positives.)

[Same answer options as Q4.2]
Q4.6: I understood the results the tool provided. (Please rate
your agreement with the above statement.)

[Same answer options as Q4.2]
Q4.7: I was satisfied with the documentation of the tool.
(Please rate your agreement with the above statement.)

[Same answer options as Q4.2]
Q4.8: I was satisfied with the overall usability of the tool.
(Please rate your agreement with the above statement.)

[Same answer options as Q4.2]
Q4.9: I was satisfied with the tool overall. (Please rate your
agreement with the above statement.)

[Same answer options as Q4.2]

E. Tool use: Dynamic instrumentation based

Q5.1: Use of dynamic instrumentation based tools like ctgrind,
MemSan or Timecop requires:

• Creating test harnesses.
• Annotating secret inputs in the code.
• Compiling code with a specific compiler (in the MemSan

case).



and in return detects non-constant time code that was executed
(e.g. branches on secret values, or secret-dependent memory
accesses). However, it does not detect non-constant time code
that was not executed (in branches not executed due conditions
on public inputs).

Do you think you would fulfill these requirements in order
to use this type of tool?

[1 = Very unlikely, 2 = Somewhat unlikely, 3 = Neutral, 4
= Somewhat likely, 5 = Very likely]
Q5.2: Can you clarify your reasoning for the answer?
� Not my decision
� Not applicable to my library
� Would like the guarantees but too much effort
� Good tradeoff of requirements and guarantees
� Already using one of the mentioned tools
� Will try to use one of the mentioned tools after this survey
� I don’t care about the guarantees
� None of the above

Q5.3: Please expand on your answer if the above question
didn’t suffice?

[Free text field]

F. Tool use: Statistical runtime tests

Q6.1: Use of runtime statistical test-based tools like dudect
requires:

• Creating a test harness that creates a list of public inputs
and a list of representatives of two classes of secret inputs
for which runtime variation will be tested.

and in return provides statistical guarantees of constant-
timeness obtained by running the target code many times and
performing statistical analysis of the results.

Do you think you would fulfill these requirements in order
to use this type of tool?

[1 = Very unlikely, 2 = Somewhat unlikely, 3 = Neutral, 4
= Somewhat likely, 5 = Very likely]
Q6.2: Can you clarify your reasoning for the answer?

[Same answer options as Q5.2]
Q6.3: Please expand on your answer if the above question
didn’t suffice?

[Free text field]

G. Tool use: Formal analysis

Q7.1: Use of formal analysis-based tools like ct-verif requires:
• Annotation of the secret and public inputs in the source

code.
• Running the analysis via a formal verification toolchain

(i.e. SMACK).
• Might not handle arbitrarily large programs or might

require assistance in annotation of loop bounds.
and in return provides sound and complete guarantees (no false
positives or negatives) of constant-timeness (e.g. no branches
on secrets or secret-dependent memory accesses or secret
inputs to certain instructions).

Do you think you would fulfill these requirements in order
to use this type of tool?

[1 = Very unlikely, 2 = Somewhat unlikely, 3 = Neutral, 4
= Somewhat likely, 5 = Very likely]
Q7.2: Can you clarify your reasoning for the answer?

[Same answer options as Q5.2]
Q7.3: Please expand on your answer if the above question
didn’t suffice?

[Free text field]

H. Miscellaneous

Q8.1: Do you have any other thoughts on timing attacks that
you want to share?

[Free text field]
Q8.2: Do you have any other thoughts on or experiences with
those tools that you want to share?

[Free text field]
Q8.3: Do you have any feedback on this survey, research,
or someone you think we should talk to about this research
(ideally an email address we could reach)?

[Free text field]
Q8.4: Do you want to allow us to contact you for:
� sending you a report of our results from the survey
� asking possible follow-up questions

Q8.5: [Only shown if some of the options in Q8.4 was se-
lected] To allow us to contact you, please enter your preferred
email address. (If at any time you want to revoke consent to
contact you and ask us to delete your email address, please
email [de-identified for submission])

[Free text field]

APPENDIX B
TOOL AWARENESS

Tool Aware % Tried to use %

ctgrind [6] 27 61.4% 17 38.6%
ct-verif [45] 17 38.6% 3 6.8%
MemSan [38] 8 18.2% 4 9.1%
dudect [29] 8 18.2% 1 2.3%
timecop [40] 8 18.2% 1 2.3%
ct-fuzz [34] 7 15.9% 1 2.3%
CacheD [32] 6 13.6% 1 2.3%
FaCT [47] 6 13.6% 0 0.0%
CacheAudit [44] 5 11.4% 0 0.0%
FlowTracker [48] 4 9.1% 1 2.3%
SideTrail [50] 3 6.8% 0 0.0%
tis-ct [41] 3 6.8% 0 0.0%
DATA [35], [36] 2 4.5% 2 4.5%
Blazer [43] 2 4.5% 0 0.0%
BPT17 [31] 2 4.5% 0 0.0%
CT-WASM [46] 2 4.5% 0 0.0%
MicroWalk [39] 2 4.5% 0 0.0%
SC-Eliminator [53] 2 4.5% 0 0.0%
Binsec/Rel [30] 1 2.3% 0 0.0%
COCO-CHANNEL [33] 1 2.3% 0 0.0%
haybale-pitchfork [37] 1 2.3% 0 0.0%
KMO12 [49] 1 2.3% 0 0.0%
Themis [51] 1 2.3% 0 0.0%
VirtualCert [52] 1 2.3% 0 0.0%
ABPV13 [42] 0 0.0% 0 0.0%

None 11 25.0% 25 56.8%

TABLE III
TOOL AWARENESS AND USE
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