
MiXiM Tutorial

Tobiáš Smolka

October 11, 2011

Abstract

During the tutorial you should get familiar with basic concepts of OMNet++ and
MiXiM frameworks as well as run your first MiXiM based WSN simulation.

1 Getting started

This section briefly introduces technologies and runtime environment, which will be used
during the tutorial.

1.1 OMNet++

OMNet++ is a object-oriented modular discrete event network simulation framework, which
provides complete environment for building network simulations [2]. The simulation models
are implemented by third-party simulation frameworks such as MiXiM, Castalia, INET,

OMNeT++ is not a simulator, but provides infrastructure and tools for writing simulations.
The component architecture allows to build simulations from reusable components - modules.
Modules have parameters to customize their behaviour and communicate with each other via
messages. The functionality is implemented in so called simple modules, that are programmed
in C++ and make use of OMNet++ API. The simulations can be run under either graphical
or command-line user interface.

Most of OMNet++ features are documented in [2].

1.1.1 NED language

OMNet++ uses NED language for defining structure of simulation model (model topology).
NED supports defining module parameters (also the default values, units), interface (param-
eters and gates), metadata annotations and more. NED is also used to create compound
modules and interconnect the modules via channels.

Sample NED file can be seen in Figure 1. The file defines a network named SampleApp with
some parameters (playgroundSizeX, . . .), one metadata anotation (@display), submodules
(connectionManager, world) and an array of submodules (node).

1.1.2 Configuring simulations

When the simulation is started in OMNet++, it first reads the structure of simulation model
from NED files and then it reads a configuration file (usually omnetpp.ini). The file contains

1

Figure 1: Sample NED file

settings for the model and also for the simulation core. This includes setting specific values
for model parameters, how many runs should be executed, RNG settings, etc.

Sample configuration file can be seen in Figure 2.

1.2 MiXiM

MiXiM (mixed simulator) is an OMNeT++ modeling framework created for mobile and fixed
wireless networks (wireless sensor networks, body area networks, ad-hoc networks, etc.). It
offers models of radio wave propagation, interference estimation, radio transceiver power
consumption and wireless MAC protocols [3].

1.3 Runtime environment

Virtual image has pre-installed Ubuntu 11.04 with OMNet++ and MiXiM installed from
source. Login and password is demo.

For this tutorial, we will use OMNet++ v4.1 and MiXiM v2.1. The installation on supported
platforms (Windows, Linux, Mac OS X) is covered in OMNeT++ Installation Guide [1] and
MiXiM Wiki [4].

2 Simulation SampleApp

This part of a tutorial is focused on configuring, executing and analysing results of a simple
MiXiM simulation and implementing custom simple module.

The simulation is build from following MiXiM modules:

2

Figure 2: Sample configuration file (omnetpp.ini)

• SensorApplLayer - periodically sends data packet to the sink.

• WiseRoute - implements simple routing scheme.

• Nic802154 TI CC2420 - implements IEEE 802.15.4 network interface.

• BaseMobility - implements static mobility scheme.

2.1 Creating the simulation

1. After starting the VM, open the terminal and execute command omnetpp. This will
start the OMNet++ IDE, an Eclipse based IDE with integrated support for OMNet++
projects.

2. Create new OMNet++ project (File → New → OMNet++ Project).

(a) Enter project name SampleApp, click Next.

(b) Select MiXiM → Basic MiXiM network, click Next.

(c) Select Sensor Application Layer, WiseRoute, CSMA 802.15.4, Static (no mobility)

and 2-dimensional, click Finish.

3. Build and run the simulation

(a) Right click on project SampleApp, select Build project.

(b) Right click on project SampleApp, select Run As → OMNet++ Simulation.

(c) Explore Tkenv (OMNet++ graphical user interface) a little bit and try out how
Run, Stop, Speed and Zoom buttons work.

(d) Close Tkenv and finish the simulation.

3

2.2 Modifying the simulation

The SampleApp simulation created in previous step utilizes mentioned modules in a way, that
all nodes are broadcasting the packets and flood the network. However, in order to prepare
more interesting scenario with hop-by-hop routing to the sink, there is no need to reprogram
the model. All the changes can be made in omnetpp.ini configuration file.

Open file omnetpp.ini and perform following modifications ({m} modify line, {+} add new
line, {-} remove old line, {=} no change):

1. Configure detailed logging of all events (will be used for follow-up analysis of the sim-
ulation results).

{=} **.**.coreDebug = false

{+} record-eventlog = true

2. Change playground size and number of nodes.

{m} **.playgroundSizeX = 500m

{m} **.playgroundSizeY = 500m

{m} **.playgroundSizeZ = 500m

{m} **.numNodes = 7

3. Disable broadcast, set node 0 as a sink and configure node 1 to generate high amount
of packets.

{=} **.node[*].applType = "SensorApplLayer"

{+} **.node[1].appl.nbPackets = 9999

{=} **.appl.trafficType = "periodic"

{=} **.appl.trafficParam = 1 #in seconds

{m} **.appl.broadcastPackets = false

{+} **.appl.destAddr = 0

{m} **.appl.nbPackets = 0

{+} **.appl.trace = true

{+} **.appl.debug = true

4. Change mobility parameters and place all nodes except sink randomly.

{m} **.node[0].mobility.x = 50

{m} **.node[0].mobility.y = 50

{-} **.node[0].mobility.z = 250

{-} ... all lines with mobility params for other nodes ...

{+} **.node[*].mobility.x = -1

{+} **.node[*].mobility.y = -1

{+} **.node[*].mobility.z = -1

After the modification, the simulation should contain two phases:

1. Route discovery phase - The sink (node 0) broadcasts route-flood message, which
will be propagated to every node in the network. During this phase, each node computes
its own routing table for routing to the sink.

2. Data sending phase - The node 1 will periodically (each second) send data packet to
the sink. Since there is a initial waiting period and the route discovery phase proceeds
data sending phase, the packet should be successfully routed to the sink.

Test the modified simulation, make sure the animation speed is low and observe the two
phases. Also try out following actions.

4

• Double click on the node 0 to see the inner composition of the module. Wait for a data
message and see how it is propagated all the way up to the application layer.

• Stop the simulation while there is some AirFrame being send between two modules, find
it (in NIC module of the receiver) and inspect it to see the encapsulation and specific
parameters (i.e. different destAddr, srcAddr on application and network level).

• Find the application layer of the node 0 and perform Inspect module output action.
Increase the speed of the simulation and observe logging messages from application
layer about receiving the packets.

• Go in the application layer of the node 0, find cOutVector rawLatencies, open it and
observe how the latency of the received packets is changing in real-time.

Stop the simulation after at least 50 simulated seconds and make sure the finish() method
is called so the data for follow-up analysis is written down in the result files.

2.3 Analysing the results

OMNet++ provides support for recording outputs of the simulation via output vectors,
scalars and histograms. Previous simulation collected number of statistics. A vector was
used to record latencies of received data packets and a scalar was used to record total amount
of received data packets. Additionally, the simulation also recorded log of all events, that
were created during the simulation.

Before performing next steps make sure the simulation is stopped and there are output files
generated in results folder of the project (*.sca, *.vec, *.elog).

Inspect result vectors and scalars:

1. Double click on either *.sca or *.vec output file and confirm creation of new analysis
file (in case it was not created before).

2. Browse the data, try out filtering by statistic name (e.g. rawLatencies in vectors,
nbData* in scalars).

3. Select filtered vectors or scalars and perform Plot action.

4. Use scavetool for exporting scalars to CSV file.

(a) Open the terminal and enter following commands:

cd Projects/SampleApp/results/

scavetool scalar -p "name(nbData*)" *.sca -O stats.csv

cat stats.csv

Inspect event log:

1. Double click on *.elog output file and open event log window.

2. Apply filter by module NED type org.mixim...SensorApplLayer to see only applica-
tion level events (sending and receiving data packets).

3. Closely inspect event #358 (arrival of first data message into sink) by applying ”Caus-
es/Consequences” filter.

(a) Discard filtering by module NED type and apply ”Causes/Consequences” filter
for event 358.

(b) Notice the chain of events starting with route-flood via nodes 0, 6, 4, 1 and
ending with data packet transmission via nodes 1, 4, 6 and 0.

5

Figure 3: Listing of file EvilNetw.ned

package sampleapp ;

import org . mixim . modules . netw . WiseRoute ;

s imple EvilNetw extends WiseRoute
{

parameters :
double pDataPacketDropping = de f au l t (0 . 5) ; // probab l i ty o f dropping a packet
@display (” i=block / cogwheel ”) ; // meta data f o r d i s p l ay i ng an icon
@class (EvilNetw) ; // r e f e r e n c e to implementing c l a s s

}

Figure 4: Listing of file EvilNetw.h

#i f n d e f SAMPLEAPP EVILNETW H
#de f i n e SAMPLEAPP EVILNETW H

#inc lude <WiseRoute . h>

c l a s s EvilNetw : pub l i c WiseRoute {
protec ted :

long nbDataPacketsDropped ; // number o f dropped packets
v i r t u a l void i n i t i a l i z e (i n t) ; // i n i t i a l i z e module
v i r t u a l void f i n i s h () ; // f i n a l i z e module
v i r t u a l void handleLowerMsg (cMessage ∗) ; // handle message

} ;
#end i f

2.4 Implementing a simple module

The functionality of the new module is quite simple – it adds a support for selective forwarding
attacks into original WiseRoute network layer.

It implements method handleLowerMsg() for intercepting all messages from lower layer
(MAC layer) (see Figure 5). The module selectively drops all data packets with a probability
configurable in module parameter pDataPacketDropping. In case the message is dropped,
the module also appends a message into the log, display notification ”bubble” (in Tkenv)
and increment nbDataPacketsDropped. During the finalization, nbDataPacketsDropped is
recorded to output file as a scalar.

1. Create new simple module by File → New → Simple Module.

(a) Enter EvilNetw.ned as a name of NED file, click Finish.

2. Modify content of generated files EvilNetw.ned (see Figure 3), EvilNetw.h (see Fig-
ure 4) and EvilNetw.cc (see Figure 5). All files can be downloaded from [5] (copying
from PDF will not work).

3. Open omnetpp.ini and perform following changes ({m} modify line, {+} add new
line). The modifications will force node 6 to use EvilNetw instead of WiseRoute.

[+] **.node[6].netwType = "EvilNetw"

[=] **.node[*].netwType = "WiseRoute"

3 Simulation basicIDS

Project basicIDS models a prototype of simple IDS. The IDS runs on each node in the
network and is capable of detecting selective forwarding and hello flooding attackers. For
this purpose, almost all modules in the network had to be extended with specific functionality.

6

Figure 5: Listing of file EvilNetw.cc

#inc lude ”EvilNetw . h”
Define Module (EvilNetw) ;

// I n i t i a l i z e s EvilNetw module
void EvilNetw : : i n i t i a l i z e (i n t s tage){

WiseRoute : : i n i t i a l i z e (s tage) ;
i f (s tage == 1) {

nbDataPacketsDropped = 0 ;
}

}
// F i n a l i z e module and record s t a t i s t i c s
void EvilNetw : : f i n i s h (){

WiseRoute : : f i n i s h () ;
i f (s t a t s) {

r e co rdSca l a r (”nbDataPacketsDropped” , nbDataPacketsDropped) ;
}

}
// Handle message from lower (MAC) l ay e r
void EvilNetw : : handleLowerMsg (cMessage∗ msg) {

// Consider only DATA packets and drop only with c e r t a i n p r obab i l i t y
i f (msg−>getKind()==DATA && par (”pDataPacketDropping”) . doubleValue()>=uniform (0 , 1)){

getNode()−>bubble (”Dropping a packet ! ”) ; // n o t i f i c a t i o n
EV << ”Dropping a packet ! ” << endl ; // l ogg ing
nbDataPacketsDropped++; // s t a t i s t i c s
d e l e t e msg ; msg = NULL; return ;

}
WiseRoute : : handleLowerMsg (msg) ; // f a l l b a c k

}

The tutorial does not provide detailed analysis of each aspect of the simulation model, instead
it demonstrates 2 simple experiments: test and experiment dist vs rss.

3.1 Experiment test

Experiment test is configured in the test section of omnetpp.ini. The network contains
one base station and 4 nodes. The nodes are periodically (each second) sending packets to
the base station, the total number of send packets for each node is 300.

First, run the scenario, in which all nodes are simply sending the packets to the base station.

1. Run the experiment with initial settings and observe the behaviour of the network.

• Note: the radio range of the nodes is smaller than in the previous simulation, use
Zoom in and Decrease icon size actions (Ctrl+M, Ctrl+O).

2. Change routing in the network and observe performance of IDS detection of selective
forwarding attacks.

(a) Set routing of node 1 via node 2 and check IDS performance.

[+] **.node[1].net.nextHopAddr = 2

[=] **.node[1..4].net.nextHopAddr = 0

(b) Open result file test-0 ids forwarders stats.txt, which contains IDS statistics
in the following format: A;B;PR;PF;DIST;DROPPED, where
A is a monitoring node, B is a monitored node,
PR is number of received packets by the node B,
PF is number of forwarded packets by the node B,
DIST is a distance between nodes A and B,
DROPPED is packet dropped ratio.

3. Add an attacker to the network and again check IDS performance.

(a) Configure node 2 as a selective forwarder with dropping probability 0.5.

7

[=] **.node[1].net.nextHopAddr = 2

[+] **.node[2].appl.attacker = "selectiveForwarder"

[+] **.node[2].appl.pPacketDropping = 0.5

(b) Open again result file test-0 ids forwarders stats.txt and check performance
of the detection on nodes 0 and 1.

3.2 Experiment experiment dist vs rss

The experiment is defined in section experiment dist vs rss of the configuration file omnetpp.ini.
Its goal is to determine how is the received signal strength affected by the distance between
sender and receiver.

In order to simulate such a scenario, there are 2 nodes in the network. One base station and
a node, that sends only 1 packet. Instead of modelling movement of the node (which is also
possible), the experiment includes 121 runs with different position of the node. All the runs
are defined by following statement: **.node[1].mobility.y = $nodeY=0..60 step 0.5

In this setting, the parameter y of module mobility of node 1 will have values 0, 0.5, 1, ...
60 subsequently in experiment runs 0, 1, 2, ... 121.

Although all the runs could also be executed via IDE, it is recommended to execute them
from command line due to the performance reasons.

1. Open the terminal and enter following commands:

cd Projects/basicIDS/

./run_experiment_dist_vs_rss.sh

2. Open the IDE and open the analysis file experiment dist vs rss.anf.

3. Go to Datasets tab of the file and display chart Distance vs. RSS.

References

[1] OMNeT++ Installation Guide, Version 4.1, http://omnetpp.org/doc/omnetpp41/

InstallGuide.pdf

[2] OMNeT++ User Manual, Version 4.1, http://www.omnetpp.org/doc/omnetpp41/

Manual.pdf

[3] MiXiM project, http://mixim.sourceforge.net/

[4] MiXiM Wiki, http://sourceforge.net/apps/trac/mixim/wiki

[5] MiXiM Tutorial Wiki, https://minotaur.fi.muni.cz:8443/~xsvenda/docuwiki/

doku.php?id=public:wsn:mixim_tutorial

8

http://omnetpp.org/doc/omnetpp41/InstallGuide.pdf
http://omnetpp.org/doc/omnetpp41/InstallGuide.pdf
http://www.omnetpp.org/doc/omnetpp41/Manual.pdf
http://www.omnetpp.org/doc/omnetpp41/Manual.pdf
http://mixim.sourceforge.net/
http://sourceforge.net/apps/trac/mixim/wiki
https://minotaur.fi.muni.cz:8443/~xsvenda/docuwiki/doku.php?id=public:wsn:mixim_tutorial
https://minotaur.fi.muni.cz:8443/~xsvenda/docuwiki/doku.php?id=public:wsn:mixim_tutorial

	Getting started
	OMNet++
	NED language
	Configuring simulations

	MiXiM
	Runtime environment

	Simulation SampleApp
	Creating the simulation
	Modifying the simulation
	Analysing the results
	Implementing a simple module

	Simulation basicIDS
	Experiment test
	Experiment experiment_dist_vs_rss

