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Abstract—Analysis of cryptoprimitives usually requires exten-
sive work of a skilled cryptanalyst. Some automation is possible,
e.g. by using randomness testing batteries such as Statistical
Test Suite from NIST (NIST STS) or Dieharder. Such batteries
compare the statistical properties of the function’s output stream
to the theoretical values. A potential drawback is a limitation to
predefined tested patterns. However, there is a new approach –
EACirc is a genetically inspired randomness testing framework
based on finding a dynamically constructed test. This test works
as a probabilistic distinguisher separating cipher outputs from
truly random data.

In this work, we use EACirc to analyze the outputs of Tiny
Encryption Algorithm (TEA). TEA was selected as a frequently
used “benchmark” algorithm for cryptanalytic approaches based
on genetic algorithms. In this paper, we provide results of EACirc
applied to TEA ciphertext created from differently structured
plaintext. We compare the methodology and results with previous
approaches for limited-round TEA. A different construction
of EACirc tests also allows us to determine which part of
cipher’s output is relevant to the decision of a well-performing
randomness distinguisher.1

Index Terms—randomness statistical testing, TEA, genetic
algorithms, randomness distinguisher, software circuit

I. INTRODUCTION

Automatized randomness testing is useful for checking one
of the expected cipher properties – output ciphertext should
be indistinguishable from a stream of truly random data. This
property alone is not sufficient for a cipher to be secure, but the
ability to distinguish ciphertexts from random data constitutes
an important hint on potential cipher weaknesses.

The common way to automate testing of randomness is
using statistical batteries. NIST STS [1] is a standard battery
of tests commonly used for this purpose, together with other
batteries such as Diehard [2], Dieharder [3] or TestU01 [4].
The batteries contain sets of fixed tests (usually parameter-
ized to form multiple different subtests) checking expected
statistical properties of tested output stream (TEA ciphertext
in our case) in comparison to the expected values for truly
random data. Empirical tests of randomness fall under the
standard statistical model – statistical hypothesis testing. Tests
assume the assessed bitstream is random (the null hypothesis)
and try to reject it (to show the bitstream is not random).
Each randomness test is defined by the test statistic S, which
is a real-valued function of a numeric sequence. Tests are
evaluated by comparing the p-value (computed from the test

1Paper supplementary material available at http://crcs.cz/papers/
infocomm2016

statistic) with a chosen significance level α. For the p-value
computation, it is necessary to know an exact distribution of
the statistic S under a valid null hypothesis or, at least, its
close approximation.

The limitation of the standard batteries for randomness
testing is the fact they implement a fixed set of tests and can
detect only a limited set of patterns and statistical irregularities.
If the used set of tests is fixed and known, a sequence of
completely deterministic data can be crafted such that no tests
will detect statistically significant deviances from truly random
data. However, as cryptographic functions have a deterministic
output (dependent only on input data and a key), it is a priori
expected that the function output cannot pass all possible tests
of randomness and so there exist tests that reveal the output
sequence as non-random. However, such a test can be very
difficult to find.

In this work we use EACirc [5], a novel framework for
constructing empirical tests of randomness that can succeed
in finding such a test (at least hypothetically). Our goal is
to find an empirical test of randomness that indicates if a
given sequence is either non-random (with a high probability)
or sufficiently indistinguishable from a truly random data
stream. In this framework, randomness tests are created itera-
tively, adapting to the processed sequence. The construction
is stochastic and uses genetic programming [6]. The tests are
constructed from a predefined pool of operations. A set of
these operations, together with a limit on the total number of
operations, allows us to control the complexity of the con-
structed tests. The framework theoretically enables us to build
an arbitrary randomness test over a set of chosen operations
(in practice, however, the total number of operations used is
limited). Therefore, it can be viewed as a general framework
for the test construction and it could (hypothetically) provide
a better detection ability than standard tests.

TEA has been intensively analyzed, including randomness
testing of cipher output with stochastic genetic algorithms.
Capabilities of EACirc are compared with previous results as
well as conventional statistical batteries.

This paper is organized as follows: section II introduces
TEA as a simple encryption algorithm applied nowadays as
a benchmark for randomness tests. Subsequently, section III
contains information about EACirc with the definition of used
settings. Input data structure is also discussed in this section.
Results and their interpretation are presented in section IV
with analysis of found distinguishers and performance and data
usage of EACirc. In section V, we describe the future work.

http://crcs.cz/papers/infocomm2016
http://crcs.cz/papers/infocomm2016
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II. TINY ENCRYPTION ALGORITHM

Tiny Encryption Algorithm (TEA) is a block cipher de-
signed by David Wheeler and Roger Needham [7]. The
algorithm was designed to have a simple structure based on
the Feistel network with 32 rounds (we count two steps of
Feistel network as 1 TEA round). The cipher uses plaintext
blocks of 64 bits and keys of 128 bits.

A. TEA distinguishers – state of the art

Nowadays, TEA is not considered secure for regular use
as it suffers from multiple weaknesses, most significantly the
related-key attack [8]. However, it is frequently used as a
benchmark for randomness testing using genetic algorithms.
Starting in 2002 with a paper by Julio C. Hernández, José
M. Sierra, Pedro Isasi and Arturo Ribagorda [9], statistically
significant deviances were found for TEA limited to 1 and
2 rounds. Fixed bitmask with high Hamming weight evolved
by genetic algorithms was applied both to the cipher input
data and key. The expected distribution of bit patterns of
10 least significant bits of ciphertexts were then evaluated with
a χ2 test. A similar team published new results with the same
approach but improved settings of genetic algorithms [10],
which also detected deviances for 3 and 4 rounds. Aaron
Garrett, John Hamilton and Gerry Dozier [11] extended this
work in 2007 with new optimizations of the fitness function,
which helped to create masks with a higher weight for 1 and
2 rounds TEA but failed to surpass previous results for 3 and
4 rounds.

Wei Hu et al. [12] in 2010 used quantum inspired genetic
algorithm and a similar approach with bitmasks and succeeded
with TEA limited to 4 and 5 rounds. Eddie Yee-Tak Ma and
Chalie Obimbo [13] realized an attack on TEA limited to
1 round in 2011 utilizing genetic algorithms and harmony
search for the derivation of degenerated keys instead of
detection of statistical deviances of output.

III. OUR APPROACH

A. Randomness testing with genetic programming

As stated in the section I, the common way of automating
randomness testing is the use of statistical batteries with
predefined tests such as NIST STS. The approach based on
genetic algorithms is different, as used tests iteratively evolve
and adapt to the presented data.

Firstly, a set of individuals is created with each representing
a candidate distinguisher function. Secondly, every individual
decides if the provided block of input data is random or non-
random. Thirdly, as the correctness of the decision is known,
better individuals can be selected. Individuals are randomly
mutated or cross-bred to create (hopefully) better descendants.
The process follows the principles of biological evolution.
I.e. if ciphertexts share a common statistical property (e.g.
correlation between ith and jth bit), then an individual capable
of expressing this property can potentially be evolved and
improved in the process of further evolution.

The use of genetic algorithms also induces a couple of
disadvantages. We are affected mainly by these:

• As the representation of the distinguisher functions is
not straightforward, there are many possible candidate
configurations. This induces a search space that may be
artificially and unnecessarily large if the representation is
not properly selected.

• Genetic modifications of candidate solutions from the
previous iteration (mutation, crossover) are done ran-
domly, and configuration space may not be completely
searched. A well-working distinguisher can be missed
even if it exists.

• The process of fine-tuning the parameters of genetic
algorithms can significantly influence the quality of dis-
tinguishers found. E.g. [10] found distinguisher for a
higher number of rounds then [9] although using same
underlying approach and representation.

For more details about possible problems and their solution in
EACirc, refer to the thesis of Martin Ukrop [14], section 3.1.

B. EACirc framework

The constructed distinguisher is a small program that simu-
lates a standard hardware circuit. It consists of logic gates
(nodes) grouped into layers. Every gate in a layer is connected
to several nodes from the layer above using connectors (see
fig. 1). It is crucial that the functionality of the circuit (circuit-
like software) can be simply changed by replacing operations
in gates or by redirection of connectors. This property is used
for an iterative construction of distinguishers. The construction
is controlled by genetic programming that uses a fitness
function (success rate) based on the ability of a distinguisher
to correctly indicate a given bitstream to be non-random with
a high confidence. A well-performing distinguisher is able
to assign non-random inputs, the outputs with a significantly
different distribution than outputs assigned to truly random
inputs. The output distribution difference is formalized using
the Kolmogorov-Smirnov test [15].

The supposed usage of EACirc is similar to the statistical
batteries. The process is fully automatized with statistical
results that are simple to interpret. Additionally, EACirc can be
used as a tool for showing cipher weaknesses for manual crypt-
analysis performed later. For example, skilled cryptologist
can see from fig. 1 what part of TEA is causing statistical
deviations and how the weakness can be exploited as shown
in the result interpretation (section IV-C).

The whole framework is being continuously extended and
enhanced by our team and is accessible online with full
documentation [5].

C. EACirc parametrization

EACirc can be configured on multiple levels: firstly, the
representation of software circuit used to express candidate
distinguishers and, secondly, the parameters of genetic pro-
gramming. General settings are described in the thesis of
Martin Ukrop [14], chapter 4 and project’s documentation [5].
The following settings were relevant for TEA analysis.
Functions in nodes: Circuit nodes can contain an identity

function, constant-producing function, basic logical bin-
ary operators, shifts and rotations, integer comparison
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Figure 1. Software circuit with green input nodes, blue inner nodes (oper-
ations) and a red output node. Inner nodes and connectors are highlighted if
they affect output (dotted edges and lighter nodes are part of evolved circuit,
but they are not affecting the output byte in any way). This circuit was evolved
in the experiment with 4-round TEA.

functions, masks for bit selection and additional input
read operator. The larger diversity of functions means
stronger expression capability (within the limited space).
However, this vastly increases the space of applicable
individuals slowing down the evolution process. Due
to this, the set of used function was restricted (integer
comparison functions and additional input read operator
were not used). All functions are byte-oriented.

Circuit dimensions: In our case, the input layer has the same
size (or multiple of) as the TEA block. Other relevant
settings include providing more TEA ciphertext blocks
as a single input (which would again slow down the
evolution considerably). We used 5 internal layers with 8
nodes per layer. The last layer contains a node with 1-byte
long output used as the circuit’s overall result. See fig. 1
as an example of circuits in our experiments.

Test vectors: Another important setting influencing the suc-
cess rate of EACirc is the number of test vectors used
to evaluate the performance of candidate distinguishers
(circuits). In our scenario, the set of test vectors consists
of 2 subsets: TEA ciphertexts and data from a quantum
random number generator (believed to be completely
random), with both subsets of vectors having the same
size. More test vectors mean more data for each iteration
of evolution to learn from, as well as more precision for
the fitness function. On the other hand, more test vectors
also need more computation time as every candidate
circuit is always evaluated for every separate test vector.
In this work, we used two main configurations: for

CPU-only version, 1 000 test vectors were used. For
nVidia CUDA implementation, 128 000 test vectors were
used (see section III-D).

Generations: The number of evolved generations influences
the length of searching for the cipher properties. In
our case, 30 000 generations were used. The number
increased to 300 000 generations provided no observable
improvement.

Population size: Number of individuals in a population. We
use only one individual for each iteration, which is
mutated into two individuals for next generation – an
approach similar to hill-climbing heuristics. More indi-
viduals may increase the success rate and convergence
speed towards a well-performing distinguisher, but may
also negatively influence the interpretation of results as
different individuals may be correlated. For this reason,
the interpretation of results from more individuals is left
for future.

D. Accelerated computation using GPGPU

The more test vectors are processed, the more computation
time to evaluate a circuit is needed. Since the evaluation on
a set of test vectors is parallel in nature, data parallelism
techniques can be applied. To reduce the runtime and to fully
utilize our hardware, the evaluation is optionally computed on
GPGPU accelerators using nVidia’s CUDA technology. We are
running multiple instances of the evaluated circuit on each test
vector in the set in parallel.

On used hardware (Intel Core2Duo E8400 and nVidia
GeForce GTX 460) the GPU acceleration gives us 229×
speedup for circuit evaluation (see fig. 2 for more detailed
benchmark results). The execution of EACirc with 1 000 test
vectors running only on CPU takes approximately the same
time as the GPU-accelerated version with 128 000 test vectors
(about 3.5 minutes).

E. Statistical uniformity testing

During the process of evolution, distinguishers iteratively
adapt to the set of test vectors with a p-value computed in
each iteration. We use the fact that for independent samples
of truly random data the p-values are uniformly distributed
on the interval [0,1]. To leverage this, we intentionally use
only p-values from iterations just after the test vectors were
regenerated to separate data for training and verification (we
regenerate the set every 100th generation). We can then test
their uniformity using the Kolmogorov-Smirnov (KS) test [15]
with the assumption that p-values are expected to be uniformly
distributed. KS computes its own p-value which is compared
with a significance level α = 5% to draw the conclusion
(p-value below the significance level makes us reject the ran-
domness of the assessed data). Since KS gives a probabilistic
answer, we repeat the whole process 1 000 times to avoid
statistical anomalies. For the random data, it can be expected
that about 5% of all runs fail the testing process (since the
significance level is set to 5%).
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Figure 2. Speedup of GPU-accelerated circuit evaluation against circuit running on CPU, computed as timeCPU / timeGPU . The performance of a GPU
accelerator is generally dependent on work size, in our case the number of test vectors. The benchmark used machines equipped with Intel Core2Duo E8400
at 3 GHz and nVidia GeForce GTX 460 with 336 CUDA Cores on 1550 MHz.

F. Oneclick

As EACirc is randomized in nature, we need to run many
tests in parallel. To ease the time-consuming monkey-work
of running and post-processing experiments, we use a tool
called Oneclick [16], which distributes computations using the
BOINC infrastructure [17] on the laboratory computers. This
tool reduces both the necessary human work and the running
time of the experiment.

G. TEA customization

For complete automation, the tested ciphers are included
as plugins into EACirc, which then both generates the test
vectors and runs the distinguisher evolution. Since we want
to test TEA with a variable number of rounds (not only the
recommended 32), we use a slightly changed version of the
cipher that is shown below.

Algorithm 1 encrypt(uint32 t *data, const uint32 t *key)
const uint32 t delta = 0x9e3779b9;
uint32 t sum = 0;
for int j = 0; j < numRounds; j++ do

sum += delta;
data[0] += ((data[1]«4) + key[0]) ˆ (data[1] + sum)

ˆ ((data[1]»5) + key[1]);
data[1] += ((data[0]«4) + key[2]) ˆ (data[0] + sum)

ˆ ((data[0]»5) + key[3]);
end for

The function input is a plaintext block (64-bits long), stored
in the array data, and the key array of length 128 bits.
The output is stored in array data. Only changed part of the
algorithm is limiting the rounds count to numRounds.

H. Design of experiments

There are various settings for generation of output data
stream from TEA. The first decision is which cipher mode
should be used. We used the electronic codebook (ECB) mode,
as this was the case of previous papers on the topic since [9].
This also minimizes the influence of the used mode on the
output stream of data (ciphertext) produced by TEA.

An important factor is how the plaintext for TEA is gener-
ated. Even a weak cipher will usually provide a strong output
if completely random input data are supplied as input. Our
framework does not mask the input data with specific bitmask
(as was the case in [9]) but instead generates input with some
redundancy as described below.

The following ways to generate plaintexts for TEA were
implemented:

1) The counter incremented by one for each test vector. This
solutions is simple and does not suffer from the problem
of repeating plaintexts. It also corresponds to potential
usage of the cipher (e.g. if used in the counter mode).
On the other side, it has a low Hamming weight (first
40 bits of the plaintext consist only of zeroes). Therefore,
this type of plaintext is very difficult to compare with the
methodology of previous works.

2) The vectors with 5 randomly placed 0 and other bits set to
1. The number 5 was chosen to create enough unique test
vectors (over 10 million). This input also has an extreme
(and fixed) Hamming weight, but there are no positions
with fixed bits.

3) The vectors with two almost identical parts differing only
in a single bit. We used this plaintext type for testing the
strict avalanche criterion. The first input block of TEA
is fully random and the second is the same with only
a single changed bit. In this case, the circuit uses test
vectors of 128 bits.

A similar reasoning is relevant for the generation of secret
keys used. As we already manipulated input data for the cipher,
we used a fixed (but completely random) value as a key for
the whole test. For more information about the impact of key
reinitialization frequency, please refer to the thesis of Martin
Ukrop [14].

Used settings were chosen to simulate TEA usage. Users
typically do not change encryption keys during a single ses-
sion. Input data usually contain some redundancy, as long as
meaningful text is processed. Other input types were selected
to search for unwanted dependencies inside the cipher.
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Table I
COMPARISON OF PREVIOUS RESULTS FOR REDUCED ROUNDS TEA.

Rounds HSIR02 [9] HI04 [10] Wei Hu et al. [12]
χ2 (MW) χ2 (MW) χ2 (MW)

1 8380416 72 522240 153 522.240 1531

2 1900 77 736.05 155 602 171
3 (untested) 393.6 116 530.756 117.8
4 (untested) 294.86 502 742.6321 67.61

5 (untested) (untested) 631.74 76

IV. RESULTS

A. Comparison

Results from previous papers can be difficult to compare
with ours because the approaches are significantly different
(described in section II-A and section III-H). There are no
results of statistical batteries from previous works. Therefore,
we cannot use them as a common basis for the comparison.
Our results can be compared in terms of rounds count, but
tested data are different.

All previous works published weights of constructed masks
(abbreviated as (MW) in the table), which were used on
both the input block and key. This means the mask length
is 64 + 128 = 192 bits, which is a maximum weight for
unchanged input. They also presented the average χ2 statistics
of maximal deviation from a random distribution.

Table II, table III and table IV provide a comparison of
results from statistical testing batteries NIST STS (version
2.1.1) [1] and Dieharder (version 3.31.1) [3] run in default
configuration together with EACirc on the given plaintext
type. The result in the cell for Dieharder is the number of
passed tests (out of the total 57 tests). From NIST STS, we
used all 188 tests. Both batteries used the significance level
α = 1%. Results that fail to reject the null hypothesis (are
unable to show the non-randomness in data) have gray-colored
background. The column for EACirc represents the best results
achieved in our experiments. Values from EACirc represent
the percentages of runs for which the set of p-values failed the
KS test for uniformity with the significance level α = 5%. For
the reference random-random distinguishing experiment, the
value of 5% is expected (and also measured), so we also mark
such results with gray background (data indistinguishable from
random). For more detailed explanation of this method, please
refer to [18], section 3.2.

We tried different settings of EACirc with the goal of finding
the best distinguisher possible. Changes from the default
settings (specified in section III-C) are following (EACircxy ,
where x denotes plaintext type and y stands for EACirc
parameters):

• EACirc1a was tested with plaintexts created as a counter
incremented by one for each vector (type 1). Besides, this
version did not allow shifts and rotations in nodes.

1These results are computed as the average of values from tables of the
original work [12]. Please note that average value is simplified and for more
information refer to the original work.

2For this result, a different approach was used. Apart from that, the output
mask has very low entropy. For more information, please refer to the original
paper [10] (section 2.4).

Table II
COMPARISON OF EACIRC AND STANDARD STATISTICAL BATTERIES WITH

PLAINTEXT CREATED AS A COUNTER STARTING FROM ZERO (TYPE 1).
GRAY-COLORED CELLS INDICATE THE EXPERIMENTS THAT FAILED TO

REJECT THE RANDOMNESS OF TESTED DATA.

Rounds NIST Dieharder EACirc1a EACirc1b EACirc1c
(x/188) (x/57) (%) (%) (%)

1 1 0 100 100 100
2 1 1 100 100 100
3 27 3 100 100 100
4 183 31 5.0 99.8 100
5 188 51 3.0 5.6 5.3

Table III
COMPARISON OF EACIRC AND STANDARD STATISTICAL BATTERIES WITH

PLAINTEXT WITH 5 RANDOMLY PLACED ZEROES (TYPE 2).
GRAY-COLORED CELLS INDICATE THE EXPERIMENTS THAT FAILED TO

REJECT THE RANDOMNESS OF TESTED DATA.

Rounds NIST Dieharder EACirc2
(x/188) (x/57) (%)

1 24 1 100
2 183 8 93.3
3 188 39 5.6
4 187 44 5.6
5 187 48 5.5

• EACirc1b used the same settings as EACirc1a, except
shifts and rotations in nodes were allowed.

• EACirc1c had the same settings as EACirc1b but used
the nVidia CUDA implementation, which allows to use
128 000 test vectors as well as increase the evaluator
precision.

• EACirc2 was tested with plaintexts of all ones (64b for
TEA), with 5 flipped bits to zero on random positions
(type 2).

• EACirc3 was tested with twice the input length. The first
block is random, and the second is identical to the first
but for one bitflip on a random position (plaintext type
3). The total test vector length is 128 bits.

B. Results interpretation

The direct comparison of success with the previous papers
is not straightforward due to the different approaches used.
In previous approaches, to determine which bits of plaintexts
will cause the output of round-reduced TEA to be non-uniform
(tested by χ2 test), the input was changed by applying a
bitmask. In this paper, the goal is to find defects in ciphertexts

Table IV
COMPARISON OF EACIRC AND STANDARD STATISTICAL BATTERIES WITH

PLAINTEXT SUITABLE FOR STRICT AVALANCHE CRITERION TESTING
(TYPE 3). GRAY-COLORED CELLS INDICATE THE EXPERIMENTS THAT

FAILED TO REJECT THE RANDOMNESS OF TESTED DATA.

Rounds NIST Dieharder EACirc3
(x/188) (x/57) (%)

1 29 6 100
2 67 7 100
3 186 24 100
4 187 39 100
5 188 56 4.5
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Figure 3. This circuit was evolved in the experiment with 4-round TEA on plaintexts suitable for testing the strict avalanche criterion (type 3). It can be seen
that the output byte is mostly dependent on the 4th and the 12th (4th in the second half) byte.

(dependent bits, biased bits, etc.) without directly manipulating
plaintexts for the cipher. If we compare only the resulting
number of rounds, for which output of the round-reduced TEA
can be seen as statistically different from a random bit stream,
the best results are provided by [12].

Comparing our approach with the statistical batteries is
more straightforward, as we can use the same input data
(ciphertext) for EACirc as well for statistical batteries. In all
tested combinations (different structures of plaintext), EACirc
consistently performs better than NIST STS. Dieharder is able
to detect small deviances in one additional round (see table II).

Some information about the cipher can be derived from the
results from different plaintext types. For example, statistical
batteries perform better than EACirc on plaintexts with just
5 zeroes (type 2). Another observation is based on plaintext
types 1 and 3 – EACirc is easily able to detect non-randomness
of 4-rounds TEA, but fails to do so for 5 rounds. The same
issue may be present for both plaintext types (the 5th round
reducing this issue).

The result of each run is single bit fail/pass result (p-value
computed by KS uniformity test is smaller/bigger than the
significance level). This often leads to the loss of interesting
information – what is the quality of the evolved distinguisher
and what dependency of output bits was found? Therefore,
we decided to perform a deeper analysis of the found distin-
guishers.

C. Resulting circuits interpretation
The outcomes presented in the previous subsection are ag-

gregated results over 1 000 different EACirc runs providing the
single p-value for interpretation. Such an approach can provide
superior detection of statistical deviances, but will not sig-
nalize which concrete bit(s) and dependencies between them

cause these deviances – information valuable for the cipher’s
designer. By analysis of a single well-performing circuit,
such an information can be obtained. We analyzed in detail
some successful (fitness over 95%) evolved distinguishers. The
weaker the distinguisher is, the more noise is present (circuit
functionality is not performing as a correct distinguisher for
the increasing number of inputs) and the harder it is to reason
about the exact bits on which distinguisher’s decision is based.

EACirc circuits used in this paper have 4 layers with
8 nodes in each. As a result, the evolved distinguisher can
be rather complex and thus difficult to interpret. To provide
a better comprehension, reductions of the target circuit can
be performed as the distinguisher usually does not use all
available nodes and connectors (they do not contribute to the
output byte).

First of all, we can prune circuits taking into account the
arity of used operations removing the unnecessary connectors.
Manual analysis of pruned circuits is considerably simpler.

In the case of 4-round TEA on counter plaintexts (type 1),
we analyzed several distinguishers with the fitness over 98%.
In all of these circuits (see for example fig. 1) the distinguisher
decision is based on the fourth byte of TEA ciphertext. The
fourth byte is usually almost unchanged (operations affect only
some bits).

We also analyzed 4-round TEA on plaintexts suitable for
strict avalanche criterion testing (type 3). In this case, the input
layer had 16 input nodes, capable of processing two blocks
of TEA ciphertext at once. Analyzed distinguishers (see for
example circuit in fig. 3) commonly combine the fourth byte
of the first ciphertext block with the fourth byte of the second
ciphertext block.
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Figure 4. The amount of data analyzed by EACirc for a single configuration of randomness testing experiment.

D. Performance

The runtime of EACirc with basic settings (1 000 test vec-
tors and 30 000 generations) is around 3.5 minutes on a single
core 3 GHz Intel Core2Duo processor. It includes the creation
of test vectors and is not measurably affected by the number
of TEA rounds executed. Due to the randomized nature of
the framework, we replicate every experiment 1 000 times.
This gives us a combined computation time of approximately
3 500 minutes on single CPU core.

Since the individual runs are independent, execution can
be parallelized and distributed over multiple computers. We
used 12 laboratory computers with the 3 GHz Intel Core2Duo
processors mentioned above, which resulted in the execution
time of about 5 hours for every single tested scenario. Thus,
testing TEA limited to 1-8 rounds can be executed within
2 days of computation. For larger sets of tests, we used the
national grid infrastructure provided by MetaCentrum [19].

Tests with 128 000 test vectors were executed on GPUs
using nVidia CUDA. The running time for each test was
around 3.5 minutes. As more GPU cores are available for
parallelization of circuit evaluation, a higher amount of test
vectors could be evaluated. The runtime was still linearly
dependent on the generation count – tests with 300 thousand
generations and 128 000 test vectors had a running time of
around 105 minutes.

EACirc needs truly random data as a reference stream for
a distinguisher evolution phase. We used a pool of 1920 MiB
of data pre-loaded from the High Bit Rate Quantum Random
Number Generator Service [20].

Regarding the TEA ciphertext, we generated 500 test vec-
tors (half a set) of 64 bits each in 300 test vector sets
in 1 000 runs for statistical interpretation. This amounts to
1.2 GiB of ciphertext data for the whole experiment or 1.2 MiB
for a single run. See fig. 4 to understand, how we figured out
the data usage of EACirc.

V. DISCUSSION AND FUTURE WORK

The EACirc framework is continually developed and ex-
tended with different inner approaches and settings with the
goal of improving the distinguisher success rates. At the
moment, we work on two alternative circuit representations.
One with the possibility of executing more complex Java byte-
code sequences in circuit nodes. The sequences would be
extracted directly from the Java implementation of the tested
ciphers. Another alternative would be based on polynomials,
which should provide better possibilities not only for creating
distinguishers but also for analyzing the importance of isolated
parts of tested function’s output the distinguisher is based on.

Different heuristics like simulated annealing can be used for
the mutation of a single individual, which may provide a better

success rate or faster convergence than the currently used hill-
climbing technique with a stable mutation probability. We are
also working on the interpretation of multi-individual settings
to be able to use the full potential of genetic algorithms for
TEA analysis.
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