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Abstract: The output of cryptographic functions, be it encryption routines or hash functions, should be statistically
indistinguishable from a truly random data for an external observer. The property can be partially tested
automatically using batteries of statistical tests. However, it is not easy in practice: multiple incompatible
test suites exist, with possibly overlapping and correlated tests, making the statistically robust interpretation
of results difficult. Additionally, a significant amount of data processing is required to test every separate
cryptographic function. Due to these obstacles, no large-scale systematic analysis of the the round-reduced
cryptographic functions w.r.t their input mixing capability, which would provide an insight into the behaviour
of the whole classes of functions rather than few selected ones, was yet published. We created a framework
to consistently run 414 statistical tests and their variants from the commonly used statistical testing batteries
(NIST STS, Dieharder, TestU01, and BoolTest). Using the distributed computational cluster providing required
significant processing power, we analyzed the output of 109 round-reduced cryptographic functions (hash,
lightweight, and block-based encryption functions) in the multiple configurations, scrutinizing the mixing
property of each one. As a result, we established the fraction of a function’s rounds with still detectable bias
(a.k.a. security margin) when analyzed by randomness statistical tests.

1 Introduction

Truly random data are essential in many cryptographic
operations such as the generation of keys, unpre-
dictable nonces or padding schemes. Flawed random
generators producing partially predictable data can
lead to factorization of TLS server keys (Heninger
et al., 2012), compromise of RSA keys from electronic
IDs (Bernstein et al., 2013) or theft of funds from
cryptocurrency wallets (Ketamine, 2018). Similarly,
cryptographic functions such as block ciphers or hash
functions are expected to produce output indistinguish-
able from the truly random data as long as the attacker
does not posses the key used, input data or both. Pro-
ducing data with detectable biases suggests a suscep-
tibility to linear or differential cryptanalysis (Matsui,
1993; Biham and Shamir, 2012).

Multiple randomness test batteries exist, the most
common being NIST STS (Rukhin et al., 2010),
Dieharder (Brown et al., 2013) and TestU01 (L’Ecuyer
and Simard, 2007). However, when applied to pseu-
dorandom generators, human cryptanalysts typically
do not consider general-purpose statistical batteries to

be a very useful method for identifying weaknesses of
cryptographic functions. There are at least two reasons
for this:

Firstly, the use of statistical testing batteries is
far from easy in practice. Multiple test suites exist
and with incompatible interfaces, using different ap-
proaches for the test interpretation and difficult to com-
putationally scale enough to analyze more than a hand-
ful of analyzed functions. The results of statistical tests
are also notoriously difficult to interpret: Research lit-
erature contains multiple examples of invalid results
due to flawed test interpretations. It is unclear how
sensitive the separate tests included in the different
statistical batteries are and how well-suited they are
for the domain of testing the output of cryptographic
functions.

Secondly, existing tests are perceived as not sensi-
tive enough and significantly falling behind the human-
performed cryptanalysis. However, there is only lim-
ited empirical evidence for this – it holds only for the
well-studied functions such as finalists of the AES
or SHA-3 competitions. We aim to answer the ques-
tion of whether automated analysis using randomness



testing batteries is useful for initial cryptanalysis of
round-reduced functions and how these automatically
found security margins compare with the results found
by human cryptanalysts.

A significant amount of earlier work has tackled
the problem of automatic randomness analysis of cryp-
tographic functions’ output using statistical tests. How-
ever, they share the following limitations: 1) Only a
limited set of statistical tests is used for evaluation
(usually a single battery) and test results interpretation
is often flawed (ignoring correlated tests, inappropri-
ately adjusting the significance level, etc.). 2) Only a
very narrow set of different outputs is tested (usually
just a one or few functions).

Finally, but just as importantly, almost all these
studies are difficult to replicate as the implementa-
tions are often not published and the computations per-
formed (e.g., seed used for data sequence production)
are not deterministic. The related work is revisited in
more detail at the end of the paper in Section 5.

To address the outlaid issues while avoiding the
common limitations, we designed and performed a
wide analysis of 109 different cryptographic functions
(or 130 different combinations of functions and their
parametrizations) by assessing their outputs with sta-
tistical tests. The output data is generated by Cryp-
toStreams1 – our open-source framework for generat-
ing data from round-reduced cryptographic functions
in multiple input configurations. Testing was done us-
ing 414 statistical tests from four randomness testing
batteries (NIST STS (Rukhin et al., 2010), Dieharder
(Brown et al., 2013), TestU01 (L’Ecuyer and Simard,
2007) and BoolTest (Sýs et al., 2017)), unified into
a user-friendly tool called the Randomness Testing
Toolkit (RTT)2. The analysis is fully automatic and
replicable using these tools and the published starter
seeds.

Our paper brings the following contributions in the
areas of cryptographic function analysis and statistical
testing of randomness:

1. Methodology for round-reduced function bias as-
sessment. We define a new methodology for testing
and deciding whether given round-reduced func-
tion produces biased data using randomness testing
batteries with adjustable significance level α. The
methodology aims to eliminate false positives and
produce conservative results.

2. Security margins analysis of cryptographic func-
tions. For 109 distinct round-reduced functions,
we establish the security margin with respect to the
perceived randomness of produced outputs. We

1https://github.com/ph4r05/CryptoStreams
2https://github.com/ph4r05/rtt-deployment

then compare the results with manual cryptanaly-
sis, as shown in Subsection 3.2. To the best of our
knowledge, dataset being analyzed is superior in
terms of number of functions, tested strategies and
amount of data being tested to previous research
in the field.

2 Randomness tests as distinguishers

Tests of randomness are proposed to detect specific
types of patterns (bias from randomness) in the anal-
ysed data. For example, a very simple test called
Monobit compares the counted frequency of binary
ones and zeroes, which shall be roughly equal in a
random stream. Each test can typically detect also
other types of patterns, but some others remain unde-
tected. For example, Monobit can detect bias from
randomness for the sequence (’011 011 011...’), but
the sequence (’01 01 01 ...’) will not be detected as
biased.

In practice, tests are grouped into testing suites
called batteries. We analyze tests belonging to com-
monly used batteries NIST STS, Dieharder, TestU01,
and recently introduced BoolTest. If tests are param-
eterized, the default settings from a battery are used.
Some tests in these batteries consist of more variants
(e.g., forward, backward, specific number of bits in a
searched pattern), resulting in 414 test variants in total.

Randomness testing is based on statistical hypoth-
esis testing procedure that computes the statistical dis-
tance between the analyzed dataset and a synthetic
dataset produced by the idealized model (hypothesis).
Tests compute a certain type of statistic of bits and
evaluate how far is the computed statistic from the ex-
pected theoretical statistic for random data expressed
typically as the p-value (L’Ecuyer and Simard, 2007;
Marsaglia, 1995; Rukhin et al., 2010).

A small p-value below a chosen significance level
α leads to the rejection of the hypothesis (bias de-
tected). In such a case, the test forms a distinguisher as
it can distinguish analysed data from random data. We
can commit two types of error. Type I error when the
test rejects the hypothesis and data being generated by
an unbiased random generator. Type II error when the
hypothesis is accepted although generated by a biased
generator.

The probability of the Type I error is equal to α and
is directly controllable. The probability of the Type II
error β is unknown but related to α – larger/smaller α

corresponds to smaller/larger β. Also, the size of the
data affects both α and β.

Randomness testing is used for the two main ar-
eas: 1) To detect systematic bias or physical failures



of the TRNGs (true random number generators) and
2) To demonstrate insufficient confusion and diffusion
property (Menezes et al., 1996) of TRNGs. A physical
device failure typically results in a constant or very
low variability output, which is easy to detect even by
simple tests like Monobit. A significantly more com-
plex bias is present for TRNGs with an insufficient
mixing property. The TRNG function designer typi-
cally improves the mixing property by increasing the
number of internal rounds (Menezes et al., 1996). It
should be noted that to conclude that a given generator
is biased is a difficult problem due to the probabilis-
tic nature of randomness test result. In practice, this
problem is solved by repeated testing with additionally
generated data until the observed bias is confirmed
or bias disappears and the generator is declared unbi-
ased. Besides the probabilistic nature of test results,
there are other problems concerned with the settings
of tests (trade-off between Type I and II errors, which
is also affected by the volume of the analysed data),
approximation used to compute p-values and incorrect
assumptions about their uniform distribution, incorrect
test implementation, etc. We discuss these problems
in more detail in Section 4.1.

2.1 Building function testing set

Every sequence we analyse in our experiments de-
pends on a cryptographic function (and its parameter-
ization) included in the benchmarking dataset and a
structure of input data (counter – CTR, Low Hamming
Weight counter – LHW, pair of inputs with one bit
flipped and their parameterizations – SAC) processed
by the function. More details on these are provided be-
low in Section 2.1.2. The sequences are parameterized
by the following variables:

1. cryptographic function: a) the number of internal
rounds (on average, with range of five subsequent
rounds per function), b) key for stream and block
ciphers, seed for PRNG;

2. type (CTR, LHW or SAC) of processed input is
parameterized by: a) seed – defines seed of fixed
PRNG used to generate random blocks in SAC,
b) offset – defines initial value of CTR or LHW
counter,

3. the length of the output data generated (10 MB,
100 MB and 1000 MB).

The combination of used parameters – crypto-
graphic function (defined by a number of rounds and
a key in case of block ciphers), type of input (CTR,
LHW, SAC) and output data size (10, 100, 1000 MB) –
will be called configuration (shortly cfg) of the (poten-
tially) detectable biased generator. Each configuration

is used to generate three different sequences by using
different values of seed, offset and byte.

The following two sections explain the selection
of cryptographic functions, type of inputs and usage
of their parameters in more details.

2.1.1 Round-reduced cryptographic functions

The basic set of cryptographic functions was collected
mainly from various cryptographic function compe-
titions like AES or SHA-3 with an addition of well-
known functions with available source-code. Out of
these, we included only functions with available test
vectors and such that contain some internal round-
based structure and can be therefore round-reduced to
produce a function with a reduced complexity.

The rounds used for a particular function were it-
eratively selected so that there are at least two rounds
before and after the last round for which at least one
test detects a bias. In total, we analyzed 52077 round-
reduced function configurations (complete list of ana-
lyzed functions is shown in Table 1).

2.1.2 Parameterized input data generation

Three different data generation strategies are used to
analyze confusion and diffusion properties of the target
function output, namely CTR, LHW and SAC.

The CTR strategy generates blocks of a particular
size, each containing the current block index. Intu-
itively, the high bits are set to zero while the low bits
are iterating until the required amount of data is gen-
erated. Note that block ciphers with extremely small
blocks, like 32-bit version SIMON and SPECK ci-
phers, can produce only 232 ·32 bits ≈ 17.2 GB. How-
ever, even shorter streams are having issues with a too
high uniqueness of blocks.

The LHW stands for Low Hamming Weight as
it generates input blocks with a fixed low Hamming
weight. The weight is derived from the block size as
it is required to avoid cycling of the generator, i.e.,
depleting all options on the block size. If the tested
function f has an input block size of 128 bits, and we
need to generate 100 MB of data, we set the Hamming
weight to 4, as 16

(128
4

)
≈ 170 MB. The idea behind the

LHW strategy is to cover the whole input block with
small changes only, keeping the total Hamming weight
low, thus feeding the minimal possible entropy to a
function. Both CTR and LHW serve as low-entropy
input generators, allowing for inspection of confusion
properties of the cryptographic functions.

The SAC strategy aims to test the Strict Avalanche
Criterion (Webster and Tavares, 1985), where the
tested function shall generate two seemingly uncor-
related output blocks despite only a single bit flip in



the corresponding input blocks. It generates pairs of
blocks, where the first block in the pair is randomly
generated and the second one is almost the same ex-
cept for a single bit flip at a randomly selected position.
Both blocks are then used as an input to the tested
function f . This strategy inspects mainly diffusion
properties of the cryptographic functions.

The strongest generating strategy is rnd, which
generates a random block using a given seed, with
the PCG64 generator (O’Neill, 2014). Similarly, ornd
strategy generates a random value only once, then
repeats it each time a value is needed. The ornd usage:
generate random plaintext block, then repeat the same
value with different keys.

Let’s define a function configuration as a tuple
(function name, round). An input configuration de-
fines input streams fed to the function being analyzed,
e.g., plaintext, key, seed. Function generates output
sequence that is analyzed with randomness testing bat-
teries. We have analyzed basic function types: block
ciphers, stream ciphers, hash functions, PRNGs. Each
function type differs in input configurations being
used.

A hash function takes an input string and trans-
forms it to the output block. An input configura-
tion is thus a configuration of an input stream of
blocks xi fed to the hash function. E.g., CTR con-
figuration for function f generates a stream of values:
( f (x0), f (x1), · · ·) = ( f (xi))i. Hash functions use con-
figurations: {ctr, lhw, sac}.

PRNG takes an input seed and generates long
stream of output data. One testing approach is to gen-
erate a seed randomly and analyze a long output se-
quence of the PRNG. However, it does not yield useful
results as PRNG internal state changes when generat-
ing output sequences. It is difficult to spot randomness
biases for randomness testing batteries in this setting.
Moreover, PRNGs usually do not have internal round
structure so it is not possible to analyze weakened func-
tion versions, we have to test PRNG in a full strength.
We thus have two approaches when testing PRNGs.
1) Test N bytes with a fixed seed, 2) an alternative
testing approach by repeating the following: reseed
PRNG with an input stream block, capture B output
bytes, reseed and capture again: ( f (seed=si)[: B])i.
An input configuration defines seed stream. PRNGs
testing strategies: {zero, ctr.seed, lhw.seed, sac.seed,
rnd.seed}.

Stream ciphers are similar to PRNGs in the test-
ing context. Feeding a specific plaintext to the stream
cipher does not bring benefit from the testing perspec-
tive as it is only XORed with the keystream generated
by the stream function, adding unnecessary entropy.

We thus only test the keystream itself, feeding zero
vector plaintext to the function.

Stream ciphers usually have internal round struc-
ture that makes analysis of a long keystream from
the weakened cipher possible. Input strategy zero:
generate a random key k0, generate a long keystream
with the k0. The output sequence is: ( f (key=r0)[: N]),
where N is the desired keystream length. A .key testing
strategy generates a sequence of first B bytes of the
keystream for key ki: ( f (key=ki)[:B])i. Input strategy
defines how (ki) is generated. Stream function testing
strategies: {zero, ctr.key, lhw.key, sac.key, rnd.key}.

Block ciphers: Take two inputs of a fixed length:
key, plaintext and output a fixed length block. We
use two different input configuration types. Input con-
figuration: fix a random key k0, derived from a seed,
generate input blocks xi. ( f (key=k0,xi))i. Testing
strategies: {zero, ctr, lhw, sac}.

Alternative approach is to change a key and ob-
serve the function behavior. This testing strategy can
reveal e.g. sensitivity to weak keys. Key configura-
tion defines how (ki,xi) sequence is generated. The
tested output is then ( f (key=ki,xi))i. The simplest
key strategy is to generate ki via CTR mode and keep
xi = 0. We call such strategy ctr.key..zero.inp. Block
cipher testing strategies: {zero, ctr, lhw, sac, rnd.key},
∪ {ctr.key, lhw.key, sac.key} ×{..zero.inp, ..ornd.inp}.
A stronger strategies with ..ornd.inp suffix generate a
random plaintext block once and reuses the same value
with different keys, i.e., xi = x j = randNext(seed).

Seeds: Using given strategies we obtain an out-
put sequence for a function and input configuration.
Then randomness testing batteries are used to assess
whether the sequence contains statistical biases. If
enough biases are found (defined later) we conclude
the hypothesis about an uniform output sequence dis-
tribution for the function configuration being rejected,
in short, function at a round r was rejected.

In order to reduce false-positives we use 3 different
input configurations parameters per the function con-
figuration Fc. I.e., when using CTR generator, we use
an offset to generate 3 different counter sequences. Se-
quence 1 starts at offset 0, sequences 1,2 have offsets
oi,o2 such that sequences do not overlap on the lengths
used for testing. Technically, if the output length per
one block is B bytes, setting offset O is done by set-
ting the most significant byte of the counter to O, e.g.,
(S2)0 = 2∗28∗8,(S2)1 = 2∗28∗8 +1, · · ·

LHW generator offset is realized by setting initial
LHW state so that the combination space is partitioned
to 3 disjoint parts. Technically, we compute a number
of combinations for a weight w on B bits as L =

(w
B

)
.

Offsets are then oi = L∗ i
3 . Using ranking algorithm

we then compute oith combination for
(w

B

)
and use it



as a starting position for LHW. As SAC uses randomly
generated values, we randomly generate seeds si so
that SAC generates sequences Si differ.

Fc is rejected if at least 2 out of 3 output sequences
are rejected. The reason for the usage of three different
seeds is to make the likelihood of the (unwanted) usage
of a key with the value degrading the function confu-
sion and diffusion properties (called weak key) very
small. The weak keys are very infrequent or shown to
be non-existent for common cryptographic functions
with a full number of internal rounds. However, they
are significantly more likely to occur with the reduced
number of rounds we are using.

CryptoStreams is highly configurable; we pre-
configured more than ten additional general testing
strategies. We provide the list of all our strategies and
their description at the GitHub repository3. The total
number of the data configurations analyzed is: 6264x
10 MB, 6526x 100 MB and 4569x 1 GB. In total, we
analyzed 5160.4 GB of data.

3 Results

The following section summarizes basic observations
from collected testing data.

3.1 Study limitations

We used default settings of tests as such parameters
are commonly used in practice. Usage of other non-
standard parameters may provide a different result.
Due to high computational costs only {10, 100, 1000}
MB data sizes were tested. Using larger data sizes
could reveal more subtle biases and detect more rounds.
Also, some tests were not run as they require more data
for analysis, e.g., Test U01 BigCrush.

From all possible data generation strategies, we
used only a small subset that we deemed the most
promising, as defined in Section 2.1.2. New generation
strategies may reveal another unexpected biases. Also,
no detailed analysis of patterns found for particular
cryptographic functions was performed.

3.2 Security margins of cryptographic
functions

The number of rounds for which a distinguisher was
automatically constructed by at least one test can be
used to establish the security margin of a given crypto-
graphic function included in the CryptoStreams battery.
We also performed an extensive literature survey to

3https://github.com/ph4r05/SecurityMarginsPaper

identify the highest number of rounds for which any
distinguisher was published.

Classical techniques in cryptanalysis, such as linear
or differential cryptanalyses, require determining some
bias in the ciphertext, which then leads to a recovery
of (some) bits of key, plaintext or both. The designers
of cryptographic functions try to make the function
complex enough to hide any such bias, usually by
increasing the number of function’s internal rounds.
For cryptographic functions now considered secure
(like AES), neither the general-purpose tests nor the
custom tests by human cryptanalyst were shown to
detect bias in a function with a full number of rounds
as specified by its designers.

Still, we can weaken a function complexi-
ty/strength (e.g., in the number of rounds), while test-
ing the output for a bias presence. If the number of
rounds where the bias is detectable is too close to
the full number of rounds (unweakened function), the
function shall be considered less secure and in demand
for strength improvement (e.g., by increasing the num-
ber of rounds). We define the security margin as the
difference between the number of rounds, for which
a distinguisher can be still constructed and the total
number of rounds of that function. More precisely:

sec. margin( f ) = 1− max(i) : fi output is non-random

n
,

where fi stands for function f limited to i rounds and
n is the total number of rounds of the function f as
specified by its authors. For example, there exists a
distinguisher for a 3-round AES, but not for the 4-
round one. AES-128 has 10 rounds in total, so the
resulting security margin against analyzed randomness
tests is 70%.

Security margins per function type. Results in Ta-
ble 2 indicate that security margins of all function
types are similar when considering only input type
strategies. However, key type strategies reduce se-
curity margins significantly. Also, hash functions
have typically greater security margins than block and
stream ciphers using key strategies.

Measured security margins of MPC hash functions
are high, indicating that testing batteries might not be
directly usable for this function family. We hypothe-
size this is due to usage of algebraic building blocks
which are difficult to detect with randomness testing
batteries. To verify the claim, we tested a simple func-
tion f (x) = x3(mod p), where p is a 255-bit prime.
The function f was fed with a strongly biased input
distribution - normal distribution to produce 1 GB of
output data. The output was tested with testing batter-
ies (after applying rejection sampling transformation,



Function Security margin Function Security margin Function Security margin

Hash functions CAMELLIA 4/8/18 RECT.K80 8/18/25
Abacus 0/-/280 CAST 3/9/12 RECT.K128 8/14/25
ARIRANG 3/4/4 FANTOMAS 2/5/12 R.RUNNER.K80 3/8/10
AURORA 2/-/17 GOST 29/20/32 R.RUNNER.K128 5/8/12
BLAKE 1/4/14 IDEA 6/4/8 SPARX-B64 2/8/24
Blender 0/-/32 KASUMI 3/8/8 SPARX-B128 3/8/32
BMW 0/-/16 KUZNYECHIK 2/4/10 SPECK 10/15/32
Boole 3/16/16 LBLOCK 11/24/32 TEA 32/5/32
Cheetah 4/12/16 LEA 8/8/24 TWINE 9/23/35
CHI 0/-/20 LED 7/-/48 XTEA 8/8/32
CubeHash 0/-/8 MARS 0/8/16 MPC functions
DCH 1/4/4 MISTY1 1/6/8 GMiMC.S45a 1/-/121
DynamicSHA 10/-/16 NOEKEON 2/4/16 GMiMC.S128e 1/-/342
DynamicSHA2 17/17/17 PICCOLO 6/5/25 LowMC.S80a 4/-/12
ECHO 2/4/8 PRIDE 12/19/20 LowMC.S80b 4/-/12
ESSENCE 9/14/32 PRINCE 4/6/12 LowMC.S128a 4/-/14
Gost 1/5/32 RC5-20 5/17/20 LowMC.S128b 120/-/252
Grostl 2/-/10 RC6 5/5/20 LowMC.S128c 20/-/128
Hamsi 0/-/3 ROBIN 16/16/16 LowMC.S128d 16/-/88
JH 6/10/42 ROBIN⋆ 3/-/16 MiMC.S45 1/-/116
Keccak 4/5/24 SEED 2/-/16 MiMC.S80 1/-/204
Lesamnta 3/32/32 SERPENT 3/5/32 MiMC.S128 1/-/320
Luffa 7/8/8 SHACAL2 21/44/80 Poseidon.S80b 0/-/8
MCSSHA-3 0/-/1 SIMON 19/26/68 Poseidon.BLS12 0/-/8
MD5 25/-/64 DES 16/16/16 Rescue.S45a 0/-/10
MD6 10/16/104 TRIPLE-DES 16/-/16 Rescue.S128e 0/-/10
RIPEMD160 14/48/80 TWOFISH 3/16/16 RescueP.128a 0/-/27
Sarmal 0/-/16 Stream ciphers RescueP.128b 0/-/27
SHA-1 18/80/80 Chacha 3/6/20 RescueP.128c 0/-/14
SHA-2 14/31/64 DECIM 7/-/8 RescueP.128d 0/-/14
SHA-3 4/5/24 F-FCSR 5/5/5 RescueP.S80a 0/-/18
Shabal 0/-/1 Fubuki 0/-/4 RescueP.S80b 0/-/18
SHAvite3 2/-/12 Grain 11/13/13 RescueP.S80c 0/-/9
SIMD 0/-/4 HC-128 0/-/1 RescueP.S80d 0/-/9
Skein 4/17/72 Hermes 2/-/10 Starkad.S80b 1/-/8
Tangle 80/80/80 LEX 3/-/10 Starkad.S128e 1/-/8
Tangle2 80/-/80 MICKEY 0/-/1 Vision.S45a 0/-/10
TIB3 0/-/16 Rabbit 0/-/4 Vision.S128d 0/-/10
Tiger 2/19/23 RC4 1/-/1 PRNGs
Twister 6/9/9 Salsa20 2/6/20 Std.LCG 1/1/1
Whirlpool 1/10/10 SOSEMANUK 8/-/25 Std.MTwister 1/1/1
Block ciphers Trivium 3/5.8/8 Std.SubCarry 1/1/1
AES 3/6/10 TSC-4 14/-/32 U01.ULCG 1/1/1
ARIA 2/4/12 CHASKEY 3/7/16 U01.UMRG 1/1/1
BLOWFISH 5/4/16 HIGHT 11/18/32 U01.XorShift 1/1/1

Table 1: The security margin for each tested cryptographic function included in the CryptoStreams testbed. The table depicts
the maximal number of rounds for which some bias was reliably detected for at least one data configuration used (red bar).
Additional rounds with a practical distinguisher published in research literature are shown as a pink bar (typically larger than
randomness tests). If no published and practical (complexity < 280) attack is found, sign ”−” is used. The numerical value
of rounds is encoded as rounds by RTT/rounds by literature/rounds total. The average bar shows the median of observed
percentage security margin with first and third quantile in the parentheses. MPC functions (Aly et al., 2020) are cryptographic
functions optimizing their arithmetic complexity (used for example in zero-knowlege proof systems or multi-party computation
protocols).

described in Section 4.2). There was no bias detected
in any of 10 tested streams. We thus conclude that
even a simple algebraic function such as f can make
the output indistinguishable from PRNG stream for
testing batteries. In fact, the described function f is a
basic building block of MiMC hash function.

Used methods. Figure 1 displays both absolute and
relative numbers per input generation methods for
breaking the highest broken round (top-round) of the
functions. From the results we can conclude that the

Function type Input SM [%] Key SM [%]
avg med avg med

Hash 76.37 84.52 - -
Block cipher 78.84 80.62 68.86 74.64
Stream cipher 80.77 90 64.59 70
MPC 93.94 100 95.85 100

Table 2: Aggregate security margins (SM, average and me-
dian values) for various function types and testing methods.

lhw strategy is very effective in breaking top-rounds,
both in input and key variants.

Also note that key variants have better relative suc-



cess rate than input variants, indicating that crypto-
graphic functions are more prone to biases when low-
entropy keys are used compared to low-entropy inputs.
Also, strategy rnd.key is the most difficult to detect as
the entropy fed to the key of the function is high, it
still managed to detect 37% of configurations it was
used on.

Note that strategy zero is used for all stream func-
tions with zero input as they generate long keystream
with fixed random keys.

Considering input methods coupled with data sizes
we observe that large data set 1000 MB dominate de-
tection capabilities in all main methods {lhw, ctr, sac}.
Interestingly, {lhw, lhw.key} on 10 MB outperform ctr
on 100 MB.

Key method dominance. We observed that in 24
(44.44%) cases the key variant was better than input
variant for given inputs, same performance was seen
in 19 cases (35.19%), input variant was better in 11
cases (20.37%). In some scenarios, the key to the input
advantage is quite significant.

For example, Triple-DES is detected only to round
3 with input strategies, but the key strategy manages
to detect all 16 rounds, even rnd.key, which is the
most difficult strategy to detect. That means there are
serious biases in Triple-DES output for some keys. A
hypothesis is that weak keys known for Triple-DES
were in the input stream, causing the ciphertext to
contain biases. On the other hand, the SIMON function
was detected with key methods up to 14 rounds but
input methods reached 19 rounds. Figure 1c shows
key to input method advantage with respect to the
maximum round detected per given function.

RC4 is known to contain biases on the beginning
of the keystream. Experiments were not able to detect
biases using zero strategy, i.e., using keystream with a
random key. However, all tested key methods detected
biases with 100 MB of data and more, even the most
difficult rnd.key strategy.

Data size. This paragraph focuses on detection capa-
bilities when all variables are fixed, besides length of
the input data stream. We take results over all detected
rounds, not just a top-round detections. The most ob-
served event was that changing input data stream did
not increase detection capability, with 1694 detections
(80.94%).

In general, one would assume that bigger the input
stream the easiest is to spot biases for the randomness
tests. In particular, it means that given configuration
was not detected on lower input size but it was detected
by all higher data sizes. This turned out to be the case
for 397 detections (18.97%). For example, AES round

(a) Testing methods breaking top-rounds, with sizes.

(b) Figure 1a with aggregated sizes

(c) Key to input method detection advantage for
breaking the highest round of the given function.
Methods axis shows number of test methods reject-
ing the same round. Entries with no advantages are
skipped for better readability.

Figure 1: Methods breaking top-level rounds and key-to-
input methods advantage in breaking the highest rounds.

3 using lhw.key strategy was not detected on 10 MB
input but since 100 MB. Similarly for Blowfish round
3 with sac strategy.

We also observed an inverse effect, i.e., detection
was successful on a lower data size, but higher data
sizes did not detect the stream. This happened in a



single case (0.05%). Our hypothesis is that that bias
was lost in a noise as data size increased, i.e., it was
probably a fluke. The case is Kasumi round 3 with
the lhw.key strategy, bias was observed only in the
10 MB input stream. Considering no other strategy
could detect the same function configuration, we can
assume the detection was a fluke. Rest of the cases
are fluctuations where bias was either observed or
undetected on a 100 MB data size, observed in a single
case (0.05%).

Table 3 shows a result subset of a maximal detected
round depending on a chosen method and increasing
input size for the method. Apparently, the highest
detected round is strongly dependent on the mentioned
parameters.

Function : method 10 MB 100 MB 1 GB
MD5 : lhw 17 20 25
: sac 13 16 20
DES : lhw 4 6 7
: rnd.key 16 16 16
SIMON: ctr 17 18 19
: lhw 15 17 17
: lhw.key 11 11 12
GOST : ctr.key 10 11 12
: lhw.key 21 25 29
: lhw.key..ornd.inp 20 22 27
: rnd.key 1 1 1

Table 3: Maximal breaking rounds for selected (function :
method) pairs depending on different input sizes.

Function publication year. Figure 2 shows secu-
rity margin heat maps (the darker the more functions
belong to the bin) for particular function types based
on the year of a publication of the function. Note
that hash and stream function year variance is low as
majority of our function dataset comes from eStream
and SHA-3 competitions, thus many of the functions
were published in the same year. From the figures
we can conclude there is a high variance in security
margins. Yet, we cannot conclude that older functions
have lower security margins.

Bias strength measure. There are several ways to
define a measured bias strength. E.g., ratio of random-
ness tests detecting the sequence as biased on a level α,
minimal p-value observed, number of rejected seeds,
etc. Intuitively, lower rounds of a cryptographic func-
tion should have stronger biases compared to higher
rounds. Experiments confirm that this is true for ma-
jority of tested functions. To demonstrate this, lets
observe ratio of rejecting tests for the SIMON func-
tion with the lhw input strategy on 100 MB of data,

(a) Security margin for hash functions

(b) Security margin for stream ciphers

(c) Security margin for block ciphers, input methods

(d) Security margin for block ciphers, key methods
Figure 2: Security margin heat maps based on the publication
year of the functions analyzed. The results generally show
increased number of published functions around the related
competitions (e.g., AES or SHA-3), better security margin
for the functions introduced later, but with exceptions of the
broken ones.



starting from round 11: 0.88, 0.83, 0.75, 0.68, 0.44,
0.37, 0.22, 0.07 (round 18), while round 19 is first with
no bias detected with only 3/735 rejecting tests. On
the other hand, there are functions which do not have
such smooth bias progression, for example LED using
lhw with 100 MB, rounds {1,2,3} are all detected with
0.93 tests, round 4 has 0 test detections.

4 Randomness testing for masses

We created a practical, generally usable tool for ran-
domness testing, the Randomness Testing Toolkit
(RTT), which integrates four randomness testing batter-
ies (NIST STS, Dieharder, TestU01, and BoolTest), un-
der simple and unified command-line and web-based
interface. The main benefits are: a) the simplicity of
the randomness testing for the user, b) pre-configured
batteries and test configurations4 c) unified result in-
terpretation, and d) significant parallelization to test
large amounts of data.

4.1 Test detection evaluation

The goal of our evaluation is to correctly (with minimal
Type I and II errors) identify biased generators defined
by the parameters (cryptographic function, round, key,
strategy and size). P-values are the only results of tests
we use in our evaluation to identify biased/unbiased
generators. Interpretation of a p-value (rejection/non-
rejection of a hypothesis – shortly fail/pass) is based
on the significance level α chosen by a tester. P-value
below α indicates biased statistic that is interpreted
as “generator of the analysed data fails the given test”.
Choice of the significance level is crucial since it af-
fects the probabilities of both Type I and II errors.

Batteries use a conservative value αFAIL is used to
minimize Type I error, i.e. false-positive. Conservative
α determines a bigger Type II error as both errors are
related. The only way how to decrease Type II error,
for fixed Type I error, is to increase the volume of
analysed data.

Each test of the original batteries computes two
types of p-values: a) standard “first-level” p-value
computed by a test for one sequence, b) “second-level”
p-value computed by uniformity test (Kolmogorov-
Smirnov, Anderson-Darling, etc.) for a sequence of
first-level p-values, checking whether first level p-
values are uniformly distributed on the [0,1) interval.

In the RTT, the result of each test is a second-level
p-value. It is computed typically for several tens or

4E.g., TestU01 is a randomness testing library that re-
quires user to develop a testing program, choose which tests
to run, etc.

several hundreds of (first-level) p-values computed by
the test. Some tests compute several second-level p-
values (over the same set of first-level p-values) using
different uniformity tests. The p-values (first-level
or second-level) computed by the original batteries
(and also by the RTT) are not exact due to approxima-
tion methods used in the tests. The sequence fails a
given test if at least one of the second-level p-values is
smaller than the significance level. Approximation of
the null distribution is used in the computation of first-
level p-values. This introduces some small errors that
are accumulated in the second-level p-values. To find
suitable significance level α, we analyzed reference
random data produced by full-round AES-128 to deter-
mine number of false positives, taking approximation
errors into account.

The initial analysis of data showed that
three tests behave differently than others. The
smultin MultinomialBitsOver from the Rabbit
sub-battery of TestU01 has a significantly biased
proportion of small p-values. Random Excursion and
Random Excursion Variant tests from the NIST STS
compute different numbers of first-level p-values for a
fixed size of the sequence hence significance of their
results varies. We excluded the results of these three
tests from all our experiments (including one with the
reference data).

BoolTest (Sys et al., 2017) battery comes in two
versions. BoolTest2 returns directly a p-value and it
works without precomputations. BoolTest1 is eval-
uated using confidence intervals of Z-scores from
empirically computed reference distibution (for each
BoolTest setting) using 105 of random sequences.
This gives the significance level αBT 1 = 10−5 for the
BoolTest, for RTT we use the same αRT T = 10−5.

4.2 Function bias classification

As mentioned in Section 2.1.2, we claim the input
configuration is rejected if at least 2 of 3 tested seed
variants are rejected. This section describes the de-
cision methodology for a seed variant to be claimed
rejected. We set global α = 10−7 to minimize false-
positives across our dataset.

Reference runs, cut-off threshold. We ran RTT
tests on 75 000 reference input configurations, i.e., full
10 round AES-128 using ctr input mode with a random
key. The reference test data results show behaviour
of statistical tests on a good-quality pseudo-random
input data, namely tests p-value distribution on a refer-
ence data and distribution of number of simultaneously
failing tests per analyzed sequence with αT = 10−5.
From the reference test data we can establish a cut-



off criteria on a number of simultaneously failing test
per sequence run to be 5% of performed test with
α ≤ 10−7. Reference runs showed that the maximal
number of simultaneously failing tests with αT for
a single sequence is 3 out of 216 tests (1.38%, such
event occurred 9 times, 0.016%). As the number of an-
alyzed sequences in our cryptographic function dataset
is smaller (54 500), the cut-off limit is set conserva-
tively enough to avoid false-positives. Ideally, a further
study of reference p-value distributions and number
of test rejections per tested sequence would be needed
to model the distribution and to avoid computation of
reference data in sizes of the tested set. It would also
help setting cut-off limit precisely for given α. The
reference data study is left for a future work.

Hommel correction. In the ideal case, the propor-
tion of failed sequences for a given test is given by
the significance level α for an unbiased generator. In
such a case, the number of failed sequences is given
by n∗α for number of sequences n. It is clear that the
probability that a sequence (generated by an unbiased
or unbiased generator) fails one of the used tests in-
creases with the number of tests m. It is possible to
compute the actual significance level αm (sequence
fails m tests if it fails at least of the tests) for m tests
although we used α as the significance level for each
test using p-value correction methods.

If the number of tests rejecting the seed is below
the cut-off threshold, we apply the Hommel correction
(Hommel, 1988) on all p-values collected from the
seed run, using given α to tell whether tested sequence
is rejected. Hommel correction is used to decide null-
hypothesis rejection using set of positively-correlated
p-values representing results from randomness tests
and their associated alternate hypotheses. The correc-
tion keeps the probability of a false-positive of the
p-value set below α. Note that p-values are positively
correlated as the tests test the same input sequence
and also due to overlap of features being assessed by
the tests, i.e., a particular bias pattern can cause multi-
ple tests to reject the input stream. To the best of our
knowledge, this is a new method for assessing biases
in output of round-reduced cryptographic functions
using different positively-correlated randomness tests.

BoolTest1 rejection. BoolTest1 works with a pre-
computed reference distribution, thus the αBT 1 is fixed
to an inverse to a number of reference results. As
αBT 1 < α BoolTest1 would never help reject the tested
sequence. We thus use observation from cut-off thresh-
old analysis. There are always 36 BoolTest1 tests exe-
cuted per tested sequence. From the reference data we
observed that BoolTest1 results have negligible corre-

lation and rejection happens in 36n∗αBT 1 on average.
BoolTest1 is thus removed from Hommel correction
and we use BoolTest1 cut-off threshold 3 to consider
output sequence rejected with α ≤ 10−7. Due to small
correlation among BoolTest1 test fails, distribution of
a number of simultaneously failing tests per input can
be easily simulated without need to run BoolTest1 and
approximate it with Beta-Binomial distribution.

Prime order functions. Randomness testing batter-
ies are suited to test byte-aligned data. However, cryp-
tographic functions used in context of MPC / zero-
knowledge proofs using algebraic construction can
work in prime fields Fp, where p is a prime. Such
function F output vectors Fm

p . Testing batteries thus
cannot be naı̈vely applied to output values xi < p, as
interval [p,28⌈lg(p)/8⌉) is not covered by the function
output. Thus batteries trivially reject the output even
though the output is uniformly distributed on the inter-
val [0, p). We thus need to apply an transformation T
to the function output that transforms uniform prime
order elements xi to a uniform byte-aligned outputs
x′j before testing it with the batteries. The simplest
approach is to use a rejection sampling, i.e., find byte-
aligned boundary M = 28⌊lg(p)/8⌋− 1 ≤ p. Output x
is then ignored if x > M. Rejection sampling strat-
egy requires more data to be generated as portion of
the generated data is discarded. We also used more
advanced transformations based on inverse function
sampling, i.e., directly stretching uniform distribution
from [0, p) to [0,M] using auxiliary randomness so all
F output values are used.

5 Related work

In this section, we firstly discuss published works
in cryptanalytical statistical testing, secondly the
analysis of tests of randomness in RTT. There ex-
ist many other statistical batteries except for those
used in RTT (NIST STS, Dieharder and TestU01):
Donald Knuth (Knuth, 1969), Diehard (Marsaglia,
1995), Crypt-X suite (Caelli et al., 1998), Prac-
tRand (Doty-Humphrey, 2014), RaBiGeTe (Pi-
ras, 2004), CryptoStat (Kaminsky and Sorrell,
2013), YAARX (Biryukov and Velichkov, 2014),
ENT (Walker, 2008), SPRNG (Mascagni and Srini-
vasan, 2000), gjrand (Jones, 2007) and the BSI test
suite (Schindler and Killmann, 2002).

There are two cryptanalytic approaches that are
based on the randomness testing. In the first approach,
a cryptographic function (hash, block or stream cipher)
is turned into a PRNG, and this PRNG is used to gen-
erate a sequence of bits/bytes and a test of randomness



is applied to the sequence. In the second approach, the
cryptographic function (and its randomness) is anal-
ysed directly. Tests of randomness are applied here
to check whether the given function forms a random
function or a random Boolean function. Nice overview
of papers covering both approaches can be found in
(Kaminsky, 2019), section “Related Work”. Next, we
will list only sources not included in (Kaminsky, 2019)
or papers that are the most relevant to our approach.

One of the evaluation criteria for AES candidates
was “their demonstrated suitability as random number
generators.” Therefore, AES candidates were eval-
uated by NIST STS batteries under several testing
scenarios. Murphy in (Murphy, 2000) described the
methodology of testing and its weaknesses. Soto in
(Soto, 1999) reported randomness evaluation of fif-
teen AES candidates under nine categories of data:
Key Avalanche, Plaintext Avalanche (SAC with zero
key), Plaintext/Ciphertext Correlation (RPC), Cipher
Block Chaining Mode, Random Plaintext/Random
Keys (stream consisting of key, plaintext and cipher-
text tuple), Low Density Plaintext (LHW), Low Den-
sity Keys, High Density Plaintext (inversed LHW), and
High Density Keys. In the succeeding work (Soto and
Bassham, 2000), Soto and Bassham expanded recent
results with a study of round reduced candidates with
longer keys and the same data types (LHW, SAC, etc).
Kubicek et al. analysed the round reduced TEA using
evolutionary algorithms (Kubı́cek et al., 2016).

Hernandez-Castro and Barrero in (Hernandez-
Castro and Barrero, 2017) evaluate tests in the Ent
battery using genetic algorithms. Authors of NIST
STS analysed the correlation of tests results in order to
eliminate redundant tests. NIST performed a study to
determine the dependence between the NIST STS tests
(Rukhin et al., 2010). They applied principal compo-
nents analysis of m (no value specified) p-values and
extracted 161 factors, equal to the number of tests (de-
fault settings of tests were not used). They claimed
that “there is no large redundancy among our tests”.
Yet some other works also analysed the correlation of
NIST STS tests (e.g., (Sýs et al., 2015)) and showed
a correlation between NIST STS’s tests leading to an
estimate of the higher number of failing test needed for
rejection of randomness hypothesis. Eskandari et al.
in (Eskandari et al., 2018) automatically construct dis-
tinguishers for 30 crypto primitives using bit division
property method and a new Salvatore framework.

6 Conclusions

Our paper provides the most extensive analysis of the
power of the commonly used randomness statistical

tests and their variants on the data produced by 109
cryptographic hash functions and block ciphers pub-
lished to date. To perform the analysis of 414 tests,
we modified the code of every function to make the
number of internal rounds configurable and executed
it on three types of highly redundant input blocks to
produce a stream of testing data.

All the tests were integrated under the same in-
terface allowing for an efficient evaluation using a
distributed computation cluster. We also designed a
unified framework for evaluating biases’ presence in
the output of a cryptographic function using different
randomness testing batteries. Our approach is repro-
ducible, and new functions can be later tested and
compared with existing results.

The security margin – as the ratio between the total
number of function rounds and rounds with bias still
detectable (distinguisher) – was established for all the
tested functions and compared with the distinguish-
ers published in the research literature. While being
around 77% on average (up to 23% of internal rounds
still distinguishable), there is high variability among
the functions analyzed. SHA-3 exhibits a security mar-
gin of 83%, and ten functions, including Blake, Gost,
Skein, Mars, Serpent, Shacal2, and XTEA have even
more than 90%. Contrary to functions with a large
security margin, the functions detected with a very
small margin (Arirang, DCH, DynamicSha2, Luffa,
and Twister) were also shown to be weak by exist-
ing research literature. The randomness tests can be
therefore seen as the simple automated first step in
cryptanalysis.

All our tools and results, including tests results
from both reference runs and cryptographic function
dataset, are publicly available in a GitHub repository5.

Acknowledgement: Authors were supported by
Czech Science Foundation project (GA20-03426S).
This work was partially supported by the European cy-
bersecurity pilot CyberSec4Europe. Computational re-
sources were supplied by the project ”e-Infrastruktura
CZ” (e-INFRA CZ LM2018140) supported by the
Ministry of Education, Youth and Sports of the Czech
Republic. Computational resources were provided by
the ELIXIR-CZ project (LM2018131), part of the in-
ternational ELIXIR infrastructure.

REFERENCES

Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., and Szepie-
niec, A. (2020). Design of symmetric-key primitives
for advanced cryptographic protocols. IACR Transac-
tions on Symmetric Cryptology, 2020(3):1–45.

5https://github.com/ph4r05/SecurityMarginsPaper



Bernstein, D. J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P.,
Heninger, N., Lange, T., and Van Someren, N. (2013).
Factoring RSA keys from certified smart cards: Cop-
persmith in the wild. In International Conference on
the Theory and Application of Cryptology and Infor-
mation Security, pages 341–360. Springer.

Biham, E. and Shamir, A. (2012). Differential cryptanalysis
of the data encryption standard. Springer Science &
Business Media.

Biryukov, A. and Velichkov, V. (2014). Automatic search for
differential trails in ARX ciphers. In Cryptographers’
Track at the RSA Conference, pages 227–250. Springer.

Brown, R. G., Eddelbuettel, D., and Bauer, D. (2013).
Dieharder: A random number test suite. Open Source
software library, under development.

Caelli, W. et al. (1998). Crypt-X suite.
Doty-Humphrey, C. (2014). Practically Random: Specific

tests in PractRand.
Eskandari, Z., Kidmose, A. B., Kölbl, S., and Tiessen, T.

(2018). Finding integral distinguishers with ease. In
IACR Cryptol. ePrint Arch.

Heninger, N., Durumeric, Z., Wustrow, E., and Halderman,
J. A. (2012). Mining your ps and qs: Detection of
widespread weak keys in network devices. In Pre-
sented as part of the 21st USENIX Security Symposium
(USENIX Security 12), pages 205–220.

Hernandez-Castro, J. and Barrero, D. F. (2017). Evolutionary
generation and degeneration of randomness to assess
the indepedence of the ent test battery. In 2017 IEEE
Congress on Evolutionary Computation (CEC), pages
1420–1427. IEEE.

Hommel, G. (1988). A stagewise rejective multiple test pro-
cedure based on a modified bonferroni test. Biometrika,
75:383–386.

Jones, G. (2007). gjrand random numbers.
Kaminsky, A. (2019). Testing the randomness of crypto-

graphic function mappings. IACR Cryptology ePrint
Archive, page 78.

Kaminsky, A. and Sorrell, J. (2013). CryptoStat: a Bayesian
Statistical Testing Framework for Block Ciphers and
MACs. Rochester Institute of Technology, Rochester,
NY.

Ketamine (2018). Multiple vulnerabilities in Se-
cureRandom(), numerous cryptocurrency products
affected. https://lists.linuxfoundation.org/pipermail/
bitcoin-dev/2018-April/015873.html.

Knuth, D. E. (1969). The Art of Computer Programming,
volume 2. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, first edition.
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Sýs, M., Klinec, D., and Švenda, P. (2017). The efficient
randomness testing using boolean functions. In 14th In-
ternational Conference on Security and Cryptography
(Secrypt), pages 92–103. SCITEPRESS.
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