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Abstract. The Refined Power Analysis, Zero-Value Point, and Excep-
tional Procedure attacks introduced side-channel techniques against spe-
cific cases of elliptic curve cryptography. The three attacks recover bits
of a static ECDH key adaptively, collecting information on whether a
certain multiple of the input point was computed. We unify and gener-
alize these attacks in a common framework, and solve the corresponding
problem for a broader class of inputs. We also introduce a version of
the attack against windowed scalar multiplication methods, recovering
the full scalar instead of just a part of it. Finally, we systematically an-
alyze elliptic curve point addition formulas from the Explicit-Formulas
Database, classify all non-trivial exceptional points, and find them in
new formulas. These results indicate the usefulness of our tooling, which
we released publicly, for unrolling formulas and finding special points,
and potentially for independent future work.
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1 Introduction

Since the initial proposal of elliptic curve cryptography (ECC) by Koblitz [29]
and Miller [32], the main building block of most elliptic curve cryptosystems has
been scalar point multiplication, which involves a plethora of different formulas.
There are several side-channel attacks targeting the formulas, either via forcing
an intermediate value to be zero or by causing the computation to fail. However,
these attacks are only described in special cases, specific to a small number of
formulas. In this work, we unify and generalize the attacks, and systematically
classify exceptional points in many widely used formulas.
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Related work. In 2003, Goubin [21] introduced a new side-channel attack
against implementations of ECC. Titled Refined Power Analysis (RPA), it uses
a power side channel and the existence of points with a zero coordinate to steer
an adaptive attack on implementations of the static elliptic curve Diffie-Hellman
(ECDH) protocol. Smart [36] described effective countermeasures against RPA.
Subsequently, Akishita and Takagi [1] proposed a slightly different method named
the Zero-Value Point (ZVP) attack. It focuses on forcing zeros into intermediate
values inside a given point addition formula, and not only in the point coordi-
nate. Several extensions followed: Zhang, Lin, and Liu [41] modified the ZVP
attack to target genus 2 curves, and Crépeau and Kazmi [15] proposed ZVP
for elliptic curves over binary extension fields. Danger, Guilley, Hoogvorst, Mur-
dica, and Naccache [16] gave new countermeasures against ZVP and RPA, while
Martínez, Sadornil, Tena, Tomàs, and Valls [30] analyzed Edwards curves with
regards to ZVP attacks, showing that some addition formulas on Edwards curves
are resistant to ZVP attacks. Finally, Murdica, Guilley, Danger, Hoogvorst, and
Naccache [34] proposed the Same Value Analysis (SVA) attack, which tries to
detect the repeated use of some finite field value via a side channel.

Izu and Takagi [27] analyzed the Brier and Joye [8] addition formulas and
presented an Exceptional Procedure Attack (EPA). It uses a similar adaptive
mechanism as the aforementioned attacks, but relies on an error side channel by
inducing incorrect computations, without the use of fault induction. To avoid
EPAs, it is best to use complete addition formulas that always compute the sum
of two points correctly for all inputs. Renes, Costello, and Batina [35] credit
Bosma and Lenstra [7] for the only known complete formulas for prime or-
der short Weierstrass curves, while Bernstein, Birkner, Joye, Lange, and Peters
[3] and Hisil, Wong, Carter, and Dawson [25] proposed complete formulas for
Twisted Edwards curves. The Explicit-Formulas Database (EFD) by Bernstein
and Lange [4] contains formulas for many different curve models and coordinate
systems.

What could possibly go wrong? Most of the current public EC libraries do
not use complete formulas for short Weierstrass curves, with the exception of
ECCKiila [2]. This includes production libraries:

– Mozilla issued two security advisories for unimplemented exceptions in NSS’s
projective addition, leading to incorrect (degenerate) multiplication results;

– OpenSSL had unimplemented exceptions during its projective ladder step
addition, leading to incorrect (degenerate) results;

– BoringSSL’s check for exceptional projective inputs was not constant time,
leaking critical algorithm state;

– Python’s fastecdsa module had an unimplemented exception during affine
point doubling, leading to incorrect (degenerate) results.

Contributions and outline. In this work, we present a novel formal frame-
work to unify the ZVP, RPA, and EPA attacks as instances of a more general
problem, which we solve for some cases (Section 3). Our approach leads to a new
attack on windowed scalar multiplication algorithms (Section 3.5), and allows
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for clearer analysis of the attacks. Next, we develop a semi-automated method-
ology to discover non-trivial exceptional points, applying it to systematically
analyze EFD formulas, completely classifying all such points (Section 4). We
then survey widely deployed software libraries, gaining insight into the practical
implications of our analysis (Section 5). Finally, we draw our concluding re-
marks in Section 6. We released our code and data under an open-source license
at github.com/crocs-muni/formula-for-disaster.

2 Background

We define an elliptic curve E in the short Weierstrass model over a prime field
Fp, p ≥ 3 by the following equation:

E/Fp : y2 = x3 + ax+ b, a, b ∈ Fp, 4a3 + 27b2 6= 0. (1)

The group E(Fp) consists of affine points (x, y) ∈ F2
p satisfying (1) together with

the neutral element O, corresponding to the point at infinity. For any positive
integer k, we define the scalar multiplication [k]P as the sum of k copies of P
and also define [−k]P by −[k]P . The order of a point P ∈ E(Fp) is defined as
the smallest positive integer k such that [k]P = O. We refer to points of order
dividing k as the k-torsion points. For typical cryptographic applications, E(Fp)
has cardinality n = h · q, where q is prime and h ∈ {1, 2, 4, 8}; h is called the
cofactor.

The scalar point multiplication mapping P 7→ [k]P can also be computed by
using the division polynomial ψk [39]: that is,

[k](x, y) =

(
φk(x)

ψ2
k(x)

,
ωk(x, y)

ψ3
k(x, y)

)
,

where

ψ0 = 0,

ψ1 = x,

ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx− a2,
ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3),

ψ2k+1 = ψk+2ψ
3
k − ψk−1ψ3

k+1 for k ≥ 2,

ψ2k = (2y)−1ψk(ψk+2ψ
2
k−1 − ψk−2ψ2

k+1) for k ≥ 3,

φk = xψ2
c − ψk+1ψk−1,

ωk = (4y)−1(ψk+2ψ
2
k−1 − ψk−2ψ2

k+1).

All of these polynomials are considered modulo the curve equation (1). For sim-
plicity, we denotemk(x) :=

φk(x)
ψ2

k(x)
, then for all k1, k2, i ∈ Z, we have (mk1 ◦mk2) (x) =

mk1·k2(x), mk1(x) = m−k1(x) and mk1(x) = m±k1+in(x).

https://github.com/crocs-muni/formula-for-disaster
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2.1 Curve models and their zero-coordinate points

For a short Weierstrass curve EW over Fp given by Equation (1), the points with
zero y-coordinate are exactly the points of order 2. Points with zero x-coordinate
exist iff b is a square in Fp, in which case (0,±

√
b) ∈ EW /Fp [22]. Any elliptic

curve can be converted to the short Weierstrass model.

Montgomery. The Montgomery model of an elliptic curve [33, 14] is

EM/Fp : By2 = x3 +Ax2 + x A,B ∈ Fp, B(A2 − 4) 6= 0.

Similar to the short Weierstrass model, the neutral element O does not have
an affine representation. Points of order 2 are (0, 0) and ( 12 (−A±

√
A2 − 4), 0),

though the latter two might not be defined over Fp. All the other affine points
have non-zero coordinates.

Twisted Edwards. The twisted Edwards model of an elliptic curve [3] is

ET /Fp : aTx2 + y2 = 1 + dTx
2y2 aT , dT ∈ Fp, aT dT (aT − dT ) 6= 0.

Typically, we also require aT to be a square in Fp and dT a non-square in Fp.
The neutral element is the affine point (0, 1), the point (0,−1) has order 2, and
the points

(
± 1/

√
a, 0
)
have order 4. All the other affine points have non-zero

coordinates.

Edwards. The Edwards model of an elliptic curve [18, 5] is

EE/Fp : x2 + y2 = c2(1 + dx2y2) c, d ∈ Fp, cd(1− dc4) 6= 0.

When using yz or yzsquared coordinates, we also require d to be a square in Fp,
though in other cases, we may require it to be non-square. The neutral element
is the affine point (0, c), the point (0,−c) has order 2, and the points (±c, 0)
have order 4. All the other affine points have non-zero coordinates.

For any Edwards curve EE/Fp, we can rescale c 7→ 1 by taking d 7→ dc4,
x 7→ cx, y 7→ cy (thus also obtaining a twisted Edwards curve with aT = 1).

2.2 Point coordinates and addition formulas

In practice, we mostly work with non-affine coordinates5, as they delay the
costly field inversion required in affine computations. For example, (x, y) can
be represented with standard projective coordinates as (x : y : 1), from the
set of points {(λx, λy, λ)|λ ∈ F∗p} (that is, projective points are lines in F3

p,
without the zero vector). Some curve models allow performing point additions
with either x-only (short Weierstrass and Montgomery models [33]) or y-only
(Edwards models [10]) coordinates, assuming the difference of the input points
is known. Table 1 lists the non-affine coordinates present in EFD.
5 We use the name non-affine for coordinate systems other than affine coordinates
and projective to denote the standard projective coordinates.
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Model Coordinates (x, y) representation O representation #

EW

projective [12, 9, 4, 35] (xZ : yZ : Z) (0 : 1 : 0) 21
jacobian [11, 12, 23, 22, 31]

(
xZ2 : yZ3 : Z

)
(1 : 1 : 0) 36

modified [12, 4]
(
xZ2 : yZ3 : Z : aZ4

)
(1 : 1 : 0 : 0) 4

w12 with b = 0 [13]
(
xZ : yZ2 : Z

)
(1 : 0 : 0) 2

xyzz
(
xZ2 : yZ3 : Z2 : Z3

)
(1 : 1 : 0 : 0) 6

xz [9, 26] (xZ : Z) (1 : 0) 22

EM xz [33] (xZ : Z) (1 : 0) 8

ET

projective [3] (xZ : yZ : Z) (0 : 1 : 1) 3
extended [24] (xZ : yZ : xyZ : Z) (0 : 1 : 0 : 1) 18
inverted [3, 25]

(
Z
x
: Z

y
: Z

)
none 3

EE

projective [5, 24, 25] (xZ : yZ : Z) (0 : c : 1) 12
inverted [6, 25]

(
Z
x
: Z

y
: Z

)
none 6

yz [20]
(
yZ
√
d : Z

) (√
d : 1

)
6

yzsquared [20]
(
y2Z
√
d : Z

) (√
d : 1

)
6

Table 1. Non-affine coordinates analyzed in this work, and the quantity of correspond-
ing EFD formulas. Note that the conversion from xz, yz, and yzsquared coordinates
to affine is not unique, and that both yz and yzsquared assume c = 1.

A point addition formula (w.r.t. a given curve model and coordinate system)
is an explicit way of computing the sum of two points on an elliptic curve. It
takes the coordinates of the two points as inputs and returns the coordinates
of their sum, depending on the used representation. There are also formulas for
doubling or tripling a point, or for computing the simultaneous doubling of a
point and an addition of a different point, known as ladder formulas.

An addition formula is called unified if it correctly computes P + P and
complete if it correctly computes P +Q for any P and Q on any curve satisfying
the assumptions of the formula. Unified and complete formulas are important
as they do not require exceptions and encourage secure constant-time imple-
mentations, where point doubling is indistinguishable from point addition. Any
complete formula is also unified, but the converse is not true. For prime order
short Weierstrass curves, only a single complete formula is known [35].

2.3 Explicit-Formulas Database

The Explicit-Formulas Database (EFD) by Bernstein and Lange [4] is the largest
publicly available database of formulas for different coordinate systems and curve
models. It provides the formulas in a 3-operand notation, breaking down the
computation into individual binary and unary operations on intermediate val-
ues. This machine readable format mimics the computations in real software
and hardware. We exported the EFD data and provide it in a repository6 with
6 https://github.com/crocs-muni/efd

https://github.com/crocs-muni/efd
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some cleanups and added missing information. The EFD contains addition for-
mulas (i.e. P +Q = add(P,Q)), doubling formulas (i.e. [2]P = dbl(P )), tripling
formulas, differential addition formulas (i.e. P + Q = dadd(P − Q,P,Q)) and
ladder formulas (i.e. ([2P ], P +Q) = ladd(P −Q,P,Q)).

The EFD also includes automated formula verification in SageMath, though
it only compares the expressions as rational functions. This means the results
are correct globally, but not necessarily locally – there might be exceptions for
points where the denominators equal zero and the quotient is undefined. We
investigate these cases in Section 4.

2.4 Scalar multiplication algorithms

During an ECDH key exchange, all scalar multiplications use a single scalar
and the multiplied point is the public key of the other party, which is unknown
before the computation. This excludes the use of heavy pre-computations like
comb-based methods. Following Jancar [28], we divide the applicable scalar mul-
tiplication algorithms into three rough categories:

– Basic ones (often called double-and-add) that scan the scalar bit by bit, and
perform either doubling or addition based on the bit value [22]. During the
scalar multiplication, a basic multiplier executes the formulas:

[2k]P = dbl([k]P ) or
[k + 1]P = add(P, [k]P ),

depending on the iteration; k is equal to some part of the scalar.
– Ladder ones that resemble the basic ones, but use a ladder formula [33] with

two temporary variables maintaining a constant difference. This ensures the
computations are uniform and take the same time, regardless of the scalar.
The formula executions in this scalar multiplier are:

([2(k + 1)]P, [2k + 1]P ) = ladd(P, [k + 1]P, [k]P ) or
([2k]P, [2k + 1]P ) = ladd(P, [k]P, [k + 1]P ),

depending on the iteration.
– Window ones that divide the scalar into blocks of digits (called windows)

of a given width and precompute the corresponding multiples of the point.
The precomputation is cheap enough to be possible even for variable points.
If zero digits are skipped, the window is called sliding [22]. The formula
executions in this scalar multiplier are:

[2k]P = dbl([k]P ) or
[k + e]P = add([e]P, [k]P ),

depending on the iteration; [e]P is a precomputed point.
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Scalar multiplication algorithms can also use signed digit representations of the
scalar, most often the binary Non-Adjacent Form (NAF), or in the window case
window NAF.

In the rest of this work, we refer to the accumulator point that represents
the point variable to which points are added in scalar multiplication, and which
stores the current multiple of the input point through the iterations of the al-
gorithm. Note that a ladder-based scalar multiplier has two accumulator points
which have a constant difference.

2.5 Side-channel attack countermeasures

To mitigate side-channel attacks on ECC, including those discussed in this work,
several countermeasures were developed. Here we show those relevant to our
attacks, which are based on randomization and target the scalar multiplication
with a secret scalar.

Scalar randomization. The first possibility of randomization lies in the se-
cret scalar itself. There are several techniques which randomize the scalar and
compute either one scalar multiplication (group scalar randomization) or several
(additive, multiplicative, or Euclidean scalar splitting) [17]. For us, it is impor-
tant that this countermeasure leads to randomized multiples of the input point,
stored in the accumulator point, as the algorithm proceeds. Thus, if the attacker
learns that a particular multiple of the input point was computed during some
scalar multiplication, they learn almost nothing about the secret scalar used.

Point randomization. Another possibility of randomizing values inside the
scalar multiplication lies in the use of non-affine point representations and their
scaling property. As one affine point corresponds to an entire class of non-affine
points, one can select a random representative out of the class when converting
the affine input point for scalar multiplication. This randomizes almost all in-
termediate values in the scalar multiplication [17]. It does not randomize zero
values in one of the coordinates of the affine point like (x, 0) or (0, y), as their
projective representatives are (xZ : 0 : Z) or (0 : yZ : Z) for some Z ∈ F∗p.
Curve randomization. Finally, it is possible to randomize the curve over which
the computations are performed. This also randomizes almost all intermediate
values in the scalar multiplication. Such randomization uses either an isomorphic
or an isogenous curve [17, 36].

2.6 The Refined Power Analysis and Zero-Value Point attacks

Goubin’s Refined Power Analysis (RPA) [21] is a side-channel attack against
ECC implementations using a static secret, such as ECDH or X25519, together
with basic or ladder scalar multiplication. It is based on the assumption that
adding7 a point P0 with a zero x- or y-coordinate to another can be distin-
guished from adding a general point, at least over several measured traces. We
7 The attack also applies to doubling. For simplicity, we only consider addition in this
paper, but our results easily extend to doubling.
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discussed the existence of zero coordinate points in Section 2.1. The side channel
is usually based on power or electromagnetic emanation, where one can distin-
guish the multiplication with a zero field element from the general case (see e.g.
Fig. 1 in [16]) due to the dependency of power consumption of a device on the
data and instructions that are being executed. The attacker measures the power
consumption of a device using an oscilloscope and a current probe.

In each iteration, the attacker makes a guess k′ ∈ Z∗n for the partial secret
key k, and then checks the guess by querying the implementation using the
public key P1 = [k′−1 mod n]P0. The guess was correct iff the implementation
computes [k′]P1 = P0, detectable using a side channel. Since the scalar multi-
plication is iterative in nature, the attacker adaptively guesses the bits of the
key one by one, building upon the previous guesses. All scalar randomization
countermeasures successfully thwart the RPA attack, as well as Smart’s curve
randomization via isogenies [36], while point randomization or curve random-
ization via isomorphisms do not, since the zero point coordinate does not get
randomized. Unlike [19], the attack does not require fault injection.

More generally, Akishita’s and Takagi’s Zero-Value Point (ZVP) attack [1]
considers intermediate scalar values computed during point addition (as a sub-
routine of scalar multiplication). The intermediate values can be expressed as a
polynomial expression in the input coordinates (see Algorithm 1 for an example
of the intermediate values and Figure 4 for the unrolled version). If the attacker
can select a point P such that P + [k′]P produces a zero scalar intermediate
value during the formula’s execution (not necessarily at the end), the attacker
can detect the zero using a side channel. Then they can deduce which multiples
of the input were computed during the scalar multiplication, and thus recover
the secret scalar. Unlike RPA, ZVP does not assume the existence of points with
a zero coordinate; in particular, it applies to prime-order curves.

The value of the input point P depends on k′, the used formulas, the partic-
ular intermediate value that is being zeroed out, as well as the curve. It seems
that finding these points for even a mildly large k′ is an open problem, claimed
to be as difficult as computing the k′-th division polynomial. The maximal k′
required for key recovery is in the same range as the secret scalar, approaching
n. For some coordinate systems and formulas for (twisted) Edwards curves, the
intermediate expressions can be classified [30], but the general case is not settled.
The ZVP attack can be thought of as a generalization of the RPA attack, and
the same countermeasures prevent it.

2.7 Exceptional procedure attacks

In practice, scalar multiplication uses non-affine point representations (shown in
Table 1), only mapping the non-affine result into its unique affine representation
at the end. This final conversion is the only part of the computation requir-
ing field inversions, usually of the Z-coordinate. Exceptional Procedure Attacks
(EPA) are based on finding a pair of points P and Q such that the final con-
version of P + Q = add(P,Q) fails, because the expression being inverted is
zero. The implementation then either throws an error, or produces an obviously
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detectable output [27]. Such points are called exceptional w.r.t. a given formula;
see Section 4 for a more precise definition and classification of all non-trivial
exceptional points for EFD formulas.

3 A unified approach to the attacks

The attacks introduced in Section 2.6 and Section 2.7 have a lot in common. In
this section, we build a common framework that captures them as special cases.

3.1 Attack setting

Let S : (k, P ) 7→ [k]P be a scalar point multiplication algorithm on a curve.
Assume k is a fixed secret input, and P is an arbitrary affine point. This scalar
multiplication with a fixed secret scalar and chosen input point is the target in
our setting. The evaluation of S(k, P ) consists of a sequence of formula execu-
tions. As described in Section 2.4 and displayed in Figure 1, the formulas take
as input some multiples of P , which depend on k and S.

Let us define OFB,U : Im → {0, 1,⊥}, the boolean special point oracle for
formula F :

OFB,U (I) :=

 1 if I was input into F during the S(k, P ) computation;
0 if I was not input into F ;
⊥ if the oracle could not determine the result,

where OFB,U (I) ∈ {0, 1} for I ∈ U , and I = {[i]|i ∈ Z} ∪ {_} is the set of
symbolic multiples of the input point P , (with [i] representing the point [i]P
and _ representing any multiple of the point P ). When U = Im, we omit the
subscript, and we also simply write I instead of {I}. The arity m of the oracle
is the same as the arity of F , e.g., 2 for add.

We also define the temporal special point oracle OFT,U : Im → {0, 1,⊥}×P(N)
as OFT,U (I) = (OFB,U (I), T ), where T is a set of iteration indices when F took
I as an input. If the oracle cannot distinguish between a multiple [i] and its
negative [−i], we add ± to its notation and obtain OF±B,U and OF±T,U .

An example instance of the boolean oracle is Oadd
B , which given I = (_, [3])

returns 1 iff the formula add ever received as its second input [3]P during the
S(k, P ) computation. A different example of an oracle, useful in the case of a
windowed S, is Oadd

T with input I = ([5],_). It returns all of the iterations in
which the add formula took [5]P as its first input. We assume an instance of the
oracle makes a constant amount of queries to the implementation performing
the scalar multiplication, with chosen input points.

Section 3.4 shows how to construct instances of the boolean and temporal
special point oracles using the techniques of RPA, ZVP, and EPA attacks, as
well as how to use these oracles in an attack.
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add(P, [2]P) [k]Pdbl(P) dbl([3]P) dbl([6]P)
...add(P, [6]P)

a. c. e.

b. d.

k
P

OB
add(I )

1. Create P.
2. Give P to implementation.
3. Receive [k]P and observe side-channel.
4. Repeat a constant amount of times.
5. Evaluate and return.

side-channel leakage

Target

Fig. 1. An example of the boolean special point oracle, with a target performing the
S(k, P ) scalar multiplication execution using a basic double-and-add-always algorithm.
The scalar k has MSBs 110.

3.2 The dependent coordinates problem

To unify the attacks, we first introduce an abstract problem and analyze it.
Following the notation introduced in Section 2, for the rest of this section

we fix a prime p ≥ 3 and an elliptic curve E/Fp given8 by Y 2 = fE(X), where
fE(X) = X3 + aX + b and a, b ∈ Fp. Let G be a subgroup of E(Fp) with prime
order q. Recall that mk is the x-coordinate of the rational multiplication-by-k
function on E. Furthermore, let

RE := Fp[X1, X2, Y1, Y2]/(Y
2
1 − fE(X1), Y

2
2 − fE(X2))

be the coordinate ring of E, and for a multivariate polynomial g, let deg g denote
its multi-degree, given as the sum of its degrees with respect to all individual
variables. Finally, note that lower case letters denote scalar values, whereas upper
case letters denote either free variables or curve points.

Definition 1 (DCP: the dependent coordinates problem). Given a poly-
nomial f ∈ Fp[X1, X2, Y1, Y2] and an integer k, find a pair of points (if they
exist) P,Q ∈ G such that Q = [k]P and f(X1, X2, Y1, Y2) = 0, where P =
(X1, Y1), Q = (X2, Y2). If f ∈ Fp[X1, X2], we call the problem the x-only depen-
dent coordinates problem, or xDCP.

Without loss of generality, we can also consider k ∈ Zq instead of k ∈ Z, and
replace f by any of its representatives from RE .

8 In principle, our techniques apply to other curves models as well, but we use the
short Weierstrass model for simplicity, as it represents all curves.
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Solving DCP via xDCP. The following lemma cancels the occurrences of Y1
and Y2 (if any) thanks to squarings and reductions modulo the curve equation.

Lemma 1. Let f ∈ Fp[X1, X2, Y1, Y2], k ∈ Z and let (P,Q) be a solution to the
DCP determined by f and c. Then there exists a polynomial f ′ ∈ Fp[X1, X2]
such that (P,Q) is also a solution to the xDCP determined by f ′ and k and
deg f ′ ≤ 6 · deg f + 12.

Proof. Working in RE , we replace all even powers of Y1 and Y2 by powers of
fE(X1) and fE(X2), respectively; representing f as f0 + f1Y1 + f2Y2 + f12Y1Y2
for some f0, f1, f2, f12 ∈ Fp[X1, X2]. Next, we eliminate Y1 and Y2:

f0 + f1Y1 + f2Y2 + f12Y1Y2 = 0

Y1(f1 + f12Y2) = −(f0 + f2Y2)

fE(X1)(f1 + f12Y2)
2 = (f0 + f2Y2)

2

fE(X1)(f
2
1 + f212fE(X2) + 2f1f12Y2) = f20 + f22 fE(X2) + 2f0f2Y2

Y2(fE(X1) · 2f1f12 − 2f0f2) = f20 + f22 fE(X2)

− fE(X1)(f
2
1 + f212fE(X2))

fE(X2)(fE(X1) · 2f1f12 − 2f0f2)
2 = (f20 + f22 fE(X2)

− fE(X1)(f
2
1 + f212fE(X2))

2.

Thus, instead of finding the roots of f , we find the roots of f ′, where

f ′ =fE(X2)(fE(X1) · 2f1f12 − 2f0f2)
2

−
(
f20 + f22 fE(X2)− fE(X1)(f

2
1 + f212fE(X2))

)2
.

To conclude the proof, it suffices to estimate

deg f ′ =max{2 ·max {deg f1f12 + 3,deg f0f2}+ 3,

2 ·max{2·deg f0, 2·deg f2 + 3,max{2·deg f1, 2·deg f12 + 3}+ 3}}
≤4 ·max{deg f0,deg f1,deg f2,deg f12}+ 12

≤4 · deg(f0 + f1Y1 + f2Y2 + f12Y1Y2) + 12

≤4 · 3
2
· deg f + 12.

ut

Indeed, Lemma 1 allows us to only consider xDCP instead of DCP for the
remainder of the paper. Yet with care: we lost the information about the signs
of Y1 and Y2 during the squaring procedure in the proof, so the resulting xDCP
also has solutions with incorrect signs (note that xDCP is always sign-agnostic).

The multi-degree bound is loose and might be much lower in many instances.
When solving ZVP or EPA, the multi-degree of f is typically between 1 and 8,
so the reduction to xDCP is still practical. Furthermore, we can often factor the
expressions and take only a single factor as f .
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An easy case. If f ∈ Fp[X2, Y2], then the DCP becomes easy whenever a
solution exists. Using Lemma 1, we instead solve xDCP with f ′ ∈ Fp[X2], finding
the roots algorithmically. If there is a root corresponding to the x-coordinate of
some point Q, we simply compute P = [k−1 mod q]Q and we are done. Note that
this approach relies heavily on ignoring the relationship between P and Q until
the very end. In particular, the solvability of DCP does not depend on the size
of k in this case. This contrasts the claims of Akishita and Takagi [1], who found
constructing ZVP points for addition (which amounts to solving an instance of
the DCP) as hard as computing the k-th division polynomial.

The number of solutions. We now estimate the number of k’s such that the
xDCP has a solution. If f is linear in one of its variables, say X1, then for
any x2 ∈ Fp, there is exactly one x1 such that f(x1, x2) = 0 (except for rare
cases when F (X1, x2) is a constant polynomial). The probability that both x1
and x2 are the x-coordinates of P,Q ∈ G is roughly 1

4 ·
q
n . For any such point

pairs, there is exactly one k ∈ Zq such that Q = [k]P , corresponding to the two
possible solutions k, q − k. Even though such k’s can overlap, we estimate the
number of k’s for which xDCP has a solution as 2 ·p · 14 ·

q
n ≈

p
2 when G is a large

subgroup. The same heuristic applies when the degree D of at least one variable
in f is coprime to ϕ(p) = p − 1, since taking the D-th power is an invertible
operation in Fp. In general, the correspondence between the roots of f is more
problematic, but based on our empirical results, the above heuristic still seems
to be reasonably accurate.

3.3 Solving xDCP

The basic strategy to solve xDCP described in [1] is setting X2 = mk(X1)
and then finding the roots of f(X1, X2) ∈ Fp[X1]. If any of the roots is an x-
coordinate of a point P ′ ∈ G, we take P = P ′, Q = [k]P . The main limitation is
that mk is very hard to compute for large k ≥ B. In practice, B ≈ 220, mainly
due to memory requirements.

Shifting the scalar. Suppose that both l and kl are small modulo q for some
l ∈ Z. Then we setX1 = ml(X), X2 = mkl(X), and find the roots of f(X1, X2) ∈
Fp[X1]. If any of them is an x-coordinate of a point P ′ ∈ G, we take P = [l]P ′,
Q = [k]P .

In practice, we find the shortest vector in the lattice generated by
(
1 k
0 q

)
using the Lagrange-Gauss algorithm, and take l as its first coordinate. Indeed,
this increases the size of the set of all k’s for which we can solve the xDCP to
almost B2, compared to B for the basic approach.

Using the greatest common divisor. To avoid expensive root-finding of a
large polynomial, we suggest to construct another polynomial with the same
roots, and compute the greatest common divisor (gcd). Replacing mkl with
m|q−kl| in the above method offers such a polynomial. Sincem|q−kl| might not be
directly computable, we reduce both its numerator and its denominator modulo
the first polynomial at every step. This does not influence the gcd. Finally, we
perform a final reduction after substituting it into f .
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More precisely, let num(g) denote the numerator of a rational function g. Let
X1 = ml(X), X2 = mkl(X), and define F1 = num(f(X1, X2)). Furthermore,
let X ′2 ≡ m|q−kl|(X) mod F1 and F2 = num(f(X1, X

′
2)). Then we efficiently

compute F = gcd(F1, F2) using Euclid’s algorithm. If any of the roots of F is
an x-coordinate of a point P ′ ∈ G, we take P = [l]P ′, Q = [k]P . Heuristically, it
seems that F is always linear.

Minor scalar optimizations. The symmetry between P and Q, and the fact
that mk(x) = m−k(x) for all x ∈ Fp, allows us to replace k with ±k±1 mod q.
This saves up to two bits.

3.4 The full attack

We now show that RPA, ZVP, and EPA are all special cases of the same attack,
utilizing different side channels and the dependent coordinates problem to build
an instance of the special point oracle.

The adaptive approach. As mentioned in Section 3.1, the multiples which are
input into the formulas during a scalar multiplication operation depend on the
scalar. These multiples allow us to reconstruct the scalar, as they determine the
corresponding addition chain. For example, step e) in Figure 1 computes either
dbl([6]P ) or dbl([7]P ), depending on the third most significant bit of the scalar.

During the attack, we have a known part of the scalar. It starts empty, and
we recover it in the same way the scalar multiplication algorithm processes it.
Given a known part, we make a guess on the next subpart, either a single bit
or a window of bits, then use some special point oracle to determine whether
the guess was true. This implies some multiples derived from the known part
and next subpart were input into a formula. This way, we recover the scalar in
logarithmically many queries to the oracle.

The type of oracle we have access to, and the scalar multiplication algorithm
used, both affect the attack. For example, if a fixed window scalar multiplication
algorithm is used and we have access to an Oadd

T,([e],_) for e ranging over all of
the precomputed multiples of the input point, we can recover the window digits
directly and assemble the scalar afterwards. If on the other hand a basic scalar
multiplication algorithm is used and we have an Odbl

B,([e]) for e ranging over all
possible scalars, we recover the scalar adaptively. Given a known part of the
scalar k′, we can gain the next bit based on the output of Odbl

B,([k′]) or O
dbl
B,([k′+1]).

All of the RPA, ZVP, and EPA attacks utilize this adaptive approach, dif-
fering only in how they construct a special point oracle (i.e. which side channel
and property of the curve, formula, or implementation they use).

Constructing oracles from ZVP. Given a point addition formula, we consider
the intermediate polynomials, and pick any one of them as f . A solution to the
dependent coordinates problem for some k then allows us to construct a point
P such that f will evaluate to zero during the computation of P + [k]P . Now
using a suitable side channel, we can detect whether this zero appears during the
scalar multiplication, and potentially localize it into an iteration of the scalar
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multiplication algorithm [1]. Thus we can construct an instance of the Oadd
T,([1],[k])

oracle for all k for which we can solve the (x)DCP9. Similarly, considering the
intermediate polynomials in a doubling formula and zeroing out some of them
for an input of [k]P allows us to construct an instance of the Odbl

T,([k]) oracle. Note
that in the case of the addition formula, if the chosen intermediate polynomial f
depends only on one of the input points, it is possible to construct the Oadd

T,(_,[k])

and Oadd
T,([1],_) oracles.

Constructing oracles from RPA. This is a special case of ZVP in which the
intermediate value to zero out is a coordinate of an input point [21]. This leads
to an easy case of the (x)DCP, discussed in Section 3.2, as f = X2 or f = Y2.
Because this oracle construction approach leads to an easy case of the (x)DCP,
there is no bound on the multiple k in the constructed oracle instances Oadd

T,(_,[k]).
One can also construct oracle instances such as Oadd

T,([1],_) or Odbl
T,([k]), but not

Oadd
T,([1],[k]) as the appearance of a zero in one of the input points necessarily does

not depend on the other point.
Whether these RPA oracles can be constructed depends on the properties of

the curve, i.e. whether it has the points (x, 0) or (0, y). Note that if both a point
and its negative have a zero-coordinate (as is the case of the (0, y) point on short
Weierstrass curves), one can only use it to construct OF±T and OF±B oracles.

Constructing oracles from EPA. In this case, the side channel used to con-
struct the oracle is an error one. The oracle detects whether a computation fails
because of an undefined inversion. As explained in Section 2.7, this can only
happen at the very end of the scalar multiplication, when mapping the result
back to affine coordinates, so we can take f to be the expression by which we
divide. If we can solve the (x)DCP for this f and some k, we can input this
point10 into the scalar multiplication, which will fail if it computes P + [k]P ,
enabling us to construct an Oadd

B,([1],[k]). Note that this is a boolean oracle, as
with the error side channel we can only detect that the mapping back to affine
coordinates failed, and not during which iteration the zero was introduced.

3.5 Window method attack

The main limitation of the ZVP-based attacks compared to RPA-like attacks is
that they allow the attacker to recover only a limited number of secret scalar
bits. This is due to the need for solving a hard case of the (x)DCP with large k.
We show that these attacks can extract the full scalar when the target algorithm
is window-based, or more generally adds points to the accumulator point from
a set of precomputed input point multiples, conditionally on secret scalar bits.

The attack requires that the addition formula in question has an intermediate
value which depends only on one of the operands, so that zeroing it out leads
9 We cannot always consider affine representations as f might not be homogeneous,
but in practice this is not a problem, as we have freedom in choosing f .

10 The homogeneity of f allows us to only consider affine representations.
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to an easy case of the DCP as mentioned in Section 3.2. Together with an
appropriate side channel, this allows the attacker to construct anOadd

T,([e],_) oracle.
Note that the attacker needs a temporal special point oracle, and not a boolean
one, as the event that the e-th multiple was added to the accumulator point
somewhere in the scalar multiplication is insufficient to extract information on
the secret scalar. Once the attacker is able to detect the iterations where the e-th
multiple was added, the attacker varies over all values e in the set of precomputed
multiples, based on the algorithm. In this way, the attacker recovers the window
digits and thus the full secret scalar. This attack works even if the curve has no
RPA points (0, y), (x, 0), and thus RPA does not apply.

4 Classifying the exceptional points

While many EFD formulas [4] are not complete, we are not aware of any sys-
tematic overview of the respective pairs of exceptional points. To rectify this,
we implemented tooling for unrolling the formulas and tracing their intermedi-
ate values. The tooling is an extension of pyecsca [28] (Python Elliptic Curve
cryptography Side-Channel Analysis) – a Python toolkit that aims to extract
information from black-box implementations of ECC through side channels and
offers extensive simulations of ECC implementations.

Our methodology loosely combines two very different, yet complementary,
techniques: fuzzing and manual analysis.

Fuzzing. To quickly identify possible exceptional points (and later verify our
findings heuristically), an automated approach is useful. We fuzzed small curves
(e.g., over 5-bit fields) of all relevant types, trying all input point pairs for all the
analyzed addition formulas, comparing the result to the correct affine output.
This approach scales well, but at the cost of an inherently high number of false
positives (and possibly false negatives). The results for small curves do not always
generalize to large ones (though they can reveal patterns for manual analysis).

Manual analysis. To find the sufficient and necessary conditions that classify
all the exceptional points, we resort to manual inspection. Compared to breadth-
focused fuzzing, it dives deeper, taking much more effort, argumentation, and
attention to detail. But in the end, it provides more insight, and is applicable to
all relevant curves of all sizes.

We carefully went through all 111 addition formulas and 42 differential addi-
tion/ladder formulas for the EW , EM , ET , EE models in the EFD11, and inves-
tigated when the expressions by which we divide during the conversion to affine
coordinates could be zero12. Namely, for addition this amounted to studying
the conditions X3 = 0 or Y3 = 0 for (twisted) inverted Edwards coordinates,

11 Some of the formulas are just adaptations for specific coefficients (e.g. a = −3 for
EW ), mixed additions, etc.

12 Occasionally omitting the cases where the result is the neutral element.
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ZZ3 = 0 or ZZZ3 = 0 for short Weierstrass xyzz coordinates13, and Z3 = 0 for
all other coordinates. The variable’s subscript denotes its index in the addition
formula with 1 and 2 being the inputs and 3 being the output. Similarly, for
differential addition and/or ladders, we instead study when the outputs Z4 and
Z5 were equal to zero. Furthermore, the unrolled expressions could be studied
to see which formulas are unified, though we did not pursue this path further.

The rest of this section describes the details of our manual analysis. The
expressions we refer to are present in our data release (see Section 5.3), though
we also provide example expressions that illustrate the process in Table 2.

Coordinates Formula Expression

jacobian
jacobian-0
jacobian-3

add-1986-cc Z3 = Z2 ∗ Z1 ∗ (X2 ∗ Z12 −X1 ∗ Z22)
add-1998-cmo-2 Z3 = Z2 ∗ Z1 ∗ (X2 ∗ Z12 −X1 ∗ Z22)
add-1998-cmo Z3 = Z2 ∗ Z1 ∗ (X2 ∗ Z12 −X1 ∗ Z22)
add-1998-hnm Z3 = (−1) ∗ Z2 ∗ Z1 ∗ (X2 ∗ Z12 −X1 ∗ Z22)
add-2001-b Z3 = Z2 ∗ Z1 ∗ (X2 ∗ Z12 −X1 ∗ Z22)
add-2007-bl Z3 = 2 ∗ Z2 ∗ Z1 ∗ (X2 ∗ Z12 −X1 ∗ Z22)
madd-2004-hmv Z3 = Z1 ∗ (X2 ∗ Z12 −X1)
madd-2007-bl Z3 = 2 ∗ Z1 ∗ (X2 ∗ Z12 −X1)
madd-2008-g Z3 = (−1) ∗ Z1 ∗ (X2 ∗ Z12 −X1)
madd Z3 = 2 ∗ Z1 ∗ (X2 ∗ Z12 −X1)
mmadd-2007-bl Z3 = (−1) ∗ 2 ∗ (X1−X2)
zadd-2007-m Z3 = (−1) ∗ Z1 ∗ (X1−X2)

Table 2. Jacobian coordinate outputs on short Weierstrass curves.

4.1 Exceptional points for addition

We call a pair of points P,Q exceptional (w.r.t. some representation) for an
addition formula F if F(P,Q) 6= P +Q. If moreover P 6= ±Q, and both P and
Q have odd prime order, we say that P,Q are non-trivial. This also implies that
F(P,Q) should always have an affine representation for all F we discuss.

Short Weierstrass: projective, jacobian, modified, w12, xyzz coords.
For short Weierstrass curves, non-triviality implies x1 6= x2. Moreover, we do not
need to consider the expression corresponding to Z3 in the formulas by Renes
et al. [35], as Bosma and Lenstra [7] prove their completeness. Since none of the
Z3 expressions depend on a particular representation of a point, we can (without
loss of generality) assume

Z1 = Z2 = ZZ1 = ZZ2 = ZZZ1 = ZZZ2 = 1

when searching for non-trivial exceptional points, which implies xi = Xi, yi = Yi.
With this in mind, there is only a single factor that could possibly be zero in the
13 ZZi and ZZZi are variables whose values equal Z2

i and Z3
i throughout the compu-

tation, respectively.
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studied Z3 expressions, namely (y1 + y2)
3. This factor is present in all variants

of the Brier-Joye [8] formulas (add-2002-bj) and Bernstein-Lange [4] formulas
(add-2007-bl), illustrated in Algorithm 1. Note that (y1+y2)3 = 0 is equivalent
to y1 = −y2, which implies

x31 + ax1 + b = y21 = y22 = x32 + ax2 + b

(x21 + x1x2 + x22 + a)(x1 − x2) = 0

x21 + x1x2 + x22 + a = 0, since x1 6= x2.

Thus, we get a family of non-trivial exceptional points

P = (x, y) and Q = (x′,−y) with x 6= x′,

equivalently characterized by x2+xx′+x′2+a = 0, which is a possible input to the
xDCP. Izu and Takagi [27] previously identified this family for the add-2002-bj
case, but not for the add-2007-bl one.

Algorithm 1 Point addition formula add-2007-bl in projective coordinates

Require:
E/Fp : y

2 = x3 + ax+ b,

P = (X1 : Y1 : Z1),

Q = (X2 : Y2 : Z2)
Ensure: (X3 : Y3 : Z3) = P +Q
1: U1 = X1 · Z2

2: U2 = X2 · Z1

3: S1 = Y1 · Z2

4: S2 = Y2 · Z1

5: ZZ = Z1 · Z2

6: T = U1 + U2

7: TT = T 2

8: M = S1 + S2

9: t0 = ZZ2

10: t1 = a · t0
11: t2 = U1 · U2

12: t3 = TT − t2
13: R = t3 + t1
14: F = ZZ ·M

15: L = M · F
16: LL = L2

17: t4 = T + L
18: t5 = t24
19: t6 = t5 − TT
20: G = t6 − LL
21: t7 = R2

22: t8 = 2 · t7
23: W = t8 −G
24: t9 = F ·W
25: X3 = 2 · t9
26: t10 = 2 ·W
27: t11 = G− t10
28: t12 = 2 · LL
29: t13 = R · t11
30: Y3 = t13 − t12
31: t14 = F 2

32: t15 = F · t14
33: Z3 = 4 · t15

(Twisted) Edwards: projective, extended, inverted coords. Let Ea,d :
ax2 + y2 = 1 + dx2y2 be a (twisted) Edwards curve14 (cf. Section 2; note that
we do not impose any (non-)square restrictions on a, d ∈ Fp). In order to go
through all the Z3 expressions and see when they are equal to zero, we introduce
the following lemma.
14 We only consider Edwards curves with c = 1, since the others can be isomorphically

rescaled to this case without affecting the nullity of the Z3 expressions.
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Lemma 2. Let P = (x1, y1), Q = (x2, y2) be a pair of non-trivial exceptional
points on Ea,d. Then the following holds:

x1x2y1y2 6= 0, (2)
dx1x2y1y2 6= ±1, (3)

y1y2 6= −ax1x2, (4)
x1y2 6= x2y1, (5)
x1y2 6= −x2y1, (6)
y1y2 6= ax1x2. (7)
x1y1 6= ±x2y2. (8)

Proof. (2) follows from the fact that neither P nor Q are 4-torsion. Hisil et al.
[25] (Theorem 1, Corollary 1) prove (3), (4) and (5).

Now consider the addition law from [3]:

(x1, y1) + (y1, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

)
.

Assume that either (6) or (7) is false. Since the denominators are nonzero by
(3), one of the coordinates of P +Q is zero, which implies P +Q is a 4-torsion
point. This is impossible, since both P and Q have odd order and P 6= −Q.

Finally, consider the addition law from [25]:

(x1, y1) + (y1, y2) =

(
x1y1 + x2y2
y1y2 + ax1x2

,
x1y1 − x2y2
x1y2 − y1x2

)
.

Assume that (8) is false. Since the denominators are nonzero by (4) and (5), one
of the coordinates of P + Q is zero, which implies P + Q is a 4-torsion point.
This is impossible, since both P and Q have odd prime order and P 6= −Q. ut

After factoring all the Z3 expressions, we can (without loss of generality) set
Z1 = Z2 = 1. Then we have xi = 1/Xi, yi = 1/Yi for inverted coordinates, and
xi = Xi, yi = Yi for all others. Lemma 2 handles all the possible zero factors,
which means that there are no non-trivial exceptional points.

4.2 Exceptional points for differential addition and ladders

Recall from Section 2.3 that differential addition and ladder formulas take rep-
resentations of three input points (P −Q,P,Q) and return the representation of
P +Q or ([2]P, P +Q), respectively.

We call a triplet of points (P −Q,P,Q) exceptional (w.r.t. a representation)
for a differential addition or ladder formula F if F(P − Q,P,Q) 6= P + Q or
F(P −Q,P,Q) 6= ([2]P, P +Q), respectively. If moreover P 6= ±Q, and both P
and Q have odd prime order, we say that (P −Q,P,Q) are non-trivial. This also
implies that F(P −Q,P,Q) should always have an affine representation for all
F we discuss (hence Z4 and Z5 should be nonzero).
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Curve model Coordinates Formula name

EW

projective add-2007-bl
add-2002-bj

xz

dadd-2002-it, mdadd-2002-it
ladd-2002-it, mladd-2002-it
dadd-2002-it-3, mdadd-2002-it-3
ladd-2002-it-3, mladd-2002-it-3
mdadd-2002-bj, mladd-2002-bj
mdadd-2002-bj-2, mladd-2002-bj-2
mladd-2002-bj-3

Table 3. Formulas [4, 26, 9] with non-trivial exceptional points. The projective coor-
dinates apply to all formula versions: a = −1, a = −3 and general a.

Short Weierstrass: xz coords. In this case, the inputs are P −Q = (X1, Z1),
P = (X2, Z2), Q = (X3, Z3) on EW /Fp : y2 = x3 + ax + b; the outputs are
(X4, Z4) for diff. addition and (X4, Z4), (X5, Z5) for ladders.

Setting Z1 = Z2 = Z3 = 1 and x1 = X1, x2 = X2, x3 = X3, the only
possibilities for Z4 = 0 or Z5 = 0 that arise in the formulas are x2 = x3,
x32 + ax2 + b = 0, and x1 = 0. Only the latter corresponds15 to a triplet of
non-trivial exceptional points ((0 : 1)−Q, (0 : 1), Q), whenever b is a square in
Fp. The impacted formulas are {d/l}add-2002-it, {d/l}add-2002-it-3, and
their mixed variants, as well as mdadd-2002-bj, m{l/d}add-2002-bj-2, and
mladd-2002-bj-3.

Montgomery: xz coords. Here, the inputs are P−Q = (X1, Z1), P = (X2, Z2),
Q = (X3, Z3) on EM/Fp : By2 = x3+Ax2+x; the outputs are (X4, Z4) for diff.
addition and (X4, Z4), (X5, Z5) for ladders.

Setting Z1 = Z2 = Z3 = 1 and x1 = X1, x2 = X2, x3 = X3, the only
possibilities for Z4 = 0 or Z5 = 0 that arise in the formulas are x1 = 0, x2 = 0,
x2 = 1/2 · (−a ±

√
a2 − 4), x2 = x3 and (x2 − 1)(x3 + 1) = (x2 + 1)(x3 − 1).

Section 2 shows that the former three correspond to points of order 2 (though√
a2 − 4 might not exist over Fp). The last one implies either x2−1 = x3−1 = 0,

or x2 + 1 = x3 + 1 = 0, or else

1− 2

x2 + 1
=
x2 − 1

x2 + 1
=
x3 − 1

x3 + 1
= 1− 2

x3 + 1
.

In all of these cases, we have x2 = x3, hence the corresponding points are trivial.

Edwards: yz, yzsquared coords. Recall that in these cases, d = r2 for some
r 6= ±1 in F∗p. The inputs are P −Q = (Y1, Z1), P = (Y2, Z2), Q = (Y3, Z3) on
EE/Fp : x2 + y2 = 1 + r2x2y2; the outputs are (Y4, Z4) for diff. addition and
(Y4, Z4), (Y5, Z5) for ladders. In fact, (Y4, Z4) for ladders is just a special case of
(Y5, Z5) with Y2 = Y3, Z2 = Z3, so we may ignore it.

Setting Z1 = Z2 = Z3 = 1, we get y1 = Y1/r, y2 = Y2/r, y3 = Y3/r for the yz
coordinates, and y21 = Y1/r, y

2
2 = Y2/r, y

2
3 = Y3/r for the yzsquared coordinates,

15 Note that x1 does not directly affect X4 nor X5.
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the ladder Z5 and diff. addition Z4 coincide for all of these formulas. The only
conditions to analyze are y1 = 0 (which is a trivial case as it corresponds to
4-torsion P −Q) and

(1 + ry22)(1 + ry23) =
r + 1

r − 1

(
1− ry22

) (
1− ry23

)
,

which implies

(r − 1)(1 + ry22 + ry23 + r2y22y
2
3) = (r + 1)(1− ry22 − ry23 + r2y22y

2
3)

−2 + 2r2y22 + 2r2y23 − 2r2y22y
2
3 = 0

r2y23(1− y22) = 1− r2y22 . (9)

If 1− r2y22 = 0, then either y3 = 0 or y22 = 1, implying Q or P being 4-torsion.
In the other case, we get

y23 =
1− r2y22
r2(1− y22)

=
1

r2x22
,

and since (9) is symmetric, analogical arguments yield

y22 =
1− r2y23
r2(1− y23)

=
1

r2x23
.

Thus the only case left to consider is x22y23 = x23y
2
2 = 1

r2 . But then we have
(1 + dx2x3y2y3)(1 − dx2x3y2y3) = 1 − r4x22x23y22y23 = 0, which is impossible for
non-trivial exceptional points by (3) in Lemma 2.

5 Practical implications

This work has several practical implications, stemming from (i) its findings on
exceptional points for EFD formulas; (ii) its development of a ZVP-like attack
on windowed scalar multiplication methods; and (iii) improvements to the tech-
niques used in the ZVP and EPA attacks.

5.1 Impact on cryptographic libraries

We examined the EC arithmetic implementations in 15 popular open-source
cryptographic libraries. Table 4 lists their scalar multiplication algorithm, coor-
dinates, and addition formulas. The focus of our analysis was on ECDH opera-
tions over EW , and in case the library implements several algorithms, we list the
one used for generic curves. Most analyzed libraries use Jacobian coordinates, for
which we report no classes of non-trivial exceptional points in any of the formulas
on EFD. One could conclude that the impact of the new classes of exceptional
points is thus negligible. However, these libraries represent only a fraction of
the uses of addition formulas. Implementations of EC arithmetic, potentially us-
ing one of the addition formulas with non-trivial exceptional points, are found
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in pairing-based cryptography, password-authenticated key exchange, or many
zero-knowledge proof system implementations, which we did not examine.

The discovered classes of exceptional points are unexpected from the point-
of-view of a developer. While many developers know that formulas which are
not complete or unified need special handling, they do not expect seemingly
unrelated points causing issues in the formula. There is thus nothing stopping
the developer from misusing the formulas, as the formula papers or the EFD
give no warning. We illustrate this by presenting a history of issues surrounding
exceptional cases in formulas used by cryptographic libraries.

NSS: unimplemented exceptions. For generic EW , NSS has three different
implementations of EC arithmetic. The first is pure affine, which we disregard.
The second is mixed point addition using an implementation of madd-2004-hmv,
optimized for a = −3. However, the code failed to account for the P = ±Q
cases. Furthermore, the corresponding point doubling is an implementation of
dbl-1998-cmo-2, and failed to account for the 2P = O case. Mozilla issued
CVE-2015-273016 to track these issues.

NSS: more unimplemented exceptions. The last, and most generic EW
arithmetic in NSS, is mixed point addition using a madd-2004-hmv implementa-
tion, with no optimizations for curve coefficients. Two years after the previous
issue, Valenta, Sullivan, Sanso, and Heninger [38, Section 7.2] uncovered the anal-
ogous flaw in this code. There were no corresponding flaws in point doubling.
Mozilla issued CVE-2017-778117 to track this issue.

OpenSSL: broken ladder. In 2018, OpenSSL switched to a ladder implemen-
tation for generic EW scalar multiplications. Work by Tuveri et al. [37] prompted
the change. For the ladder step, the initial code, merged to the development
branch, was an implementation of ladd-2002-it-3. Unfortunately, this code
fails in the case of a particular x-coordinate being zero (Section 4.2). One month
passed between merging the broken implementation and the fix18, switching to
ladd-2002-it-4. The discovery19 was mostly luck – during standardization,
GOST curves utilized generators with the smallest possible x-coordinate.

BoringSSL: untaken exceptions leak. Historically, Google’s BoringSSL only
supports a very narrow subset of curves: P-224, P-256, P-384, P-521, and Curve-
25519. Weiser et al. [40] discovered timing leaks in BoringSSL’s point addition
formulas, affecting the legacy NIST curves in the aforementioned list. The leaks
were in three distinct implementations: P-224 and P-256 have dedicated EC
arithmetic stacks, while P-384 and P-521 share a single stack. In all cases, the
root cause is short circuit logic: a snippet from the vulnerabilities follows.

if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)

16 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2730
17 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7781
18 https://github.com/openssl/openssl/pull/7000
19 https://github.com/openssl/openssl/issues/6999

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2730
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7781
https://github.com/openssl/openssl/pull/7000
https://github.com/openssl/openssl/issues/6999
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The first two variables are booleans tracking whether the two x-coordinates
are equal (resp. y), and the last two ensure neither operand is O by checking if
the z-coordinates are zero. This C statement is not constant-time. For instance:

– if the first branch fails, this tells the attacker the x-coordinates are not equal;
– if the second branch fails, this tells the attacker the x-coordinates are equal,

but the y-coordinates are not;
– if the third branch fails, this tells the attacker the x- and y-coordinates are

equal, and the first operand is O;
– if the fourth branch fails, this tells the attacker the x- and y-coordinates are

equal, the first operand is not O, yet the last operand is O;
– if no branch fails, this tells the attacker the x- and y-coordinates are equal,

and neither operand is O (subsequently early exiting to point doubling).

For example, this leak is relevant at the beginning of scalar multiplication, in
various cases where the accumulator takes the value O. These (probabilistically)
small leaks are often sufficient for lattice-based cryptanalysis of nonce-based
digital signature schemes, such as ECDSA. We feel this case is particularly in-
teresting, since it is not the exception itself that usually leaks, but rather the
check for the exception. Google fixed20 the issues in 2019.

Python fastecdsa: division by zero. The Python module fastecdsa is an
extension module, backed by GNU MP, a multiprecision arithmetic library writ-
ten in C. It implements the ECDSA signature scheme21, also providing flexible
EC arithmetic with affine coordinates. The module supports generic EW curves,
as well as several standardized curves with fixed parameters, and EW versions
of modern EE and ET curves such as Curve25519 and Curve448. Using our
Section 4 methodology, we discovered22 that the point doubling code does not
handle the 2P = O case properly. The C code ignores the return code from GNU
MP’s modular inversion function. In the y = 0 case, this leads to a silent division
by zero, and incorrect results for points with even order. While this naturally af-
fected generic fastecdsa curves, the EW versions of Curve25519 and Curve448
were impacted the most. This is because all other standardized curves built into
fastecdsa have large prime order.

5.2 Attack improvements

Previous ZVP attacks targeting addition formulas on different scalar multipli-
cation methods required the computation of large degree division polynomials.
This limited the attack to only recover a small amount of secret scalar bits. On
the other hand, our proposed attack on windowed scalar multiplication methods
from Section 3.5 allows the attacker to recover the full scalar. Thus, this shows
that windowed methods of scalar multiplication are somewhat more vulnerable
20 https://boringssl.googlesource.com/boringssl/+/12d9ed670da3edd64ce8175c
21 https://pypi.org/project/fastecdsa/
22 https://github.com/AntonKueltz/fastecdsa/pull/58

https://boringssl.googlesource.com/boringssl/+/12d9ed670da3edd64ce8175c
https://pypi.org/project/fastecdsa/
https://github.com/AntonKueltz/fastecdsa/pull/58
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Library Operation Scalar multiplier Coordinates Formulas

BouncyCastle
1.68

KeyGen Comb modified add-1998-cmo-2
Derive Window NAF modified add-1998-cmo-2

BoringSSL
9f55d97

KeyGen Fixed window jacobian add-2007-bl
Derive Fixed window jacobian add-2007-bl

Botan
2.18.0

KeyGen Fixed window jacobian-3 add-1998-cmo-2
Derive Fixed window jacobian-3 add-1998-cmo-2

Crypto++
8.5.0

KeyGen Sliding window affine textbook1

Derive Sliding window affine textbook1

fastecdsa
2.2.1

KeyGen Ladder affine textbook1

Derive Ladder affine textbook1

libgcrypt
1.9.3

KeyGen Basic left-to-right jacobian add-1998-hnm
Derive Basic left-to-right jacobian add-1998-hnm

LibreSSL
3.3.3

KeyGen Ladder jacobian add-1998-hnm
Derive Ladder jacobian add-1998-hnm

libtomcrypt
0.18.2

KeyGen Sliding window jacobian add-1998-hnm
Derive Sliding window jacobian add-1998-hnm

IPP-crypto
2021.2

KeyGen Window NAF jacobian add-1998-cmo-2
Derive Window NAF jacobian add-1998-cmo-2

Microsoft CNG
6d019ce

KeyGen Fixed window jacobian add-2007-bl
Derive Fixed window jacobian add-2007-bl

NSS
3.65

KeyGen Window NAF jacobian madd-2004-hmv
Derive Window NAF jacobian madd-2004-hmv

OpenSSL
1.1.1k

KeyGen Ladder xz mladd-2002-it-4
Derive Ladder xz mladd-2002-it-4

wolfSSL
4.7.0

KeyGen Sliding window jacobian add-1998-hnm
Derive Sliding window jacobian add-1998-hnm

MatrixSSL
4.3.0

KeyGen Sliding window jacobian add-1998-hnm
Derive Sliding window jacobian add-1998-hnm

Go 1.16.4
crypto/elliptic

KeyGen Basic left-to-right jacobian add-2007-bl
Derive Basic left-to-right jacobian add-2007-bl

1 Using textbook chord-and-tangent addition formulas.

Table 4. Libraries analyzed in this work, in the context of ECDH over EW , i.e.
both key generation (KeyGen) and shared secret derivation (Derive). For libraries
supporting multiple choices of coordinates or formulas, we report the most generic
and default setting.

to ZVP-like attacks. We simulated the attack using the pyecsca toolkit, and
were able to recover the full secret scalar from a window NAF algorithm with
add-2016-rcb formulas on the P-224 curve. In the attack, we do not observe a
real power or EM side channel, but the toolkit simulates the computation down
to individual finite field operations, and produces the side-channel output (i.e.,
whether a zero occurred during computation). Appendix A shows the attack
code snippets. Note that the P-224 curve does not have any zero-coordinate
point suitable for the RPA attack, and the used formulas are complete, disal-
lowing the possibility of an EPA attack.

https://github.com/bcgit/bc-java/blob/r1rv68/core/src/main/java/org/bouncycastle/math/ec/ECPoint.java#L658
https://github.com/bcgit/bc-java/blob/r1rv68/core/src/main/java/org/bouncycastle/math/ec/ECPoint.java#L877
https://boringssl.googlesource.com/boringssl/+/9f55d972854d0b34dae39c7cd3679d6ada3dfd5b/crypto/ fipsmodule/ec/ec_montgomery.c#249
https://boringssl.googlesource.com/boringssl/+/9f55d972854d0b34dae39c7cd3679d6ada3dfd5b/crypto/ fipsmodule/ec/ec_montgomery.c#249
https://github.com/randombit/botan/blob/2.18.0/src/lib/pubkey/ec_group/point_gfp.cpp#L89
https://github.com/randombit/botan/blob/2.18.0/src/lib/pubkey/ec_group/point_gfp.cpp#L89
https://github.com/weidai11/cryptopp/blob/CRYPTOPP_8_5_0/ecp.cpp#L260
https://github.com/weidai11/cryptopp/blob/CRYPTOPP_8_5_0/ecp.cpp#L260
https://github.com/AntonKueltz/fastecdsa/blob/9f31ceb2fada67ddc61f931daf1d6a249b969900/src/curveMath.c#L68
https://github.com/AntonKueltz/fastecdsa/blob/9f31ceb2fada67ddc61f931daf1d6a249b969900/src/curveMath.c#L68
https://git.gnupg.org/cgi-bin/gitweb.cgi?p=libgcrypt.git;a=blob;f=mpi/ec.c; h=0b6ae9a99bec0836963000fc5bd7d6c190a4c88d;hb=5f814e8a4968c01a7ffc7762bcaf3ce040594caf#l1307
https://git.gnupg.org/cgi-bin/gitweb.cgi?p=libgcrypt.git;a=blob;f=mpi/ec.c; h=0b6ae9a99bec0836963000fc5bd7d6c190a4c88d;hb=5f814e8a4968c01a7ffc7762bcaf3ce040594caf#l1307
https://github.com/libressl-portable/openbsd/blob/libressl-v3.3.3/src/lib/libcrypto/ec/ecp_smpl.c#L637
https://github.com/libressl-portable/openbsd/blob/libressl-v3.3.3/src/lib/libcrypto/ec/ecp_smpl.c#L637
https://github.com/libtom/libtomcrypt/blob/v1.18.2/src/pk/ecc/ltc_ecc_projective_add_point.c#L33
https://github.com/libtom/libtomcrypt/blob/v1.18.2/src/pk/ecc/ltc_ecc_projective_add_point.c#L33
https://github.com/intel/ipp-crypto/blob/ippcp_2021.2/sources/ippcp/pcpgfpec_add.c#L34
https://github.com/intel/ipp-crypto/blob/ippcp_2021.2/sources/ippcp/pcpgfpec_add.c#L34
https://github.com/microsoft/SymCrypt/blob/6d019cefafb3fefe3c53b0de3bba6f8c86e2d48a/lib/ec_short_weierstrass.c#L483
https://github.com/microsoft/SymCrypt/blob/6d019cefafb3fefe3c53b0de3bba6f8c86e2d48a/lib/ec_short_weierstrass.c#L483
https://hg.mozilla.org/projects/nss/file/0e785b3a4a10a25afa367dc0b93c01c166a499a5/lib/freebl/ecl/ecp_jm.c#l88
https://hg.mozilla.org/projects/nss/file/0e785b3a4a10a25afa367dc0b93c01c166a499a5/lib/freebl/ecl/ecp_jm.c#l88
https://github.com/openssl/openssl/blob/OpenSSL_1_1_1k/crypto/ec/ecp_smpl.c#L1556
https://github.com/openssl/openssl/blob/OpenSSL_1_1_1k/crypto/ec/ecp_smpl.c#L1556
https://github.com/wolfSSL/wolfssl/blob/v4.7.0-stable/wolfcrypt/src/ecc.c#L1726
https://github.com/wolfSSL/wolfssl/blob/v4.7.0-stable/wolfcrypt/src/ecc.c#L1726
https://github.com/matrixssl/matrixssl/blob/4-3-0-open/crypto/pubkey/ecc_math.c#L740
https://github.com/matrixssl/matrixssl/blob/4-3-0-open/crypto/pubkey/ecc_math.c#L740
https://github.com/golang/go/blob/go1.16.4/src/crypto/elliptic/elliptic.go#L118
https://github.com/golang/go/blob/go1.16.4/src/crypto/elliptic/elliptic.go#L118
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We also expanded the range of scalars for which the (x)DCP can be solved.
While this increases the number of recovered bits only slightly, our improvements
are quite general and might be combined with future ones.

5.3 Tooling

We released all of our code and data under an open-source license, as an extension
to the pyecsca project23. This includes tooling for unrolling EFD formulas,
helping analyze exceptional cases, and automatically construct ZVP points (note
that Akishita and Takagi [1] construct them manually), as well as improvements
to (x)DCP solving (Section 3.3). These tools can be used proactively in the
future, analyzing formulas about to be used in new implementations, rather
than analyzing existing implementations and finding vulnerabilities.

5.4 Reverse engineering

Another application of our techniques is in reverse engineering black-box imple-
mentations of ECC, as suggested in [28]. Many side-channel attacks critically
depend on the attacker having detailed knowledge of the target’s implementa-
tion, such as the scalar multiplication algorithm, coordinates, or even specific
formulas used. In practice (e.g., smartcards), vendors keep this information se-
cret; de facto using security-by-obscurity.

In our unified framework, reverse engineering is an easier problem than at-
tacking. Indeed, it suffices to choose f as an intermediate value of a point addi-
tion formula, then solve the (x)DCP problem for several small values of k. Our
methodology allows us to choose f in a manner that allows us to identify the
target addition formulas, after confirming one of our guesses (e.g., using k = 1
and k = 2). Furthermore, as the sequence of formula executions during scalar
multiplication with a fixed scalar depends on the scalar multiplication algorithm
used, we can apply our technique to identify this algorithm as well.

6 Conclusion

In this work, we presented a unified framework for the RPA, ZVP, and EPA
attacks, and demonstrated its utility by mounting an attack on window-based
scalar multiplication methods (Section 3.5). We were also able to push the ZVP
and EPA attacks further: introducing the dependent coordinates problem, and
solving it for new cases. We created automated tooling that unrolls formulas and
constructs ZVP points, which was only possible manually before. We released
all our code and data as an open-source extension of the pyecsca toolkit, with
the hope that they can serve as a basis for future work.

As a result of our systematic classification, we uncovered new classes of ex-
ceptional points in EFD formulas. These formulas are, however, currently not
23 https://github.com/crocs-muni/formula-for-disaster

https://github.com/crocs-muni/formula-for-disaster
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used by any of the open-source cryptographic libraries we analyzed, which we
see more as happenstance than competence – for example, OpenSSL was using
ladd-2002-it-3 not that long ago.

Lessons learned. Our Section 5 results demonstrate Murphy’s law, in action,
(sometimes) in real code, with (at least) billions of deployments. Furthermore,
they highlight our failure as a research community. We know of these excep-
tions for over two decades, yet we are still unable to eradicate legacy theoretical
constructs and code from real-world standards, products, and systems. This is
exacerbated by the fact that, again as a research community, we often prioritize
speed over security, in the name of establishing novelty for scientific contribu-
tions. These are often then left in dubious hands, without diligent technology
transfer, and with little to no knowledge of how to apply them safely. This is
precisely where our Section 4 results help, by providing feedback on the type
and nature of failures in various EC arithmetic formulas. All of these results are
enabled by our unified attack framework in Section 3.

We believe that in order to prevent future vulnerabilities, we should start
paying more attention to the properties of the formulas and their assumptions,
and clearly document them in libraries, papers, and the EFD.
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A Example: ZVP attack on window NAF scalar
multiplication

To demonstrate the ZVP attack on a window NAF scalar multiplication algo-
rithm (window size of 5), we used the pyecsca toolkit. We demonstrate the
attack on NIST’s P-224 curve, which has no points suitable for RPA. Figure 2
shows the basic setup of the attack, with zvp_p0 being a point which zeros out
an intermediate value when input into the add-2016-rcb formulas in projective
coordinates, regardless of the second input point.

B Example: unrolled formula

To analyze the ZVP and EPA attacks, we developed tooling for “unrolling” EFD
formulas. The tooling expresses all the intermediate values in the formula as
polynomials in the input variables. Figure 4 gives an excerpt of the unrolled
add-2007-bl formula in projective coordinates on short Weierstrass curves.
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x = Mod(0xd83d7049c30873afc4893bf229d1c1ccb9eefd30f62ec71504b65fdc, p)

y = Mod(0x27c28fb63cf78c503b76c40dd62e3e32461102cf09d138eafb49a025, p)

z = Mod(1, p)

zvp_p0 = Point(coords, X=x, Y=y, Z=z)

def zvp_c(c):

"""Compute [c^-1]P_0"""

return params.curve.affine_multiply(zvp_p0.to_affine(),

int(Mod(c, params.order).inverse())).to_model(coords, params.curve)

def query(pt: Point) -> Tuple[int, List[int]]:

"""Query the implementation and observe the ZVP side-channel,

i.e. at which iterations a zero in the intermediate value appeared.

Returns the total number of formula applications and indexes

where a zero in the intermediate value appeared."""

with local(DefaultContext()) as ctx:

mult.init(params, pt)

mult.multiply(scalar)

smult, subtree = ctx.actions.get_by_index([1])

iterations = []

for i, formula_action in enumerate(subtree):

for intermediate in formula_action.intermediates.values():

if 0 in [j.value for j in intermediate]:

iterations.append(i)

break

return len(subtree), iterations

def try_guess(guess) -> bool:

"""Test if we have the right private key."""

return params.curve.affine_multiply(g, guess) == pubkey

Fig. 2. Setup for the ZVP window NAF attack.

wnaf_multiples = [1, 3, 5, 7, 9, 11, 13, 15, -1, -3, -5, -7, -9, -11, -13, -15]

all_iters = {}

for multiple in wnaf_multiples:

rpa_point = zvp_c(multiple)

num_iters, iters = query(rpa_point)

all_iters[multiple] = iters

full = [0 for _ in range(num_iters)]

for multiple, iters in all_iters.items():

for i in iters:

full[i] = multiple

full_wnaf = [e for i, e in enumerate(full) if (not full[i - 1] != 0) or i in (0, 1)]

full_wnaf[0] = 1

Fig. 3. ZVP attack demonstration on window NAF scalar multiplication algorithm.
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U1 = Z2 * X1

U2 = Z1 * X2

S1 = Z2 * Y1

S2 = Z1 * Y2

ZZ = Z2 * Z1

T = X2*Z1 + X1*Z2

TT = (X2*Z1 + X1*Z2)^2

M = Y2*Z1 + Y1*Z2

t0 = Z2^2 * Z1^2

t1 = a * Z2^2 * Z1^2

t2 = Z2 * Z1 * X2 * X1

t3 = X2^2*Z1^2 + X1*X2*Z1*Z2 + X1^2*Z2^2

R = a*Z1^2*Z2^2 + X2^2*Z1^2 + X1*X2*Z1*Z2 + X1^2*Z2^2

F = Z2 * Z1 * (Y2*Z1 + Y1*Z2)

L = Z2 * Z1 * (Y2*Z1 + Y1*Z2)^2

LL = Z2^2 * Z1^2 * (Y2*Z1 + Y1*Z2)^4

t4 = Y2^2*Z1^3*Z2 + 2*Y1*Y2*Z1^2*Z2^2 + Y1^2*Z1*Z2^3 + X2*Z1 + X1*Z2

...

X3 = 2^2 * Z2 * Z1 * (Y2*Z1 + Y1*Z2) * (a^2*Z1^4*Z2^4 + 2*a*X2^2*Z1^4*Z2^2 +

2*a*X1*X2*Z1^3*Z2^3 + 2*a*X1^2*Z1^2*Z2^4 + X2^4*Z1^4 + 2*X1*X2^3*Z1^3*Z2 -

X2*Y2^2*Z1^4*Z2 + 3*X1^2*X2^2*Z1^2*Z2^2 - 2*X2*Y1*Y2*Z1^3*Z2^2 -

X1*Y2^2*Z1^3*Z2^2 + 2*X1^3*X2*Z1*Z2^3 - X2*Y1^2*Z1^2*Z2^3 -

2*X1*Y1*Y2*Z1^2*Z2^3 + X1^4*Z2^4 - X1*Y1^2*Z1*Z2^4)

...

Fig. 4. An excerpt of an unrolled formula, add-2007-bl in projective coordinates on
short Weierstrass curves.
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