
Submitted to:
MEMICS 2016

c© M. Ukrop & P. Švenda
This work is licensed under the
Creative Commons Attribution License.

Avalanche Effect in Improperly Initialized
CAESAR Candidates

Martin Ukrop
Centre for Research on Cryptography and Security,

Faculty of Informatics,
Masaryk University, Brno, Czech Republic

mukrop@mail.muni.cz

Petr Švenda
Centre for Research on Cryptography and Security,

Faculty of Informatics,
Masaryk University, Brno, Czech Republic

svenda@fi.muni.cz

Cryptoprimitives rely on thorough theoretical background, but often lack basic usability features
making them prone to unintentional misuse by developers. We argue that this is true even for the
state-of-the-art designs. Analyzing 52 candidates of the current CAESAR competition has shown
none of them have avalanche effect in authentication tag strong enough to work properly when par-
tially misconfigured. Although not directly decreasing their security profile, this hints at their security
usability being less than perfect.1

1 Introduction

Nowadays, experts realize that having cryptography attack-resistant from the theoretical point of view is
not sufficient since many attacks are caused by improper use of otherwise sound cryptographic primitives.
Developers routinely produce horrendous implementations (at least from the point of security) when
they neglect to properly set initialization vectors or ignore the requirement of unique sequence numbers.
Recently, Cairns and Steel outlined their vision for developer-resistant cryptography [5] with designs that
cannot be misused by the programmer.

The question the security-optimist would ask is: Is that not the case only for old primitives, old
protocols and old designs? Are new designs also prone to developer misuse? We argue the problem is
still open – we tested 52 participants of the current state-of-the-art cryptographic competition by checking
the avalanche effect of the candidates in settings simulating partial misconfiguration.

It is long known that cryptographic primitives such as ciphers, hash functions and message authenti-
cation codes should produce seemingly random outputs. Further requirements ask for outputs to change
unpredictably with respect to changes in the input. The strict avalanche criterion, as introduced by Web-
ster and Tavares in 1985 [23], is one way to formalize this. It is satisfied if, whenever a single input bit is
complemented, each of the output bits changes with a 50% probability. It is commonly used for assessing
the security of hash functions, though using it as a randomness test has also been done before [6].

In this paper, we scrutinize submissions of the ongoing CAESAR competition (Competition for
Authenticated Encryption: Security, Applicability, and Robustness) [4]. The authentication tags pro-
duced by all candidates are examined using four different software tools: three standard statistical bat-
teries (NIST STS [14], Dieharder [3] and TestU01 [11]) and a novel genetically-inspired framework
(EACirc [22]). The overview of the main experiment idea is depicted in Figure 1.

The analysis was done separately for three different settings of the public message number (fixing it
to zero, using a counter and generating unique random value each time). It turned out that none of the
tested CAESAR candidates had an avalanche effect strong enough to produce random-looking tags in

1Paper details available at crcs.cz/papers/memics2016

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
crcs.cz/papers/memics2016

2 Avalanche effect in CAESAR

Figure 1: High-level overview of the performed experiments. Firstly, a CAESAR cipher is used to
generate a stream of authentication tags. The randomness of this stream is then assessed by 4 tools
(EACirc and 3 statistical testing suites). If the design is good, it should exhibit an avalanche effect strong
enough for the stream to look random.

the most seriously misconfigured case with zero public message numbers (thus avalanching from only a
very few changed bits in plaintext). In the case of counter-based and random public message numbers,
the ciphers fared much better.

Firstly, in Section 2, the paper gives an overview of the related research. Then the basics of au-
thenticated encryption are explained along with the essentials of CAESAR competition (Section 3). The
following sections summarize the way of generating the tested data (Section 4) and the tools used for the
analysis (Section 5). Lastly, the results and their interpretation are given in Section 6.

2 Related research

As CAESAR competition is an on-going initiative with many submissions, there are still not many pub-
lications thoroughly examining the security of all the proposed algorithms. F. Abed et al. [1] give an
excellent overview of the candidates along with a classification with regard to their core primitives.
K. Hakju and K. Kwangjo [8] discuss the features of authenticated encryption and predict the essential
characteristics of the submissions to survive the CAESAR competition.

Probably the most comprehensive competition-wide analysis so far has been done by M. Saari-

M. Ukrop & P. Švenda 3

nen [15] using the BRUTUS automatic cryptanalytic framework. Deeper analysis exists only on a
per-candidate basis. For example, R. Ankele in his Ph.D. thesis [2] analyses the COPA authenticated
encryption composition scheme used in several CAESAR candidates. M. Nandi in his 2014 paper [13]
demonstrates a forging attack on COBRA and POET ciphers.

Numerous works tackled the problem of assessing randomness of outputs from other cryptoprimi-
tives. E. Simion [16] gave a nice overview of statistical requirements for cryptographic primitives in his
work. The Ph.D. thesis of K. Jakobsson [9] gives both a good theoretical background and a comparison
of commonly available tools for random number testing. Its results are based on assessing a variety of
pseudo-random and quantum random number generators.

Cryptographic competitions are often the target of these analyses since the unified function API
allows for effortless evaluation of a high number of schemes. M. Turan et al. [19] performed a detailed
examination of eStream phase 2 candidates (both full and reduced-round) with NIST STS and structural
randomness tests, finding six ciphers deviating from expected values. In 2010, Doganaksoy et al. [7]
applied the same battery, but only a subset of tests to SHA-3 candidates with a reduced number of rounds
as well as only to their compression functions.

A different strategy is employed in the EACirc framework – it uses a genetically-inspired process
to find a successful distinguisher (function capable for differencing between cipher output and random
stream). The framework has been used for assessing the randomness of outputs produced by the round-
limited eSTREAM and SHA-3 candidates [22, 18]. Although still falling behind in some cases, this
approach surpasses NIST STS in a few instances.

3 Authenticated encryption

A cryptosystem for authenticated encryption simultaneously provides confidentiality, integrity, and au-
thenticity assurances on data – decryption is combined in a single step with integrity verification. Au-
thenticated ciphers are often built as various combinations of block ciphers, stream ciphers, message
authentication codes, and hash functions. There are many examples commonly used today, such as the
Galois/counter mode (GCM) [12] based on block ciphers.

Combining confidentiality and integrity assurances into a single scheme has tremendous advantages
as combining a confidentiality mode with an authentication mode could be error prone and difficult2.
Therefore, following a long tradition of cryptography competitions, CAESAR [4] aims to create a port-
folio of authenticated encryption systems intended for wide public adoption.

Each submission in CAESAR specifies a family of authenticated ciphers. Family members differ
only in parameters (e.g. key length, the number of internal rounds). There were 56 different designs
submitted to the first round. Taking into account all possible parameter sets, this amounts to 172 inde-
pendent schemes. Till the announcement of the second-round candidates, 9 ciphers were withdrawn by
their authors. On July 7th 2015, 29 ciphers were chosen for the second round. Later, on August 15th

2016, 15 ciphers out of these were selected for the third round.
Our goal was to test as many authenticated encryption schemes as possible. Using CAESAR candi-

dates enabled us to test many ciphers and many configurations automatically due to the shared API.
All the candidate source codes were taken from the 1st-round SUPERCOP repository managed by
eBACS [21].

2“It is very easy to accidentally combine secure encryption schemes with secure MACs and still get insecure authenticated
encryption schemes.” [10]

4 Avalanche effect in CAESAR

Figure 2: The process of creating the tested data streams by individual CAESAR candidates. The cipher
is initialized as depicted in the diagram. The produced authentication tags are then concatenated to form
a continuous stream suitable for randomness analysis.

In the end, there were 168 different ciphers tested in all performed experiments. From 172 submitted
independent schemes (56 designs with different parameter sets), 6 were not tested. Firstly, we could not
get the AVALANCHE candidates working properly (segmentation fault while running). Secondly, Julius
did not compile due to problems with the inclusion of the external AES routines provider. Thirdly, PO-
LAWIS seemed not to have followed the prescribed API. Lastly, the implementation of PAES is probably
faulty, since it did not pass our encrypt-decrypt sanity test. We might have been able to fix most of these
cases, but doing so would require extensive interventions in the code increasing the possibility of error.
Apart from the submitted candidates, we tested 2 versions of AES/GCM referenced by the CAESAR
committee as a design baseline.

4 Tested data streams

The aim of the performed experiments is to assess randomness of authentication tags produced by many
authenticated encryption schemes. The same analysis could also be performed on produced ciphertext,
but that it out of scope of this paper. In particular, we inspect tags provided by CAESAR candidates in
three independent scenarios differing in public message number setting. An overview of tag generation
is given below and in Figure 2.

The cipher has 5 inputs: plaintext (encrypted and authenticated user input), associated data (authenti-
cated user input), key, secret message number (secret nonce) and public message number (public nonce).
The produced tag (extra ciphertext bytes when compared to the plaintext length) is determined by the
cipher design. In the majority of the cases, this means 128 bits (16 bytes), but some candidates produce
shorter tags (2, 4, 8 or 12 bytes). These tags were concatenated to form a continuous stream suitable for
randomness assessment.

M. Ukrop & P. Švenda 5

From the nature of the arguments prescribed by the CAESAR API, the public message number is
probably the argument to be most easily (unintentionally) misused. Security requirements for keys are
well known, secret message numbers are usually not used, plaintext and associated data are mostly self-
explanatory. Public message numbers are sometimes required to be unique (to have properties of nonces),
but sometimes this is not necessary. In a way, we deem testing different modes of public message
numbers as examining the robustness of the cipher design. The fields were initialized as follows:

• Key
The key value was taken randomly but was fixed. For EACirc (one of the used tools), 1 000
independent runs used different keys to allow for variation (otherwise, the same numerical results
would be produced).

• Associated data, secret message number
We used two bytes of associated data; the length of the secret message number was determined by
the cipher or the parameter set. Both fields’ values were fixed to binary zeros. Note that only three
ciphers used secret message numbers.

• Public message number
This was the only parameter explored in different settings:

– Fixed to a string of binary zeros for the whole time.
– Increasing as a counter – each value unique but similar to others.
– Having each value completely random.

• Plaintext
The plaintext was 16 bytes long, formatted as a single counter starting from zero. We could not use
fixed-value plaintext, because, in the case of fixed-value public message numbers, the produced
tags would be identical (considering settings of the other arguments). A plaintext of binary zeros
would have been possible in the other two modes for public message numbers, but we refrained
from doing so to keep the experiments as comparable as possible (with as similar settings as
possible).

In summary, if we denote the cipher as a function F(plain,adata,key,smn, pmn) producing the authenti-
cation tag (the ciphertext is not used in our analysis, but inspecting it would also be interesting), the final
analyzed stream in the scenario with random public message numbers looks as follows:

Stream =F(0,0,randA,0,rand1) ||F(1,0,randA,0,rand2) ||
F(2,0,randA,0,rand3) ||F(3,0,randA,0,rand4) || ...

5 Randomness testing tools

The most common way of testing randomness is using statistical testing. From the multitude of available
batteries, we used the following three: NIST STS (older, yet still commonly used and a valid NIST
standard), Dieharder (modern framework reimplementing other suites as well as adding brand new tests)
and TestU01 (another modular framework implementing many tests).

Although the p-value of a randomness test focusing on a single characteristic has a clear statistical
interpretation, the interpretation of results produced by testing suites is somewhat problematic. We need
to determine what number of failed tests allows us to reject randomness of the assessed sequence while
respecting the chosen significance level. For this, we use the methods proposed in 2015 by M. Sýs et
al. [17].

6 Avalanche effect in CAESAR

For all experiments, we chose the significance level of α = 1%, which is the default value for NIST
STS [14]. This keeps the type I. error (false positives) reasonably low while preventing the type II. error
(false negatives) to reach too high values.

We used NIST STS version 2.1.1 with the default parameters (block lengths) for all tests. To comply
with the minimal required stream length for individual tests [14], we tested 100 independent 1 000 000
bit long sequences for each candidate. In summary, NIST STS used about 12 MiB (about 700 000 tags)
of data from each candidate for each test.

Dieharder version 3.31.1 was used. The two parametrizable tests were configured with recommended
values. The length of the input stream processed by Dieharder varies from test to test. The humblest
(Diehard 3D-sphere test) required about 48 kiB, while the greediest one (Bit distribution test) took about
9.2 MiB. To ensure the best possible comparability with the other test suites, we again analyzed 100
independent samples of the input. In summary, Dieharder tests used between 4.7 MiB (about 300 000
tags) and 916 MiB (about 60 000 000 tags) of input data for each candidate (depending on the test).

TestU01 was used in version 1.2.3. The most relevant sub-batteries are Rabbit, Alphabit and Block-
Alphabit. These are intended for testing finite binary sequences. The length of the input stream taken
by TestU01 can be set arbitrarily. To have an amount of data comparable to the other used batteries, we
chose to process 230 bits for each test. In summary, TestU01 thus used about 128 MiB (about 8 400 000
tags) of input data for each test.

EACirc represents a completely different approach to testing data randomness: The main idea is to
use supervised learning techniques based on evolutionary algorithms to design and further optimize a
successful distinguisher – a test determining whether its input comes from a truly random source or not.
The distinguisher is represented as a hardware-like circuit consisting of simple interconnected functions.
The used settings cause EACirc to process approximately 2.24 MiB of data produced by the tested
cryptoprimitive for a single EACirc run. This amounts to about 2.24 GiB (about 150 000 000 tags) of
data for a single experiment with 1 000 runs.

6 Results and interpretation

A selection of the numerical results can be seen in Table 1. The table aims for a representative selection
of the interesting cases including all categories from the reference schemes to the algorithms that passed
to the third (currently last) round. For the complete numerical results and detailed reasoning, see [20].

Firstly, let us compare the outcomes for the three inspected public message number modes. We
expected the random-valued to perform the best, followed by counter-based and then by zero-fixed public
message numbers. We reasoned that the more differences there will be among the used values, the easier
it will be for the cipher to produce a random-looking tag (since it has more entropy to start from). As
stated in the submission call, the ciphers were allowed to lose all security in case of reused (public
message number, private message number)-pair under the same key. Nevertheless, we expected some
(albeit not many) ciphers will be able to retain the apparent randomness of the produced tag – even
though it would require an adamant avalanche effect (all arguments are identical apart from a few bits in
plaintext).

From the conducted experiments we see that the primary hypothesis (random values performing
better than a counter and much better than zeros) was confirmed. However, none out of the tested
candidates passed with the public message numbers fixed to zero. The single bit change in plaintext with
all other arguments fixed might not have been enough to cause the avalanche effect needed to produce a
tag looking sufficiently random.

M. Ukrop & P. Švenda 7

PM
N

fix
ed

to
ze

ro
PM

N
co

un
te

r-
ba

se
d

PM
N

tr
ul

y
ra

nd
om

C
at

eg
or

y
(C

A
E

SA
R

ro
un

d)

C
ip

he
r

(o
ffi

ci
al

na
m

e)

C
an

di
da

te
ID

(a
s

us
ed

in
SU

PE
R

C
O

P
[2

1]
)

EACirc
(proportion)

NISTSTS
(x/188)

Dieharder
(x/55)

TestU01
(x/159)

EACirc
(proportion)

NISTSTS
(x/188)

Dieharder
(x/55)

TestU01
(x/159)

EACirc
(proportion)

NISTSTS
(x/188)

Dieharder
(x/55)

TestU01
(x/159)

R
ef

er
en

ce
ca

nd
id

at
es

A
E

S-
G

C
M

ae
s1

28
gc

m
v1

1.
00

0
23

1
11

0.
01

4
18

7
52

15
7

0.
01

9
18

7
52

15
8

A
E

S-
G

C
M

ae
s2

56
gc

m
v1

1.
00

0
71

1
13

0.
01

3
18

8
51

15
6

0.
00

7
18

8
54

15
8

W
ith

dr
aw

n
ca

nd
id

at
es

C
al

ic
o

ca
lic

ov
8

0.
01

3
12

8
3

8
0.

00
9

18
6

55
15

6
0.

01
5

18
8

53
15

8
M

ar
bl

e
ae

s1
28

m
ar

bl
e4

rv
1

0.
01

6
16

0
16

6
0.

01
0

16
8

14
8

0.
01

0
16

0
16

6

Fi
rs

t-
ro

un
d

ca
nd

id
at

es

A
E

S-
C

M
C

C
cm

cc
22

v1
0.

00
8

53
1

4
0.

01
1

46
2

8
0.

00
8

18
7

54
15

6
A

E
S-

C
M

C
C

cm
cc

24
v1

0.
00

5
43

3
3

0.
00

8
18

8
50

15
5

0.
02

3
18

6
50

15
2

A
E

S-
C

M
C

C
cm

cc
42

v1
0.

01
1

87
2

3
0.

00
8

86
2

4
0.

01
5

18
2

54
15

4
A

E
S-

C
M

C
C

cm
cc

44
v1

0.
00

8
85

4
5

0.
01

3
18

3
52

15
5

0.
00

7
18

8
53

15
2

A
E

S-
C

M
C

C
cm

cc
84

v1
0.

01
4

14
7

7
4

0.
00

9
18

4
53

15
6

0.
00

7
18

2
48

15
8

E
nc

hi
la

da
en

ch
ila

da
12

8v
1

1.
00

0
71

2
15

0.
01

7
18

7
53

15
7

0.
01

0
18

6
52

15
5

E
nc

hi
la

da
en

ch
ila

da
25

6v
1

1.
00

0
77

1
11

0.
01

3
18

8
54

15
6

0.
01

6
18

8
53

15
5

R
av

iy
oy

la
ra

vi
yo

yl
av

1
1.

00
0

22
2

7
1.

00
0

14
8

28
24

0.
29

5
18

6
51

14
4

Se
co

nd
-r

ou
nd

ca
nd

id
at

es

Tr
iv

iA
-c

k
tr

iv
ia

0v
1

0.
99

9
14

0
5

8
0.

01
5

18
6

52
15

7
0.

00
5

18
7

55
15

4
Tr

iv
iA

-c
k

tr
iv

ia
12

8v
1

0.
99

3
15

8
12

8
0.

01
7

18
8

53
15

8
0.

00
9

18
8

54
15

7

T
hi

rd
-r

ou
nd

ca
nd

id
at

es

A
E

Z
ae

zv
1

0.
01

4
16

9
15

9
0.

01
5

18
7

52
15

5
0.

01
0

18
8

52
15

7
A

E
Z

ae
zv

3
0.

01
6

16
4

13
6

0.
01

1
18

8
53

15
7

0.
00

9
18

5
50

15
6

Ta
bl

e
1:

T
he

se
le

ct
io

n
of

ci
ph

er
s

w
ith

in
te

re
st

in
g

re
su

lts
fr

om
di

ff
er

en
t

ca
te

go
ri

es
(f

ro
m

re
fe

re
nc

e
sc

he
m

es
to

3rd
ro

un
d

ca
nd

id
at

es
).

T
he

nu
m

be
rs

in
co

lu
m

ns
of

st
at

is
tic

al
ba

tte
ri

es
re

pr
es

en
t

th
e

nu
m

be
r

of
pa

ss
ed

te
st

s
(s

ho
ul

d
be

cl
os

e
to

al
l

fo
r

ra
nd

om
st

re
am

),
w

hi
le

E
A

C
ir

c
di

sp
la

ys
th

e
ra

tio
of

ru
ns

re
je

ct
in

g
ra

nd
om

ne
ss

(s
ho

ul
d

be
ar

ou
nd

0.
01

0
fo

rr
an

do
m

st
re

am
).

Fo
rt

he
ea

se
of

co
m

pr
eh

en
si

on
,i

ft
he

re
su

lt
re

je
ct

s
ra

nd
om

ne
ss

of
th

e
pa

rt
ic

ul
ar

st
re

am
,t

he
ce

ll
is

gr
ay

-c
ol

or
ed

.
N

ot
e

th
at

th
is

is
on

ly
a

su
bs

et
of

th
e

te
st

ed
ca

nd
id

at
es

(m
os

to
ft

he
om

itt
ed

on
es

ha
ve

re
su

lts
si

m
ila

rt
o

th
os

e
of

A
E

Z
).

Fo
rc

om
pl

et
e

nu
m

er
ic

al
re

su
lts

an
d

th
re

sh
ol

d
va

lu
es

,s
ee

[2
0]

.

8 Avalanche effect in CAESAR

Secondly, let us inspect the results for the individual candidates (see Table 1). Tags of just five ciphers
(AES/GCM, Marble, AEC-CMCC, AES-CPFB, Raviyoyla) were distinguishable from random streams
with counter-valued public message numbers. Three of these ciphers (Marble, AES-CMCC, AES-CPFB)
also failed in the random-valued scenario. The evidence is still too weak to deem the designs insecure
– it may merely be the case they produce a constant delimiter between the ciphertext and tag, violating
the statistical randomness of the created tag. To draw any conclusions, a detailed inspection of the
ciphers would need to be performed. It is, however, worth mentioning that no candidates failing in either
counter- or random-valued scenario were selected by the CAESAR committee to the second round of the
competition.

Apart from the findings for the CAESAR candidates, the results allow us to gain insights into the
capabilities of the used randomness testing tools. Based on the previous works [18], we expected the
randomness distinguishing abilities of EACirc and NIST STS will be similar while both will be surpassed
by Dieharder and TestU01. On the one hand, the observed results showed many deficiencies of EACirc
– it performed worse than NIST STS in given tested scenarios. On the other, all three statistical batteries
achieved comparable results. However, before any conclusions on the quality of the batteries are drawn,
one has to be aware there are many domains in which these tools remain incomparable. They inspect
different amounts of data and have different modes of operation (batteries see the stream as a whole,
EACirc processes short, distinct test vectors).

There is one case contrary to the general behavior observed above (see Table 1): Raviyoyla with
randomly initialized public message numbers for each test vector seems to be successfully rejected from
the random stream by EACirc although none of the statistical batteries support such result. It appears
very promising but also requires additional inspection and enhanced testing to announce a case of EACirc
surpassing all tested statistical batteries.

The results lead us to several interesting hypotheses requiring further inspection. The candidates
failing in randomness tests would deserve a deeper manual inspection to prove their potential (in)security.
The used statistical testing suites themselves would be an interesting target for further research. It turned
out that interpretation of test suites is quite difficult, and thorough research on test interdependence is
necessary. Another perspective direction would be weakening the cipher designs (e.g. by limiting the
number of internal rounds) to achieve a fine-grained comparison of the used tools.

7 Summary

We have set off to examine modern authenticated encryption systems from the point of resistance against
common developer misconfiguration. In the end, we assessed outputs from 168 distinct schemes (all but
six CAESAR submissions) in three different configurations using multiple software tools (NIST STS,
Dieharder, TestU01 and EACirc).

We examined a scenario with random (but fixed) keys, counter-based plaintext and three different
settings of public message numbers. As expected, tags produced in configurations with random public
message numbers fared better than the ones from counter-based configurations. Both did better than
tags from fixed-value public message numbers – no submission had an avalanche effect strong enough to
produce random-looking tags in the scenario where all test vectors had the same public message numbers.

Only three CAESAR submissions (Marble, AEC-CMCC, Raviyoyla) failed to produce seemingly
random tags with counter-based public message numbers. For entirely random public message numbers,
only Marble failed convincingly. AEC-CMCC achieved a borderline value in Dieharder and passed in
other tools. Raviyoyla seems to have failed according to EACirc – this case is suspicious and worth of

M. Ukrop & P. Švenda 9

further investigation, since it is the only case where EACirc surpassed the other tools. Importantly, none
of these candidates made it to the second round of the competition (indirectly supporting our results).

Regarding the tools used for tag evaluation, EACirc seemed to be the least suitable for the given task,
being beaten by all the statistical batteries. The batteries themselves (NIST STS, Dieharder and TestU01)
produced comparable results. The only exception is the case of Raviyoyla, in which EACirc seems to
have outperformed all the other tools. However, when making comparisons, one has to take into account
the amount of data inspected by each tool and their different modes of operation.

All in all, not even the state-of-the-art authenticated encryption designs do not have avalanche ef-
fect strong enough in the case with zero-fixed public message numbers. Although not forming a direct
practical attack on the ciphers, it breaks semantic security of the scheme, since the attacker is able to
distinguish two messages based on the leakage present in inspected scenarios. A security-optimist from
the introduction may see this as an interesting area for further improvements.

Acknowledgments

We acknowledge the support of Czech Science Foundation, project GA16-08565S. Access to comput-
ing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure
MetaCentrum provided under the programme Projects of Projects of Large Research, Development, and
Innovations Infrastructures (CESNET LM2015042), is greatly appreciated.

References

[1] Farzaneh Abed, Christian Forler & Stefan Lucks (2014): General Overview of the Authenticated Schemes
for the First Round of the CAESAR Competition. Cryptology ePrint Archive. Available at http://ia.cr/
2014/792.

[2] Robin Ankele (2015): Provable Security of Submissions to the CAESAR Cryptographic Competition. Master
thesis, Graz University of Technology. Available at https://securewww.esat.kuleuven.be/cosic/
publications/thesis-263.pdf.

[3] Robert G. Brown (2004): Dieharder: A Random Number Test Suite. http://www.phy.duke.edu/%7Ergb/
General/dieharder.php.

[4] CAESAR committee (2013): CAESAR: Competition for Authenticated Encryption: Security, Applicability,
and Robustness. http://competitions.cr.yp.to/caesar-call.html.

[5] Kelsey Cairns & Graham Steel (2014): Developer-resistant cryptography. In: A W3C/IAB workshop on
Strengthening the Internet Against Pervasive Monitoring (STRINT).

[6] Julio Cesar Hernandez Castro, José Marı́a Sierra, Andre Seznec, Antonio Izquierdo & Arturo Ribagorda
(2005): The strict avalanche criterion randomness test. Mathematics and Computers in Simulation 68(1),
pp. 1–7, doi:10.1016/j.matcom.2004.09.001.

[7] Ali Doganaksoy, Baris Ege, Onur Koçak & Fatih Sulak (2010): Statistical Analysis of Reduced Round Com-
pression Functions of SHA-3 Second Round Candidates. IACR Cryptology ePrint Archive. Available at
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.814&rep=rep1&type=pdf.

[8] Kim Hakju & Kim Kwangjo (2014): Who can survive in CAESAR competition at round-zero. In: The
31th Symposium on Cryptography and Information Security Kagoshima, pp. 21–24. Available at http:
//caislab.kaist.ac.kr/publication/paper_files/2014/SCIS2014_HJ.pdf.

[9] Krister Sune Jakobsson (2014): Theory, Methods and Tools for Statistical Testing of Pseudo and Quantum
Random Number Generators. Ph.D. thesis, Linköpings universitet, Sweden. Available at http://liu.
diva-portal.org/smash/record.jsf?pid=diva2%3A740158&dswid=9282.

http://ia.cr/2014/792
http://ia.cr/2014/792
https://securewww.esat.kuleuven.be/cosic/publications/thesis-263.pdf
https://securewww.esat.kuleuven.be/cosic/publications/thesis-263.pdf
http://www.phy.duke.edu/%7Ergb/General/dieharder.php
http://www.phy.duke.edu/%7Ergb/General/dieharder.php
http://dx.doi.org/10.1016/j.matcom.2004.09.001
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.814&rep=rep1&type=pdf
http://caislab.kaist.ac.kr/publication/paper_files/2014/SCIS2014_HJ.pdf
http://caislab.kaist.ac.kr/publication/paper_files/2014/SCIS2014_HJ.pdf
http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A740158&dswid=9282
http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A740158&dswid=9282

10 Avalanche effect in CAESAR

[10] Tadayoshi Kohno, John Viega & Doug Whiting (2003): The CWC authenticated encryption (associated data)
mode. ePrint Archives. Available at http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
proposedmodes/cwc/cwc-spec.pdf.

[11] Pierre L’Ecuyer & Richard Simard (2007): TestU01: A C Library for Empirical Testing of Random Number
Generators. ACM Transactions on Mathematical Software 33(4), doi:10.1145/1268776.1268777.

[12] David McGrew & John Viega (2004): The Galois/Counter Mode of Operation (GCM). Submission to NIST.
Available at http://siswg.net/docs/gcm_spec.pdf.

[13] Mridul Nandi (2014): Forging Attacks on Two Authenticated Encryption Schemes COBRA and POET.
In: Advances in Cryptology – ASIACRYPT 2014, 8873, Springer Berlin Heidelberg, pp. 126–140,
doi:10.1007/978-3-662-45611-8 7.

[14] Andrew Rukhin et al. (2000): A Statistical Test Suite for Random and Pseudorandom Number Generators
for Cryptographic Applications. Technical Report, National Institute of Standards and Technology (NIST).
Available at http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf.

[15] Markku-Juhani O. Saarinen (2015): The BRUTUS automatic cryptanalytic framework. Journal of Crypto-
graphic Engineering 6(1), pp. 75–82, doi:10.1007/s13389-015-0114-1.

[16] Emil Simion (2015): The Relevance of Statistical Tests in Cryptography. IEEE Security & Privacy, pp.
66–70, doi:10.1109/MSP.2015.16.

[17] Marek Sýs, Zdenk Řı́ha, Václav Matyáš, Kinga Márton & Alin Suciu (2015): On the Interpretation of Results
from the NIST Statistical Test Suite. Romanian Journal of Information Science and Technology 18(1), pp.
18–32.

[18] Marek Sýs, Petr Švenda, Martin Ukrop & Vashek Matyáš (2014): Constructing empirical tests of random-
ness. In: SECRYPT 2014 Proceedings of the 11th International Conference on Security and Cryptography,
SCITEPRESS Science and Technology Publications, pp. 229–237, doi:10.5220/0005023902290237.

[19] Meltem Sonmez Turan, Ali Doganaksoy & Çagdas Çalik (2008): On Statistical Analysis of Synchronous
Stream Ciphers. Ph.D. thesis, The Middle East Technical University. Available at http://etd.lib.metu.
edu.tr/upload/12609581/index.pdf.

[20] Martin Ukrop (2016): Randomness analysis in authenticated encryption systems. Master thesis, Faculty of
Informatics, Masaryk University. Available at http://is.muni.cz/th/374297/fi_m/.

[21] Virtual Applications and Implementations Research Lab (2008): SUPERCOP: System for Unified Perfor-
mance Evaluation Related to Cryptographic Operations and Primitives. Available at http://bench.cr.
yp.to/supercop.html.

[22] Petr Švenda, Martin Ukrop & Vashek Matyáš (2014): Determining cryptographic distinguishers for eStream
and SHA-3 candidate functions with evolutionary circuits. In: E-Business and Telecommunications, 456,
Springer Berlin Heidelberg, pp. 290–305, doi:10.1007/978-3-662-44788-8 17.

[23] A. F. Webster & S. E. Tavares (1986): On the Design of S-Boxes, pp. 523–534. Springer Berlin Heidelberg,
Berlin, Heidelberg, doi:10.1007/3-540-39799-X 41.

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/cwc/cwc-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/cwc/cwc-spec.pdf
http://dx.doi.org/10.1145/1268776.1268777
http://siswg.net/docs/gcm_spec.pdf
http://dx.doi.org/10.1007/978-3-662-45611-8_7
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://dx.doi.org/10.1007/s13389-015-0114-1
http://dx.doi.org/10.1109/MSP.2015.16
http://dx.doi.org/10.5220/0005023902290237
http://etd.lib.metu.edu.tr/upload/12609581/index.pdf
http://etd.lib.metu.edu.tr/upload/12609581/index.pdf
http://is.muni.cz/th/374297/fi_m/
http://bench.cr.yp.to/supercop.html
http://bench.cr.yp.to/supercop.html
http://dx.doi.org/10.1007/978-3-662-44788-8_17
http://dx.doi.org/10.1007/3-540-39799-X_41

	Introduction
	Related research
	Authenticated encryption
	Tested data streams
	Randomness testing tools
	Results and interpretation
	Summary

