
Why Johnny the Developer Can’t
Work with Public Key Certificates?

An Experimental Study of OpenSSL Usability

Martin Ukrop[0000−0001−8110−8926] and Vashek Matyas

Centre for Research on Cryptography and Security
Faculty of Informatics, Masaryk University, Czechia

mukrop@mail.muni.cz, matyas@fi.muni.cz

Abstract. There have been many studies exposing poor usability of se-
curity software for the common end user. However, only a few inspect the
usability challenges faced by more knowledgeable users. We conducted an
experiment to empirically assess usability of the command line interface
of OpenSSL, a well known and widely used cryptographic library. Based
on the results, we try to propose specific improvements that would en-
courage more secure behavior. We observed 87 developers/administrators
at two certificate-related tasks in a controlled environment. Furthermore,
we collected participant opinions on both the tool interface and avail-
able documentation. Based on the overall results, we deem the OpenSSL
usability insufficient according to both user opinions and standardized
measures. Moreover, the perceived usability seems to be correlated with
previous experience and used resources. There was a great dispropor-
tion between the participant views of a successful task accomplishment
and the reality. A general dissatisfaction with both OpenSSL interface
and its manual page was shared among the majority of the participants.
As hinted by a participant, OpenSSL gradually “turned into a compli-
cated set of sharp kitchen knives” – it can perform various jobs very well,
but laymen risk stabbing themselves in the process. This highlights the
necessity of a usable design even for tools targeted at experienced users.1

1 Introduction

The first users of any newly created software are its own developers and testers.
For such knowledgeable users, one would therefore not expect usability failures
similar to those exposed to the “common Johnny” [14,23,27]. We have conducted
an experiment to empirically assess usability of the command line interface of
OpenSSL, a widely-used cryptographic library. Outcomes can be briefly sum-
marized by quoting one of the study participants: “I am surprised that even as
a crypto expert I am unable to use OpenSSL.” Not only is the software barely
? This is the author’s version. The final publication will be available at Springer via
http://dx.doi.org/10.1007/978-3-319-76953-0_3

1 Supplementary material available at crocs.fi.muni.cz/papers/rsa2018.

http://dx.doi.org/10.1007/978-3-319-76953-0_3
crocs.fi.muni.cz/papers/rsa2018

2

usable for other developers – results indicate that the perceived usability even
decreases with IT experience gain.

OpenSSL is an open source project providing a full-featured commercial-
grade toolkit for SSL/TLS and general-purpose cryptography [5]. As of 2017, it is
by far the best known and the most used library for generating and manipulating
public key certificates [21]. Even though it may be superseded by specialized tools
in some cases (e.g., Certbot client by Let’s Encrypt2for obtaining, deploying and
refreshing server certificates), it is still a leading universal tool. Last but not
least, there is plenty anecdotal evidence of its poor usability, again quoting one
of the study participants: “Working with OpenSSL is a struggle every time – it
takes at least 20-30 minutes to find something.” A digest of other representative
quotations can be found in Appendix B.

Our pilot study (see Section 2 for details) compared the interfaces of three
similar cryptographic tools – suggesting that OpenSSL, although having the best
rating of the three, is still hard to use even for knowledgeable developers.

To rigorously inspect OpenSSL usability, we designed and performed an ex-
periment through a research booth at a developer conference. Attendees could
help the research by accomplishing two tasks – using command line OpenSSL to
generate a self-signed X.509 certificate and to validate a set of certificates with
the same tool. We analyzed participant success, OpenSSL usability, resources
used during task completion, security-related behavior and their opinions.

The overall usability score for command line OpenSSL indicated a rather
poor user experience. Only 16% of the participants considered the OpenSSL in-
terface OK. Complaints included being too complex, too low-level, not following
Linux conventions and having bad and/or confusing structure. A similar pro-
portion was satisfied with the manual page, complaints ranging from missing
examples, through confusing structure, to style being only for experts (particu-
lars in Section 4.5). As mentioned earlier, OpenSSL usability seems to decrease
with users gaining more experience (moving from school to work, working in the
field longer, getting to know other tools), see Section 4.3. Furthermore, only 45%
of the participants successfully created a valid self-signed certificate – this is in a
sharp contrast with the subjective assessment of the participants, in which over
87% claimed to have succeeded (Section 4.1). Regarding the resources used dur-
ing task completion, about half the participants used a combination of informal
online sources (tutorials, blogs, forums) and official man pages installed locally
(Section 4.5).

This work has three main contributions to the usable security research and
wider developer community:
1. It constitutes one of the first reasonably-sized studies of OpenSSL usability.
2. It presents an empirical analysis of developers’ behavior combined with their

opinions when accomplishing security-related tasks.
3. It proposes specific and feasible suggestions for OpenSSL improvements.

The paper is organized as follows: After the introduction, Section 2 briefly out-
lines our earlier pilot experiment. Section 3 then describes the main experiment,
2 Let’s Encrypt is a free, automated and open certificate authority, see letsencrypt.org.

https://letsencrypt.org

3

namely details of the tasks and participant background. Results and observa-
tions are presented in Section 4, with study limitations in Section 5. Section 6
gives accounts of the related research and Section 7 concludes the paper.

2 The Pilot Experiment

Before the main experiment, we conducted a pilot study with 26 Master-level
students focused on IT security. The aim was to compare the usability of three
similar command line tools for manipulating X.509 certificates (GnuTLS, NSS
and OpenSSL). It was a within-subjects experiment (each participant using all
three tools in succession) with the same tasks as described in the next section
(certificate generation/validation).

Both the numerical usability ratings and students’ self-reported sentiment
towards the libraries imply OpenSSL is superior to GnuTLS that, in turn, fared
better than NSS. Despite the low usability score and user complaints, OpenSSL
seems to be not only the most wide-spread tool but also the one with a relatively
reasonable usability (when compared to alternatives). For more details, see [16].

Although the pilot study was very similar to the main experiment, the conclu-
sions may not be directly applicable. Firstly, the participant population was dif-
ferent – security-oriented students vs. a heterogeneous group of developers. Fur-
thermore, the students used OpenSSL in courses (although for different tasks).
Secondly, the task success and usability ratings may have been skewed by the
participants using multiple tools for the same tasks – we tried to eliminate this
by counterbalancing (randomizing) the tool order.

3 The Main Experiment Settings

The experiment took place at DevConf,3 where the conference participants were
asked to complete one or two simple X.509 certificate-related tasks advertised
to take about 30 minutes. We did not give any financial compensation for par-
ticipation, only a branded winter cap.

Each participant was provided with a computer running virtualized Ubuntu
16.04 with OpenSSL 1.0.2g, recording the screen, browsing history and terminal
input/output. Before attempting the tasks, each participant filled in a ques-
tionnaire on their previous experience. After the experiment, there was a short
semi-structured interview, concluded by answering standardized questions on
OpenSSL usability. The course of our experiment is summarized in Fig. 1. The
questionnaire and interview outline are in Appendix A.

All participants were briefed about the extent of processed personal informa-
tion and signed an informed consent form before starting the experiment. The
data was collected anonymously. The study design has been approved by the
Research Ethics Committee of Masaryk University.
3 DevConf is an annual conference for developers, admins and users of open source
technologies organized by Red Hat Czech with about 1500 attendees, see devconf.cz.

https://devconf.cz

4

motivation, scope,
informed consent

Study
info

prior experience,
previously used tools

Pre-task
survey

issuing a self-signed
certificate for Johnny

Task 1

validating certificates
(local CA, expired,
fake, Let’s Encrypt)

Task 2

user progress,
opinions,

usability scale

Post-task
interview

Fig. 1. The experiment core consisted of 2 certificate-related tasks, preceded and fol-
lowed by short participant surveys.

3.1 Tasks

In both tasks, each participant was explicitly asked to use openssl, the command
line utility provided by the OpenSSL project [5]. It was emphasized that they can
use all common resources: read the documentation, search for examples online,
browse online forums, etc.

Task 1: Issuing Certificates. The first task puts the participant into the
position of a software tester. The tested application was said to have an option
to load a public key certificate. The participant was further instructed that to
test it, they should generate a new public key certificate for the user Johnny.

The task aimed at generating a self-signed certificate (although a pair of
a certificate authority (CA) certificate and an end-point certificate would also
be a viable option). The certificate may have been generated with or without
the intermediate certificate signing request (CSR). Furthermore, the keypair
might have been generated separately or during the certificate/CSR generation.
These two choices are independent of each other, resulting in four different ways
of certificate creation. Moreover, the process of setting the subject attributes
could have been interactive or not (providing the information as command line
arguments).

Task 2: Validating Certificates. The second task presented a similar setup:
The participant (in a work environment again) was asked by their team lead to
validate four certificates they got from their partners. They were reminded not
to forget that, except for the system-installed CAs, they trust also the company
internal testing authority provided in a local file.

The task required the user to verify 4 certificates, correctly specifying a local
trusted CA and taking into account the default installed CAs. The provided
certificates were as follows:

1. A valid certificate issued by the local CA.
2. An expired certificate issued by the local CA.

5

1 2 3 4 5

novice
Linux experience

expert
Linux experience

no security
experience

security
specialist

never heard
of certificates

working with
certificates daily

gener./validated
certificates never

gener./validating
certificates daily

never used
OpenSSL CLI

using OpenSSL
CLI daily

developer

administrator

manager

quality assurance

security engineer

student

not employed

10% 20% 30% 40% 50%0%

18

6

3

8

12

8

43

Fig. 2. The profile of all 87 experiment participants (scale questions display range in
gray, mean and standard deviation; job positions are not exclusive).

3. A fake certificate pretending to be from the local CA (bad signature).
4. A valid certificate issued by Let’s Encrypt CA.

Even though OpenSSL verifies against system CAs by default, this fact is not
trivial to find out. If unsure, the participant could have explicitly provided the
path to the default CA database.

3.2 Participants

87 participants (from now on the symbol is used) took part in the experiment.
Since all were attendees of a developer conference, we expected a considerable
(although very variable) background knowledge of IT or even certificate genera-
tion/validation. To investigate the relationship of the prior experience to results,
we mapped these using a pre-task questionnaire (see Appendix A).

All participants in the study were male (not intentionally). On average, they
had been in IT for a bit over 12 years (study+work). Nearly half the participants
described themselves as developers, only 3 participants explicitly stated being
focused on security. In general, the (self-reported) Linux experience was very
high as well as the (self-reported) awareness of what public key certificates are
and what they are used for. For averages and standard deviations, see Fig. 2.

The last part of the questionnaire inquired about tools the participants had
used prior to the experiment. OpenSSL, being the most common, was used by

6

82% of the participants (71 4). The second most popular tool was NSS [4] (16%,
14), followed by GnuTLS [6] (10%, 9) and Java Keytool [2] (9%, 8). Nearly
a quarter of the respondents (24%, 21) mentioned still other tools. 15% of the
participants (13) had never used any of these tools before.

Exploring the relationships among the variables in previous experience (num-
ber of years in IT, Linux experience, security background, domain knowledge,
certificate experience, OpenSSL usage), we see that all pairs are significantly5cor-
related (Spearman’s rank-order coefficient6ρ ≈ 0.5). The largest correlation is
between the previous experience with generating/validating certificates and us-
ing OpenSSL (ρ = 0.776). This confirms the general opinion of OpenSSL being
a common tool for manipulating certificates.

4 Results and Observations

In this section, we report the summary of participant success (Sections 4.1
and 4.2), the perceived tool usability (Section 4.3), noteworthy user behaviors
(Section 4.4) and the resources used to accomplish the tasks (Section 4.5).

4.1 Task Success

Task 1: Issuing Certificates. We differentiate five levels of success based on
what the user generated:

Johnny
certificate

39 45% A valid self-signed certificate containing Johnny (or a
similar string) in at least one of the subject fields.

Certificate 23 26% A valid self-signed certificate not mentioning Johnny
(technically OK, but the task specifically asked for a
certificate for “user Johnny”).

CSR 3 3% A valid certificate signing request.

Keypair 17 20% An asymmetric keypair generated by OpenSSL.

Nothing 5 6% Nothing or unrelated files (e.g., an SSH keypair).

Only 45% of the participants (39) successfully created a valid certificate men-
tioning Johnny in the subject. This is in sharp contrast with the subjective as-
sessment of the participants, in which over 87% (76) claimed to have succeeded
in the task (7%, 6 knew they failed and 6%, 5 were unsure).

Taking the success as a discrete ordinal scale, the results have a small statis-
tically significant correlation with the Linux experience (ρ = 0.26), prior experi-
ence with generating certificates (ρ = 0.23), prior OpenSSL experience (ρ = 0.28)
4 If not stated otherwise, the presented analyses include all 87 participants.
5 All presented results are statistically significant with a confidence level of α = 5%.
6 Spearman’s rank-order coefficient ρ can assume values from -1 to 1, the sign indicat-
ing the direction of the relationship and the absolute value indicating the intensity
from 0 (no relationship) to 1 (perfect linear relationship). [24]

7

and with the number of years the participant has studied/worked in IT (ρ = 0.29).
This is in accordance with what we expected – the more practical experience the
user has, the higher is the probability of him generating the certificate correctly.
Note the task success was significantly correlated with neither the general knowl-
edge of certificate principles nor with security experience.

Task 2: Validating Certificates. Since not all participants had enough time
for both tasks (due to conference schedule), only 72/87 attempted the sec-
ond task. This time the success categorization is based on the way respondents
performed the validation:

Explicit 14/72 19% Correct OpenSSL command explicitly checking
both the local and system-installed CAs.

Implicit 51/72 71% Correct command setting only the local CA.

Incomplete 4/72 6% Verification command with incorrect trust set-
tings (e.g., setting the local CA as not trusted).

Visual 3/72 4% Not verifying the signature, only visually compar-
ing the issuer and subject in the certificates.

The second case (Implicit) is also considered a complete success since OpenSSL
automatically checks against some default trust store (OS-dependent). However,
this fact is rather complicated to find both online and in the official documenta-
tion. All the study participants who checked whether this is the default behavior
ended up doing the validation explicitly. That is why we consider the categories
separately. Only 19% (14/72) did the explicit validation.

Inspecting relationships of the task success with the prior experience, we see
small statistically significant correlations with the Linux experience (ρ = 0.36),
prior experience with generating certificates (ρ = 0.22), prior OpenSSL experi-
ence (ρ = 0.30) and with the number of years in IT (ρ = 0.30). In contrast with
Task 1, this time there are correlations with both the theoretical knowledge
(ρ = 0.32) and security experience (ρ = 0.23, p = 0.057). We hypothesize this
is because validating certificates requires more detailed knowledge (PKI trust
model), lacks the interactivity of the generation process and presents a much
more cryptic error messages (see Section 4.3).

4.2 Created Certificates

This section presents statistics of the created certificates. For keysize, we consider
everyone succeeding in creating at least a keypair (82), for subject fields at least
a CSR (65) and for other features only respondents creating a certificate (62).

Keysize. Nearly all participants (98%, 80/82) created a standard RSA key –
the remaining 2 users generated an elliptic curve key. Even though none of the
possible solutions require the user to explicitly state the bitsize of the key (there

8

is always an applicable default), most of the users did so (85%, 70/82). This
is mostly due to the fact that nearly all available tutorials and examples specify
the keysize explicitly (see Section 4.5). In nearly half the cases (42%, 34/80)
a 2048-bit key was generated, followed by 4096-bit key (38%, 30/80). The
remaining 20% (16/80) created a 1024-bit key. It is positive that the weakest
keysize (considered inadequate in 2017 [9]) was created by the smallest group of
participants, but it is still a non-trivial fraction.

Subject Fields. As nearly all the subject fields offer the possibility of non-
validated text input, this was the aspect that differed the most among the created
certificates. Most notably, 42% of the certificates (27/65) have the organization
field set to Internet Widgits Pty Ltd – this nonsensical value is the default in
the interactive process. Its usage is greatly enhanced by the way the to-be-set
default is displayed (a few participants that inspected their own certificate after
creation were quite surprised to find it instead of an empty field). From the 95%
users (62/65) using the interactive subject-setting process, 35% (22/62) filled
in all the fields they were offered. This hints that the selection of fields displayed
during the interactive setup greatly influences what fields will be populated by
the user. Nobody created a subject alternative name extension, nowadays often
more important than the standard subject fields. Including it in the interactive
mode, as GnuTLS does, may prove beneficial.

Certificate Version. In nearly three-quarters of cases (74%, 46/62) an X.509
version 3 certificate was created. The remaining participants (26%, 16/62) cre-
ated an older certificate of version 1. A major difference is that the older version
does not support any extensions (e.g., distinguishing between CA and user cer-
tificates, alternative names or key usage constraints). The trick to understanding
this is the process of creation – if you generate a certificate in one go, version 3
certificate is created. On the other hand, if you split the process into generating
a CSR and then signing it, you end up with an older (version 1) certificate.

Hash Function. All created certificates use SHA-256 as the underlying hash
function. This result is slightly unexpected considering the number of lower-
security 1024-bit keys and version 1 certificates.

Validity Period. The median validity of the created certificates is 1 year (60%,
37/62) and the range stretched from as short as 10 days to as long as 20 years
(both 1%, 1/62). Similarly to keysize, none of the possible solutions require
the user to specify the validity explicitly (default is 30 days, present in 23%,
14/62). Again, most of the people (79%, 49/62) did so (again, due to almost all
examples and tutorials doing so). It is worth noting that 15% of the participants
(9/62) created a certificate valid for 3 or more years in spite of knowing they
are only creating a certificate for a momentary testing of a program feature.

9

0

20

40

60

OpenSSL

mean in

this study

end-user

systems

mean [11]

80

st
u

d
e

n
ts

n
o

t
st

u
d

e
n

ts

1
3

6
0

N
S

S

G
n

u
T

L
S

1
3 9

2 3 4 51

0 3 6

3
0

3
4

Linux experience

(novice 1–5 expert)

1 2 3 4 5

1
0

2
4

1
7

1
4 7

OpenSSL experience

(never 1–5 daily)

46

68

Fig. 3. SUS scores [11] for command line OpenSSL for different participant subgroups
(73 users with relevant and complete answers, higher score means better usability).

4.3 Perceived Interface Usability

We assessed the perceived usability of command line OpenSSL in two ways:
quantitatively using a standardized usability scale and qualitatively by the post-
task interviews.

Usability Score. System usability scale (SUS) is a simple, standardized and
widely applicable method to measure system usability. It records the level of
agreement with 10 fixed statements regarding the user’s experience. Even though
the scale is not diagnostic (not exposing what exactly is wrong), it offers a
straightforward comparison. The produced score lies between 0 and 100, with 68
being considered average for all end-user products or systems. [11]

The overall average score for command line OpenSSL was 46 (median 48),
indicating a rather poor experience. We disregarded the opinion of users with
incomplete SUS answers (5) and users who did not complete either of the tasks
successfully (9). In the latter case, we could not guarantee their evaluation was
related to OpenSSL (e.g., some created SSH keys).

The averages for different subgroups can be seen in Fig. 3. The score differs
significantly between students (mean 57, 13/73) and not students (mean 44,
60/73). In addition, the usability score exhibits a small but significant nega-
tive correlation with the number of years the participant studied/worked in IT
(Pearson correlation coefficient7r = −0.26). This suggests that the more years

7 Pearson correlation coefficient r is interpreted similarly to Spearman’s ρ, i.e., values
from -1 to 1, the absolute value indicating intensity. [24]

10

Table 1. Summary of the most prominent participant opinions on OpenSSL and its
manual page.

Command line tool Manual page
It is too complex. 18 It is useless. 18
The interface is OK. 14 There are no examples. 18
The structure is confusing. 14 The structure is confusing. 16
Error messages are incomprehensible. 9 It is OK. 9
It is too low-level. 7 It is too long. 9
It does not follow Linux conventions. 7 It is only for experts. 7
It has inappropriate defaults. 4 There is no theory. 4

the participant has already spent studying/working in IT, the less usable he con-
siders command line OpenSSL. The averages are smaller for participants with
previous experience with other tools, though the difference is not significant –
mean SUS score of 41 for NSS users (13/73) and 39 for GnuTLS users (9/73).
All this suggests, rather counter-intuitively, that the usability of command line
OpenSSL is lower for the users with more experience (not students, working in
the field longer, knowing other tools).

As for the prior OpenSSL experience, the difference between the levels 1–5
(never–daily) was almost significant (ANOVA,8 p = 0.052), although the rela-
tionship is not linear. The perceived usability is higher for those who have never
used OpenSSL and those using it daily with the lowest score for users with
average self-evaluated experience. This concurs with the previous observations
(usability decreasing with experience), considering the fact that SUS score tends
to increase as you use the system more [20].

The correlation with any other features measured in the pre-task question-
naire or the tasks success was not significant.

User Opinions. We have coded the post-task interviews to get basic insights
into the participant opinions. The most frequent categories are summarized in
Table 1. Only 16% of the users (14) expressed the opinion that the OpenSSL
interface is generally OK (these participants also reported a significantly higher
usability score when compared to the rest, but did not succeed significantly bet-
ter). 21% (18) stated the tool was too complex and 16% (14) complained
directly about the tool’s structure being badly designed. Further objections in-
cluded cryptic error messages, being too low-level, having inappropriate defaults
or not following Linux conventions.

Interface Shortcomings. An interesting case, possibly related to the usability
decrease with experience gain, comes with the complaints that OpenSSL does
not follow Linux conventions. It does not provide any of the parameters --help,
-help, -h nor a help subcommand (tried by 26 , 10 , 10 and 2 , respectively).
8 ANOVA is a method for comparing differences among groups of observations. [24]

11

The full-word command line options start with a single minus sign instead of the
customary two (i.e., you need to use -verbose instead of --verbose). Further-
more, arguments order should not matter – currently, all options must precede
the first non-option argument (e.g., one cannot add -option after specifying the
first file to validate).

Sometimes, if a particular option is missing, OpenSSL assumes standard
input. E.g., calling openssl req hangs the command without stating what is
missing. Thus, instead of a useful error message, the user is left to figure out the
error himself.

The existing error messages could be much more comprehensible. E.g., failing
to set a passphrase produces a 3-line message saying the passphrase must be at
least 4 characters long but also includes various memory addresses and function
names. This particular error caused three participants to completely abandon
the (correct) solution and search for a different one (even though the problem is
stated clearly at the end of the first line). Another example is an argument typo
producing a usage help but not stating at all what the problem is (e.g., openssl
verify -option).

Two of our respondents got surprised by the set subject fields values, see
Section 4.2). Furthermore, the default keysize should be unified – currently,
creating a key through the genrsa or req modules results in 2048-bit key by
default, while using the genpkey module (superseding genrsa) creates only a
1024-bit key.

These deviations from known good practices may seem small, but to objec-
tively assess their effect on overall OpenSSL usability, a specialized experiment
would be necessary.

4.4 Participant Behavior

We were surprised by several aspects of the participant behavior during task
completion. Users looked into the created and validated certificates far less often
than we expected. Only a quarter of the participants of the first task (25%, 22)
did inspect their own result after creation and only a half of the users attempting
the second task (50%, 36/72) displayed the contents of the provided certificates.
In addition, participants sometimes totally ignored the produced error message
(see Section 4.3).

In a few cases (9%, 8), the participants intentionally changed the parameters
used in the tutorials/examples. In particular, they increased the keysize (8)
and/or changed the proposed validity (2 increased, 2 decreased). These users
did not differ from the rest of the respondents in any other aspect.

Some participants (28%, 24) answered the question on theoretical knowl-
edge required for task completion. Of these, about a half (46%, 11/24) felt
lacking such knowledge. However, the number is probably biased towards the
negative answer, as people may have a tendency to emphasize what they lack to
what they know.

During the work on experiment tasks, 7 participants (8%) took advantage of
superuser privileges (using sudo). Two of them used it only when appropriate

12

(they interpreted the first task as generating a certificate for a new OS user
Johnny they had to create). The rest (6%, 5) used the superuser privileges to
browse OS-protected locations (system private SSL keys, system-wide trusted
certificate store) or to run common OpenSSL commands. In two cases this was
suggested by a tutorial – one generating SSL server certificates directly to pro-
tected webserver folders and the other just running all OpenSSL commands as
the superuser for no apparent reason. While 5 participants are not many, using
sudo unnecessarily is a clear security hazard.

At the end of the interview, 16% of the participants (14) proactively showed
us other tools they use instead of interacting directly with OpenSSL. These were
often higher-level tools or scripts building either directly on OpenSSL or on a sim-
ilar backend with low-level capabilities. This supports the opinion that OpenSSL
is too low-level to be used directly. Regarding the structure of the command line
interface, the most frequent good example was the ip command (3/14). People
liked its structure, context-aware help and context-aware autocomplete. These
are all tool-agnostic features that could also be implemented for OpenSSL to
support usable design.

4.5 Resources Used

We divided participants into four categories according to the resources they used
while solving the task:

None Neither going online nor browsing the manual pages.

Manual Participants using local manual pages. Did not browse online.

Manual
+ online

Participants reading both local manual pages and online materi-
als (tutorials, blogs, forums).

Online Participants only browsing online, not using the manual pages.

Note that all people may have also used the command line help provided by
OpenSSL. The distribution of used resources can be seen in Fig. 4. About
half the participants used the combination of informal online sources (tutori-
als, blogs, forums) and official man pages installed locally (54%, 47 for Task

20% 40% 60% 80% 100%0%
4 10 33 25

2 6 47 32
Task 1 (issuing

certificates)

Task 2 (validating
certificates)

online sourcesmanual page

Fig. 4. Resources the participants used while completing the task (87 users issuing
certificates, 72 users validating certificates).

13

1, 46%, 33/72 for Task 2). The second most prominent group was participants
using only online resources. The resources used in the two tasks are correlated
(ρ = 0.33), though not particularly strongly.

The correlation of used resources with task success was small and not sig-
nificant. However, the presented order of resources significantly correlates with
almost all answers on previous experience (ρ ≈ 0.3), except for having a back-
ground in security. That is, the more years has the participant spent in IT (the
more he knows about certificates or Linux, the more he has worked with certifi-
cates and OpenSSL), the less likely he is to use online resources (and the more
likely to use local manual pages or nothing at all).

Online Sources. An overview of the websites visited during task completion is
in Table 2, omitting four users with connection problems and pages not relevant
to the task. From the 87 different second-level domains visited at least once, the
most prominent was google.com (79 – all participants browsing online), with
the search queries not surprising in any way (words openssl, certificate, key,
generate and public dominating). The second most visited domain belonged to
Stack Overflow9(73%, 58/79). The remaining domains are a mixture of forums,
public tutorial pages, private company pages and personal blogs. Sometimes the
pages used were somewhat unexpected: the knowledge base of the University of
Wisconsin-Madison was visited by 40% (29/72) of those attempting the second
task (as it has a simple and straightforward page on certificate validation).

About half the participants (43) explicitly stated their trust in the Stack
Overflow answers in the post-task interviews. About a half of them (53%, 23/43)
indicated they trust answers found there. A third (33%, 14/43) mentioned that
although they generally trust the answers, they always verify them elsewhere.
The remaining 14% (6/43) declared they do not trust solutions from Stack
Overflow or similar sites and do not use them.

To find out what user behavior was driven by the information in the online
tutorials, we did a more detailed analysis of relevant websites visited by at least
2 participants (48 pages in total).

Nearly all solutions on these pages specified both the keysize and validity pe-
riod using an explicit value, even though both have reasonable built-in defaults
(2048 bits and 30 days). Only two Stack Overflow pages (out of 22) contained
at least one solution using the default keysize and only one contained a solu-
tion setting the validity of “XXX days” (forcing the user to choose for himself,
but avoiding the built-in default). This matches the actual user behavior (most
of them unnecessarily stating the keysize and validity period explicitly, see Sec-
tion 4.2). It hints that changing these OpenSSL defaults will probably have little
effect. In the long term, teaching people that defaults are reliable can be both
worthwhile (defaults evolve but tutorials usually do not) and a little dangerous
(in case the defaults cease to be reasonable). The actual key lengths and validity

9 Stack Overflow is a large online community for programmers to share their knowledge
in a simple Q/A system, see stackoverflow.com.

https://google.com
https://stackoverflow.com

14

Table 2. Relevant online pages visited by at least 2 grouped by domains (Sec. = Do
pages contain security discussion?, Param. = Do pages explain individual parameters?).

Visitors Domain Site type Pages Sec. Param.
100% 79 google.com search engine – – –
73% 58 stackoverflow.com Q/A forum 7 G# G#
39% 31 stackexchange.com Q/A forum 4 G# G#
38% 30 sslshopper.com non-profit tutorial site 1 # #
37% 29 wisc.edu university tutorial site 1 # #
20% 16 akadia.com company support page 1 # #
19% 15 openssl.org official OpenSSL site 5 #
16% 13 digitalocean.com company support page 1 #
13% 10 rietta.com company support page 1 # #
11% 9 cyberciti.biz Q/A forum 1 # #
11% 9 wikibooks.org non-profit encyclopedia 1 # #
10% 8 jamieLinux.com personal blog 3 G# #
10% 8 serverfault.com Q/A forum 2 G# G#
9% 7 asperasoft.com company support page 1 # #
9% 7 wikipedia.org non-profit encyclopedia 1 #
8% 6 typo3.org non-profit support page 1 # #
6% 5 github.com GIT repository provider 1 # #
6% 5 msol.io personal blog 1 # #

periods used in the tutorials approximately match the results of the first task
(the most prominent being 2048-bit keys and validity of about one year).

Most of the websites contained useful copy-pasteable code snippets (77%) and
links to sites with further resources (73%). However, as can be seen in Table 2,
only a few (23%) contained any security discussion (e.g., what are the risks of
self-signed certificates, smaller keys or longer validity) and only 27% explained
all the parameters used in the suggested code snippets. We see this as alarming,
even though expected (e.g., see [8]). The security context may not have been
relevant at the time of writing the particular tutorial/forum answer but may be
crucial for the user visiting the site later (and possibly with a different use case).
The absence of the parameter explanation often leads users to blindly try the
proposed solution. This manifested itself also in the experiment, as people only
rarely consulted the manual before executing the command.

One more fact concerns the official OpenSSL documentation online – 6 out
of 13 relevant pages accessed at least once during the task completion did not
exist. These pages were often linked in tutorials/forums since they represent
the authoritative description of OpenSSL behavior. According to the data in
the Internet Archive [1], the documentation changed structure without proper
redirects at some point in 2016.

Manual Page. Only 17% of the participants (9) stated the manual page is OK.
As for the negative opinions, 34% (18) complained the manual page contains

https://google.com
https://stackoverflow.com
https://stackexchange.com
https://sslshopper.com
https://wisc.edu
https://www.akadia.com
https://openssl.org
https://digitalocean.com
https://rietta.com
https://cyberciti.biz
https://wikibooks.org
https://jamieLinux.com
https://serverfault.com
https://asperasoft.com
https://wikipedia.org
https://typo3.org
https://github.com
https://msol.io

15

no examples (which is incorrect, the examples are further in the manuals), 30%
(16) said the manuals had a bad and/or confusing structure. Other objections
included the manual being too long, being written for experts, lacking theory
explanation or being generally useless, see Table 1 in Section 4.3.

The neglected examples in the manual pages could be solved by moving them
to a more prominent position (i.e., higher up the page), although this would
contradict the usual manual page structure.

One of the unexpected problems was to correctly invoke the appropriate man-
ual page. Since OpenSSL is a complex tool, its manual is split into several inde-
pendent pages named after the subcommands (i.e., to get a manual for openssl
x509 one has to, in Ubuntu, call man x509). 28% of the users (15) wrongly called
man openssl <cmd> with others trying also man openssl-<cmd> (4) and man
openssl.<cmd> (1). To further complicate the matter, this behavior is OS-
specific: Gentoo, for example, requires you to call for man openssl-<cmd> [3].

The main manual page (man openssl) should clearly note in the header
that individual subcommands have separate manual pages available through man
<cmd> (currently, there is no such notice). Regarding the syntax for manual invo-
cation, adding simple symlinks for the intuitive variants would solve the problem
easily (such symlinking has been already used, e.g., for git subcommands).

5 Study Limitations

The strongest limitation of this study is the self-selection bias of its participants
– the research was open to all attendees of a large developer conference. The
engaged user sample may thus not be representative of the wider developer
community. Furthermore, the respondents may have behaved differently than if
they were really at work. Firstly, the tasks were only hypothetical (there was no
real software to pass the created certificate to). Secondly, they knew their efforts
were recorded (the observer effect). Five participants (6%) even mentioned that
they may have behaved differently was that a real situation.

Some of the technical aspects may be bound to the specific version of OpenSSL
or the operating system. For example, the corresponding Fedora/RHEL OpenSSL
package (1.0.2j-fips) has slightly different defaults, but they exhibit the same
problems.

A limitation regarding the visited websites: We cannot say if the participants
actually used them or deemed them useless after opening.

Lastly, part of the results depends on subjective evaluation the researchers.
Website parameters (page relevance, the presence of the security discussion,
parameter explanation), as well as interview coding, are subjective to the coder.
Even though the tasks and questionnaire were precisely formulated (and also
provided in writing), the answers to the interview questions may have slightly
differed between the three researchers conducting interviews.

16

6 Related Work

Related usable security research falls into two categories: analysis of crypto-
graphic interfaces (both user interfaces and application programmable interfaces
– APIs) and documentation (both formal and informal).

Cryptographic Interfaces. Most of the usable security research examines
the use cases of a “common Johnny” [14,23,27], not recognizing the situation of
more knowledgeable users. A notable exception is a recent work by Krombholz
et al. [17], focusing on the TLS configuration process. It concludes that the
deployment process is far too complex even for people with proficient knowledge
in the field.

Another analysis somewhat similar to ours was done by Georgiev et al. [15] for
APIs, showing that SSL certificate validation is broken in many places (especially
in non-browser software) due to unusable API design. Cryptographic APIs have
also been heavily misused in Android with at least 88% applications having at
least one API mistake [12]. In general, much more bugs seem to be misuses of
the cryptographic software rather than problems of the libraries themselves [18].

There have been efforts to improve the interfaces (e.g., the Networking and
Cryptography library [10]), but the empirical comparison of multiple libraries
by Acar et al. [7] clearly shows that a usable interface does not suffice for a
usable system. It also presents another relevant observation: X.509 certificate
validation seems to be a more difficult task than both symmetric and asymmetric
encryption. Apart from using the standardized system usability scale, the authors
develop their own diagnostic usability scale that seems to be a viable alternative.

Research by Robillard [22] tries to identify reasons why interfaces are hard
to learn, using a qualitative survey. The results are similar to outcomes of our
interviews: deficiencies in structural design, uneasy debugging and documenta-
tion issues (mainly insufficient or inadequate examples). The work promotes the
“principle of least astonishment”, often seen violated by OpenSSL in our study
(unexpected defaults, arguments not Linux-compliant, ...).

Documentation. Lethbridge et al. show [19] that software engineers do not
update documentation much (except for testing and quality documentation).
Nevertheless, they show that out-of-date documentation is still considered useful.

A survey by Uddin and Robillard [26] sheds light on documentation shortcom-
ings: content causes more problems than presentation – the greatest difficulties
are caused by incompleteness, ambiguity and bloat.

A paper by Fischer et al. [13] examines the impact of copy-pasting snippets
from Stack Overflow on code security. They matched the extracted snippets to
Android binaries, finding out that 15% contain copy-pasted code, 98% of which
using at least one insecure snippet.

Acar et al. conducted an empirical study [8] investigating the impact of dif-
ferent information sources on code security. Developers allowed to use only Stack

17

Overflow produced less secure (although more functional) code than those with
official documentation or books.

Based on such results, Subramanian et al. suggested to bridge the gap be-
tween formal and informal sources (official documentation and Stack Overflow)
by adding interconnecting links to both places [25].

7 Conclusions

We conducted what we believe to be the first rigorous study of OpenSSL usabil-
ity, aimed at attendees of a developer conference. In two tasks (generating and
validating X.509 certificates), we observed participant success, use of resources,
security-related behavior and collected their opinions.

The overall usability of OpenSSL turns out to be rather low (but probably
still higher than other tools, as hinted by the pilot experiment). The low usability
was also reflected in the high discrepancy between users’ opinion of task success
and reality. Moreover, we observed lower perceived usability for developers with
more experience in the field.

About 20% of the created keys were only 1024-bit long, being a clear security
concern. Furthermore, about a quarter of the created certificates were of version
1, lacking any extensions (alternative names, key usage constraints, etc.). On
the other hand, all certificates used SHA-256, avoiding the deprecated SHA-1.

Both manual pages and online sources were used extensively, with Stack
Overflow being accessed most often and also by most participants. It is worth
noting that re-use of solutions/examples from online sources became a common
developer practice, with consequences worth a further investigation.

Based on the observed behavior and user opinions, we suggest several im-
provements for the OpenSSL interface and its manual page. Small compatibility-
preserving suggestions include consistent and secure defaults, better error mes-
sages, explicit note on the manual page split, symlinks for man openssl <cmd>
and proper redirects for online manual pages. Bigger changes cover Linux compli-
ant command line arguments, modification in the interactive certificate genera-
tion (e.g., an addition of subject alternative name extension) and more prominent
display of examples in the manual page.

With help of OpenSSL developers, we already got alternative names for man-
ual pages upstream, proposed a solution to the issue with missing web documen-
tation redirects. Several other things have already improved in OpenSSL 1.1.0f
independent of our research (e.g., there is now a help command and all com-
mands support the -help argument). Incorporation of further changes requires
a wider discussion in the developer community.

Further studies should be performed to establish the validity of our proposi-
tions (Does the command line argument format really matter? Do people really
get discouraged by the current structure of the manual page?). Similar research
should be done with other developer tools and other aspects of OpenSSL.

All in all, today’s user-centered design must also acknowledge the usability
issues present for knowledgeable users, not only those for the “common Johnny”.

18

Acknowledgments. This work has been supported by Red Hat Czech and done
in collaboration with Red Hat crypto team. We are particularly grateful to Nikos
Mavrogiannopoulos and Jan Pazdziora for insightful ideas, to Lenka Horáková,
Vlasta Šťavová and Agáta Dařbujánová for their help with the experiment and
to Lujo Bauer and Martin Preisler for comments on the paper draft. Vashek
Matyas thanks Red Hat Czech and CyLab, Carnegie Mellon University for a
supportive sabbatical environment and the Czech Science Foundation project
GBP202/12/G061 for partial funding. We also thank all experiment participants.

A Participant Questionnaire

Pre-Task Survey: Prior Knowledge and Experience
1. Do you know what public key certificates are and what they are used for?

(5-point scale from “never heard of it” to “work with them daily”)
2. How would you describe your experience with Linux OS?

(5-point scale from “novice Linux user” to “expert Linux user”)
3. How many years have you been studying+working in IT? (number)
4. What are your current positions?

(student/developer/quality engineering/IT analyst/tester/manager/quality as-
surance/documentation writer/other (please specify))

5. Have you studied/worked specifically in IT security?
(5-point scale from “no security experience” to “security specialist”)

6. Have you ever generated or validated any public key certificates?
(5-point scale from “never” to “daily”)

7. Have you ever used ‘openssl’, the command line utility provided by OpenSSL?
(5-point scale from “never” to “daily”)

8. Have you ever used any other CLI tools for manipulating public key certifi-
cates? (never/yes, but long ago/certutil (NSS)/certutil (Windows)/certtool
(GnuTLS)/other (please specify))

Task 1: Issuing Certificates

9. Have you been able to issue the certificate? (yes/no/I don’t know)
9a. If not or unsure: Please, describe briefly what went wrong.

10. How did it go? What did you do? Are you confident of what you’ve done?

Task 2: Validating Certificates

11. Have you been able to validate any certificates? (yes/some/no/I don’t know)
12. Do you trust the certificates?

(for each certificate: yes/no (please specify reason)/I don’t know)
12a. If not or unsure: Why are you unsure? Describe what happened.

Post-Task Interview: Your Experience with OpenSSL
13. Please fill in the attached System usability scale. (5-point scale from “strongly

agree” to “strongly disagree” for each of the 10 statements)
14. What do you think of the interface of OpenSSL? Was it intuitive? Well-

documented? Well-structured? Is there anything you would change?
15. Do you believe Stack Overflow solutions in general? Did you miss any theo-

retical knowledge during the task completion?

19

B Participant Quotations

Selected quotations from study participants are presented below to illustrate
general feelings towards the library. However, the selection creates a somewhat
biased impression – about 20% of the people considered both the tool interface
and documentation fairly good considering the complexity of features it provides
(though not expressing this strongly, with a single exception quoted below).

– “It’s very humbling to have your tools taken away, be left with bare OpenSSL
and not be able to fulfill simple tasks.”

– “Interacting with OpenSSL voluntarily? Sorry, not even for research.”
– “We all know it sucks, finally, there is someone collecting empirical data.”
– “OpenSSL? I hate every single bit of it.”
– “Working with OpenSSL is a struggle every time – it takes at least 20-30

minutes to find something.”
– “The person writing the manual page has much different use cases than the

person reading the manual.”
– “I am surprised that even as a crypto expert I am unable to use OpenSSL.”
– “The manual page presumes you know what you are doing.”
– “You need to know crypto, ASN.1, X.509 and C to be able to use OpenSSL

correctly.”
– “OpenSSL is like a set of sharp knives.”
– “OpenSSL is disgustingly complicated. I always spend half a day reading and

googling.”
– “OpenSSL is intuitive and well documented, I wouldn’t change anything.”

References

1. Internet Archive: Wayback Machine, archive.org/web
2. Java Keytool, docs.oracle.com/javase/9/tools/keytool.htm
3. Man page search on Gentoo, www.polarhome.com/service/man/?of=Gentoo
4. Network Security Services, developer.mozilla.org/docs/Mozilla/Projects/NSS
5. OpenSSL: Cryptography and SSL/TLS Toolkit, www.openssl.org
6. The GnuTLS Transport Layer Security Library, www.gnutls.org
7. Acar, Y., Backes, M., Fahl, S., Garfinkel, S., Kim, D., Mazurek, M., Stransky, C.:

Comparing the Usability of Cryptographic APIs. In: 2017 IEEE Symposium on
Security and Privacy. IEEE (2017)

8. Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M., Stransky, C.: You Get Where
You’re Looking For: The Impact Of Information Sources on Code Security. In: 2016
IEEE Symposium on Security and Privacy. pp. 289–305. IEEE (2016)

9. Barker, E., Dang, Q.: NIST SP 800-57 Recommendation for Key Management Part
3: Application-Specific Key Management Guidance. Tech. rep. (2015)

10. Bernstein, D., Lange, T., Schwabe, P.: The Security Impact of a New Cryptographic
Library. In: Proceedings of the 2nd International Conference on Cryptology and
Information Security in Latin America. pp. 159–176. Springer (2012)

11. Brooke, J.: SUS – A Quick and Dirty Usability Scale. Usability Evaluation in
Industry 189(194), 4–7 (1996)

archive.org/web
docs.oracle.com/javase/9/tools/keytool.htm
www.polarhome.com/service/man/?of=Gentoo
developer.mozilla.org/docs/Mozilla/Projects/NSS
www.openssl.org
www.gnutls.org

20

12. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An Empirical Study of Cryp-
tographic Misuse in Android Applications. In: Proceedings of the 2013 ACM Con-
ference on Computer and Communications Security. pp. 73–84. ACM Press (2013)

13. Fischer, F., Bottinger, K., Xiao, H., Stransky, C., Acar, Y., Backes, M., Fahl,
S.: Stack Overflow Considered Harmful? The Impact of Copy&Paste on Android
Application Security. In: 2017 IEEE Symposium on Security and Privacy. IEEE
(2017)

14. Garfinkel, S., Miller, R.: Johnny 2: A User Test of Key Continuity Management
with S/MIME and Outlook Express. In: Proceedings of the 2005 Symposium on
Usable Privacy and Security. pp. 13–24. ACM Press (2005)

15. Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The
Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser
Software. In: Proceedings of the 2012 ACM Conference on Computer and Com-
munications Security. pp. 38–49. ACM Press (2012)

16. Horáková, L.: User Interface Design for Certificate Operations with Network Secu-
rity Services. Master thesis, Masaryk University (2017)

17. Krombholz, K., Mayer, W., Schmiedecker, M., Weippl, E.: “I Have No Idea What
I’m Doing” – On the Usability of Deploying HTTPS. In: Proceedings of the 26th
USENIX Security Symposium. USENIX Association (2017)

18. Lazar, D., Chen, H., Wang, X., Zeldovich, N.: Why does cryptographic software
fail? In: Proceedings of 5th Asia-Pacific Workshop on Systems. pp. 7:1–7:7. ACM
Press (2014)

19. Lethbridge, T., Singer, J., Forward, A.: How Software Engineers Use Documenta-
tion: The State of the Practice. IEEE Software 20(6), 35–39 (2003)

20. McLellan, S., Muddimer, A., Peres, C.: The Effect of Experience on System Us-
ability Scale Ratings. Journal of Usability Studies 7(2), 56–67 (2012)

21. Nemec, M., Klinec, D., Svenda, P., Sekan, P., Matyas, V.: Measuring Popularity
of Cryptographic Libraries in Internet-Wide Scans. In: Proceedings of the 33rd
Annual Computer Security Applications Conference. pp. 162–175. ACSAC 2017,
ACM (2017)

22. Robillard, M.: What Makes APIs Hard to Learn? Answers from Developers. IEEE
Software 26(6), 27–34 (2009)

23. Sheng, S., Broderick, L., Koranda, C., Hyland, J.: Why Johnny Still Can’t Encrypt:
Evaluating the Usability of Email Encryption Software. In: Proceedings of the 2006
Symposium On Usable Privacy and Security. pp. 3–4. ACM Press (2006)

24. Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman and Hall/CRC, 4 edn. (2007)

25. Subramanian, S., Inozemtseva, L., Holmes, R.: Live API documentation. In: Pro-
ceedings of the 36th International Conference on Software Engineering. pp. 643–
652. ACM Press (2014)

26. Uddin, G., Robillard, M.P.: How API Documentation Fails. IEEE Software 32(4),
68–75 (2015)

27. Whitten, A., Tygar, J.: Why Johnny Can’t Encrypt: A Usability Evaluation of
PGP 5.0. In: Proceedings of the 8th USENIX Security Symposium. vol. 8, pp.
169–184. USENIX Association (1999)

	Why Johnny the Developer Can't Work with Public Key Certificates

