
Tutorial: JavaCards

Programming cryptographic smart cards

Petr Švenda svenda@fi.muni.cz

Faculty of Informatics, Masaryk University

mailto:svenda@fi.muni.cz

Outline

• Short intro to multi-application smart cards

• Typical usage scenarios

• Programming smart cards

• Platform performance and capabilities

2 | Programming JavaCards, SPACE 2015

HTTP://CRCS.CZ/SC

Slides and source codes for tutorial available here:

3 | Programming JavaCards, SPACE 2015

Tutorial slides and sources

• http://crcs.cz/sc

• 7 readers and cards available here

• You can try card programming during conference

• Don’t forget to return reader and card back please

• Hint: You can start downloading Java SDK now

4 | Programming JavaCards, SPACE 2015

http://crcs.cz/sc

INTRO TO SMART CARDS

5 | Programming JavaCards, SPACE 2015

Basic types of (smart) cards

• Contactless “barcode”

– Fixed identification string (RFID, < 5 cents)

• Simple memory cards (magnetic stripe, RFID)

– Small write memory (< 1KB) for data, (~10 cents)

• Memory cards with PIN protection

– Memory (< 5KB), simple protection logic (<$1)

| Programming JavaCards, SPACE 20156

Basic types of (smart) cards (2)

• Cryptographic smart cards

– Support for (real) cryptographic algorithms

– Mifare Classic ($1), Mifare DESFire ($3)

• User-programmable smart cards

– Java cards, .NET cards, MULTOS cards ($10-$30)

| Programming JavaCards, SPACE 20157

Cryptographic smart cards

• SC is quite powerful device

– 8-32 bit procesors @ 5-20MHz

– persistent memory 32-100kB (EEPROM)

– volatile fast RAM, usually <<10kB

– truly random generator

– cryptographic coprocessor (3DES, RSA-2048,...)

• 8.8 billion units shipped in 2014 (ABI Research)

– mostly smart cards

– telco, payment and loyalty...

| Programming JavaCards, SPACE 2015

EEPROM

CPU

CRYPTO

S
R

A
M

R
O

M

RNG

chip

8

Main advantages of crypto smart cards

• High-level of security (CC EAL4 and higher)

• Fast cryptographic coprocessor

• Programmable secure execution environment

• Secure memory and storage

• On-card asymmetric key generation

• High-quality and very fast RNG

• Possibility for secure remote card control

| Programming JavaCards, SPACE 20159

MODES OF USAGE

| Programming JavaCards, SPACE 201510

Smart card carries fixed information

• Fixed information ID transmitted, no secure channel

• Low cost solution (nothing “smart” needed)

• Problem: Attacker can eavesdrop and clone chip

| Programming JavaCards, SPACE 201511

Smart card as a secure carrier

• Key(s) stored on a card, loaded to a PC before

encryption/signing/authentication, then erased

• High speed usage of key possible (>>MB/sec)

• Attacker with an access to PC during operation will

obtain the key

– key protected for transport, but not during the usage

| Programming JavaCards, SPACE 201512

Smart card as encryption/signing device

• PC just sends data for encryption/signing…

• Key never leaves the card

– personalized in secure environment

– protected during transport and usage

• Attacker must attack the smart card

– or wait until card is inserted and PIN entered!

• Low speed encryption (~kB/sec)

– low communication speed / limited card performance

| Programming JavaCards, SPACE 201513

Smart card as computational device

• PC just sends input for application on smart card

• Application code & keys never leave the card

– smart card can do complicated programmable actions

– can open secure channels to other entity

• PC act as a transparent relay only (no access to data)

• Attacker must attack the smart card

| Programming JavaCards, SPACE 201514

Smart card as root of trust

• Secure boot process, remote attestation

• Smart card provides robust store with integrity

• Application can verify before pass control

(measured boot)

• Computer can authenticate with remote entity…

| Programming JavaCards, SPACE 201515

Java Card basics

16 | Programming JavaCards, SPACE 2015

Main standards

• ISO7816

– card physical properties

– physical layer communication protocol

– packet format (APDU)

• PC/SC, PKCS#11

– standardized interface on host side

– card can be proprietary

• GlobalPlatform

– remote card management interface

– secure installation of applications

• JavaCard

– open programming platform from Sun

– applets portable between cards

17 | Programming JavaCards, SPACE 2015

User application

Card OS

Card application

Card I/O manager

contact(less)

transmission

OS smart card API

smart card reader

JavaCard specification (1996)

• Maintained by Sun Microsystems (Oracle)

• Cross-platform and cross-vendor applet interoperability

• Freely available specifications and development kits

– http://www.oracle.com/technetwork/java/javacard/index.html

• Java Card applet is Java-like application

– uploaded to a smart card

– executed by the Java Card Virtual Machine

18 | Programming JavaCards, SPACE 2015

http://www.oracle.com/technetwork/java/javacard/index.html

User Application

PC/SC library

Applet1
Applet2

JCVM

Java Card applets

• Writing in restricted Java syntax

– byte/short (int) only, missing most of Java objects

• Compiled using standard Java compiler

• Converted using Java Card converter

– check bytecode for restrictions

– can be signed, encrypted…

• Uploaded and installed into smartcard

– executed in JC Virtual Machine

• Communication using APDU commands

– small packets with header

19 | Programming JavaCards, SPACE 2015

JavaCard API versions

• Java Card 2.1.x/2.2.x

– widely supported versions

– basic symmetric and asymmetric cryptography algorithms

– PIN, hash functions, random number generation

– transactions, utility functions

• Java Card 2.2.2

– last version from 2.x series

– significantly extended support for algorithms and new concepts

• long “extended” APDUs, BigNumber support

• biometric capability

• external memory usage, fast array manipulation methods…

• JavaCard 3.x (classic vs. connected editions)

20 | Programming JavaCards, SPACE 2015

DEVELOPING JAVACARD APPS

21 | Programming JavaCards, SPACE 2015

APDU (Application Protocol Data Unit)

• APDU is basic logical communication datagram

– header (5 bytes) and up to ~256 bytes of user data

• Header format

– CLA – instruction class

– INS – instruction number

– P1, P2 – optional data

– Lc – length of incoming data

– Data – user data

– Le – length of the expected output data

| Programming JavaCards, SPACE 201522

23 | Programming JavaCards, SPACE 2015

JC development process

24 | Programming JavaCards, SPACE 2015

6. Write user Java app

(javax.smartcardio.*)

1. Extends

javacard.framework.Applet

2. Compile Java*.class

(Java 1.3 binary format)

3. Convert *.class*.jar/cap

(Java Card Convertor)

4. Upload *.jar/cap

 smart card (GPPro/GPShell)

5. Install applet

(GPPro/GPShell)

7. Use applet on

smart card (APDU)

Quick start

1. Get JavaCard smart card and reader

– Our example card: NXP JCOP J2A081 80K

2. Install Java SDK and ant build environment

– Don’t forget to set proper paths (javac, ant)

3. Download AppletPlayground project

– https://github.com/martinpaljak/AppletPlayground

4. Download GlobalPlatformPro uploader

– https://github.com/martinpaljak/GlobalPlatformPro

25 | Programming JavaCards, SPACE 2015

https://github.com/martinpaljak/AppletPlayground
https://github.com/martinpaljak/GlobalPlatformPro

1. Compile and convert applets

• > ant toys

– Compiles source with Java compiler (javac)

– Convert with javacard convertor

• (for all projects)

26 | Programming JavaCards, SPACE 2015

2. Manage applets on smart card

• GlobalPlatformPro tool

– Authenticates against CardManager

– Establish secure channel with CM

– Manage applets (list/upload/delete)

27 | Programming JavaCards, SPACE 2015

Auto-detected ISD AID: A000000003000000

Host challenge: BD525E5585006202

Card challenge: 05211C9591C58232

Card reports SCP02 with version 255 keys

Master keys:

Version 0

ENC: Ver:0 ID:0 Type:DES3 Len:16 Value:404142434445464748494A4B4C4D4E4F

MAC: Ver:0 ID:0 Type:DES3 Len:16 Value:404142434445464748494A4B4C4D4E4F

KEK: Ver:0 ID:0 Type:DES3 Len:16 Value:404142434445464748494A4B4C4D4E4F

Sequence counter: 0521

28 | Programming JavaCards, SPACE 2015

>gp -list –verbose

Reader: Gemplus USB SmartCard Reader 0

ATR: 3BF81300008131FE454A434F5076323431B7

More information about your card:

http://smartcard-atr.appspot.com/parse?ATR=3BF81300008131FE454A434F507632343

1B7

Auto-detected ISD AID: A000000003000000

Host challenge: 10FFA96848D9EB62

Card challenge: 0520E372F35B4818

Card reports SCP02 with version 255 keys

Master keys:

Version 0

ENC: Ver:0 ID:0 Type:DES3 Len:16 Value:404142434445464748494A4B4C4D4E4F

MAC: Ver:0 ID:0 Type:DES3 Len:16 Value:404142434445464748494A4B4C4D4E4F

KEK: Ver:0 ID:0 Type:DES3 Len:16 Value:404142434445464748494A4B4C4D4E4F

Sequnce counter: 0520

Derived session keys:

Version 0

ENC: Ver:0 ID:0 Type:DES3 Len:16 Value:654E72AAADA31F0A7B5567160DE4C5A7

MAC: Ver:0 ID:0 Type:DES3 Len:16 Value:C6883A00AB6E56384B845A5A6F68CA6C

KEK: Ver:0 ID:0 Type:DES3 Len:16 Value:3875213C9F2123EB01AA420DC83C18F0

Verified card cryptogram: 62CBE443B3F4FB80

Calculated host cryptogram: 9AAC671F9B1E0630

AID: A000000003000000 (|........|)

ISD OP_READY: Security Domain, Card lock, Card terminate, Default selected, CVM

(PIN) management

AID: A0000000035350 (|.....SP|)

ExM LOADED: (none)

A000000003535041 (|.....SPA|)

3. Upload applet to smart card

• (already converted applet *.cap is assumed)

• > gp --instal OpenPGPApplet.cap –verbose

• Hint: test with gpg --card-edit

29 | Programming JavaCards, SPACE 2015

CAP file (v2.1) generated on Sat Oct 03 15:13:58 CEST 2015

By Sun Microsystems Inc. converter 1.3 with JDK 1.8.0_60 (Oracle Corporation)

Package: openpgpcard v0.0 with AID D27600012401

Applet: OpenPGPApplet with AID D2760001240102000000000000010000

Import: A0000000620101 v1.3

Import: A0000000620201 v1.3

Import: A0000000620102 v1.3

Import: A0000000620001 v1.0

Cap loaded

OpenPlatform Package/applet upload

• Security domain selection

• Secure channel establishment – security domain

• Package upload

– Local upload in trusted environment

– Remote upload with relayed secure channel

• Applet installation

– Separate instance from package binary with unique AID

– Applet privileges and other parameters passed

– Applet specific installation data passed

| Programming JavaCards, SPACE 201530

4. Communicate with smart card

• > gp --apdu apdu_in_hex

• Example for LabakApplet.java

– gp –apdu B0541000 (generate random numbers)

31 | Programming JavaCards, SPACE 2015

>gp --apdu B0541000 -d

[*] Gemplus USB SmartCard Reader 0
SCardConnect("Gemplus USB SmartCard Reader 0", T=*) -> T=1, 3BF81300008131FE454A

434F5076323431B7

SCardBeginTransaction("Gemplus USB SmartCard Reader 0")

A>> T=1 (4+0000) B0541000

A<< (0016+2) (32ms) 801D52307393AC0AB1CC242F6905B7C5 9000

5. Delete applet

• > gp --delete D27600012401 --deletedeps

• (Verify that applet was deleted by gp –list)

32 | Programming JavaCards, SPACE 2015

JavaCard application running model

1. Uploaded package – application binary

2. Installed applet from package – running application

3. Applet is running until deleted from card

4. Applet is suspended when power is lost

– Transient data inside RAM are erased

– Persistent data inside EEPROM remain

– Currently executed method is interrupted

5. When power is resumed

– Unfinished transactions are rolled back

– Applet continues to run with the same persistent state

– Applet waits for new command

6. Applet is deleted by service command

33 | Programming JavaCards, SPACE 2015

COMMUNICATION WITH

SMART CARD

| Programming JavaCards, SPACE 201534

How to communicate with our applet?

1. Various existing tools

– PGP/GPG, S-MIME (PKCS11 lib), signature application…

– Low-level communication (GPShell, GPPro…)

2. Possibility to send APDU from our own program

– PC/SC standard (PC/SC-lite on Linux)

– SCardxxx Win32 API (winscard.dll)

– javax.smartcardio.* API for Java 6

| Programming JavaCards, SPACE 2015

35

JavaCard communication lifecycle

36 | Programming JavaCards, SPACE 2015

SYMMETRIC CRYPTO APPLET

| Programming JavaCards, SPACE 201539

Random numbers

• javacard.security.RandomData

• Two versions of random generator

– ALG_SECURE_RANDOM (truly random)

– ALG_PSEUDO_RANDOM (usually same as SECURE)

• Generate random block

– RandomData::generateData()

• Very fast and high quality output

– bottleneck is usually card-to-terminal link

| Programming JavaCards, SPACE 201540

RandomData – source code

| Programming JavaCards, SPACE 2015

private RandomData m_rngRandom = null;

// CREATE RNG OBJECT

m_rngRandom = RandomData.getInstance(RandomData.ALG_SECURE_RANDOM);

// GENERATE RANDOM BLOCK WITH 16 BYTES

m_rngRandom.generateData(array, (short) 0, ARRAY_ONE_BLOCK_16B);

41

Key generation and initialization

• Allocation and initialization of the key object

(KeyBuilder.buildKey())

• Receive (or generate random) key value

• Set key value (DESKey.setKey())

| Programming JavaCards, SPACE 2015

// …. INICIALIZATION SOMEWHERE (IN CONSTRUCT)

// CREATE DES KEY OBJECT

DESKey m_desKey = (DESKey) KeyBuilder.buildKey(KeyBuilder.TYPE_DES,

KeyBuilder. LENGTH_DES3_3KEY, false);

// Generate from RNG

m_rngRandom.generateData(array, (short) 0,

(short) KeyBuilder. LENGTH_DES3_3KEY/8);

// SET KEY VALUE

m_desKey.setKey(array, (short) 0);

42

Symmetric cryptography encryption

• javacard.security.Cipher

• Allocate and initialize cipher object

– Cipher::getInstance(), Cipher::init()

• Encrypt or decrypt data

– Cipher.update(), Cipher.doFinal()

| Programming JavaCards, SPACE 201543

Encryption – source code

| Programming JavaCards, SPACE 2015

// INIT CIPHER WITH KEY FOR ENCRYPT DIRECTION

m_encryptCipher.init(m_desKey, Cipher.MODE_ENCRYPT);

//….

// ENCRYPT INCOMING BUFFER

void Encrypt(APDU apdu) {

byte[] apdubuf = apdu.getBuffer();

short dataLen = apdu.setIncomingAndReceive();

// CHECK EXPECTED LENGTH (MULTIPLY OF 64 bites)

if ((dataLen % 8) != 0) ISOException.throwIt(SW_CIPHER_DATA_LENGTH_BAD);

// ENCRYPT INCOMING BUFFER

m_encryptCipher.doFinal(apdubuf, ISO7816.OFFSET_CDATA, dataLen, m_ramArray, (short) 0);

// COPY ENCRYPTED DATA INTO OUTGOING BUFFER

Util.arrayCopyNonAtomic(m_ramArray, (short) 0, apdubuf, ISO7816.OFFSET_CDATA, dataLen);

// SEND OUTGOING BUFFER

apdu.setOutgoingAndSend(ISO7816.OFFSET_CDATA, dataLen);

}

44

ALGORITHMS, PERFORMANCE

Algorithms offered, performance of the current hardware

45 | Programming JavaCards, SPACE 2015

Problem?

| Programming JavaCards, SPACE 2015

What kind of

smart card?

Which algorithms

supported?

What key

lengths?

How much RAM

memory?

How much

persistent

memory? What version

of JavaCard

API?

Which one

should I

choose?

46

http://www.fi.muni.cz/~xsvenda/jcsupport.html

Supported algorithms for JavaCard smart cards

• Same hw sells in several configurations
– e.g., AES present, but disabled

– additional software libraries in later versions of card

• ATR alone is not sufficient identification
– hard to get product description just from ATR

– ATR can be changed via service command

– seller not always aware of details

– http://smartcard-atr.appspot.com/

• More details from certification reports like NIST FIPS 140
– http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm

47 | Programming JavaCards, SPACE 2015

http://smartcard-atr.appspot.com/
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm

JCAlgTester project (test app&database, 43+)

48 | Programming JavaCards, SPACE 2015

http://www.fi.muni.cz/~xsvenda/jcsupport.html

Supported algorithms - summary

• Always supported: TRNG, 3DES, RSA-1024b,

SHA-1, MD5, on-card key generation

• Supported by newer cards: AES-128/196/256,

RSA-2048b, ECC

• Usually supported by newer cards: SHA2-256,

EC-DH key agreement

49 | Programming JavaCards, SPACE 2015

BEST PRACTICES

| Programming JavaCards, SPACE 201550

Execution speed hints (1)

• Difference between RAM and EEPROM memory

– new allocates in EEPROM (persistent, but slow)

• do not use EEPROM for temporary data

• do not use for sensitive data (keys)

– JCSystem::getTransientByteArray() for RAM buffer

– local variables automatically in RAM

• Use API algorithms and utility methods

– much faster, cryptographic co-processor

• Allocate all resources in constructor

– executed during installation (only once)

– either you get everything you want or not install at all

| Programming JavaCards, SPACE 201551

Execution speed hints (2)

• Garbage collection usually not available

– do not use new except in constructor

• Keep Cipher or Signature objects initialized

– if possible (e.g., fixed master key)

– initialization with key takes non-trivial time

• Use copy-free style of methods

– foo(byte[] buffer, short start_offset, short length)

• Do not use recursion or frequent function calls

– slow, function context overhead

• Do not use OO design extensively (slow)

| Programming JavaCards, SPACE 201552

Security hints (1)

• Use API algorithms/modes rather than your own

– API algorithms fast and protected in cryptographic

hardware

– general-purpose processor leaking more information

• Store session data in RAM

– faster and more secure against power analysis

– EEPROM has limited number of rewrites (105 - 106 writes)

• Never store keys and PINs in primitive arrays

– use specialized objects like OwnerPIN and Key

– better protected against power, fault and memory read-out

attacks

| Programming JavaCards, SPACE 201553

Security hints (2)

• Erase unused keys and sensitive arrays

– use specialized method if exists (Key::clearKey())

– or overwrite with random data (Random::generate())

• Use transactions to ensure atomic operations

– power supply can be interrupted inside code execution

– be aware of attacks by interrupted transactions - rollback

attack

• Do not use conditional jumps with sensitive data

– branching after condition is recognizable with power

analysis

| Programming JavaCards, SPACE 201554

Security hints (3)

• Allocate all necessary resources in constructor

– applet installation usually in trusted environment

– prevent attacks based on limiting available resources

• Use automata-based programming model

– well defined states (e.g., user PIN verified)

– well defined transitions and allowed method calls

| Programming JavaCards, SPACE 201555

POWER ANALYSIS

56 | Programming JavaCards, SPACE 2015

Analyzing implementations

OpenPlatform Secure channel protocol (SCP’01)

INIT_UPDATE operation
57 | Programming JavaCards, SPACE 2015

Reverse engineering of Java Card

bytecode
• Goal: obtain code back from smart card

– JavaCard defines around 140 bytecode instructions

– JVM fetch instruction and execute it

| Programming JavaCards, SPACE 2015

(source code)

m_ram1[0] = (byte) (m_ram1[0] % 1);

(bytecode)

getfield_a_this 0;

sconst_0;

baload;

sconst_1;

srem;

bastore;

(power trace)

compiler oscilloscope

58

Conditional jumps

• may reveal sensitive info

• keys, internal branches…

| Programming JavaCards, SPACE 2015

(bytecode)

sload_1;

ifeq_w L2;

L1: getfield_a_this 0;

sconst_0;

sconst_0;

bastore;

goto L3;

L2: getfield_a_this 0;

sconst_0;

sconst_1;

bastore;

goto L3;

L3: …

(source code)

if (key == 0) m_ram1[0] = 1;

else m_ram1[0] = 0;

compiler
oscilloscope

(power trace, k != 0)

(power trace, k == 0)

59

60 | Programming JavaCards, SPACE 2015

Thank you for your attention!

Questions

61 | Programming JavaCards, SPACE 2015

