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Outline

• Short intro to multi-application smart cards

• Typical usage scenarios

• Programming smart cards

• Platform performance and capabilities
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HTTP://CRCS.CZ/SC

Slides and source codes for tutorial available here:
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Tutorial slides and sources

• http://crcs.cz/sc

• 7 readers and cards available here

• You can try card programming during conference

• Don’t forget to return reader and card back please

• Hint: You can start downloading Java SDK now
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INTRO TO SMART CARDS
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Basic types of (smart) cards

• Contactless “barcode”

– Fixed identification string (RFID, < 5 cents)

• Simple memory cards (magnetic stripe, RFID)

– Small write memory (< 1KB) for data, (~10 cents) 

• Memory cards with PIN protection

– Memory (< 5KB), simple protection logic (<$1)
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Basic types of (smart) cards (2)

• Cryptographic smart cards 

– Support for (real) cryptographic algorithms

– Mifare Classic ($1), Mifare DESFire ($3)

• User-programmable smart cards

– Java cards, .NET cards, MULTOS cards ($10-$30)
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Cryptographic smart cards

• SC is quite powerful device

– 8-32 bit procesors @ 5-20MHz

– persistent memory 32-100kB (EEPROM)

– volatile fast RAM, usually <<10kB

– truly random generator

– cryptographic coprocessor (3DES, RSA-2048,...)

• 8.8 billion units shipped in 2014 (ABI Research)

– mostly smart cards

– telco, payment and loyalty...
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Main advantages of crypto smart cards

• High-level of security (CC EAL4 and higher)

• Fast cryptographic coprocessor

• Programmable secure execution environment

• Secure memory and storage

• On-card asymmetric key generation

• High-quality and very fast RNG 

• Possibility for secure remote card control
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MODES OF USAGE
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Smart card carries fixed information

• Fixed information ID transmitted, no secure channel

• Low cost solution (nothing “smart” needed)

• Problem: Attacker can eavesdrop and clone chip
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Smart card as a secure carrier

• Key(s) stored on a card, loaded to a PC before 

encryption/signing/authentication, then erased

• High speed usage of key possible (>>MB/sec)

• Attacker with an access to PC during operation will 

obtain the key 

– key protected for transport, but not during the usage
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Smart card as encryption/signing device

• PC just sends data for encryption/signing…

• Key never leaves the card

– personalized in secure environment

– protected during transport and usage 

• Attacker must attack the smart card 

– or wait until card is inserted and PIN entered!

• Low speed encryption (~kB/sec)

– low communication speed / limited card performance
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Smart card as computational device

• PC just sends input for application on smart card

• Application code & keys never leave the card

– smart card can do complicated programmable actions

– can open secure channels to other entity

• PC act as a transparent relay only (no access to data)

• Attacker must attack the smart card 

| Programming JavaCards, SPACE 201514



Smart card as root of trust

• Secure boot process, remote attestation

• Smart card provides robust store with integrity

• Application can verify before pass control 

(measured boot)

• Computer can authenticate with remote entity…
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Java Card basics
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Main standards

• ISO7816

– card physical properties

– physical layer communication protocol

– packet format (APDU)

• PC/SC, PKCS#11

– standardized interface on host side

– card can be proprietary

• GlobalPlatform

– remote card management interface

– secure installation of applications

• JavaCard

– open programming platform from Sun

– applets portable between cards 
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JavaCard specification (1996)

• Maintained by Sun Microsystems (Oracle) 

• Cross-platform and cross-vendor applet interoperability

• Freely available specifications and development kits

– http://www.oracle.com/technetwork/java/javacard/index.html

• Java Card applet is Java-like application 

– uploaded to a smart card 

– executed by the Java Card Virtual Machine
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User Application

PC/SC library

Applet1
Applet2

JCVM

Java Card applets

• Writing in restricted Java syntax 

– byte/short (int) only, missing most of Java objects

• Compiled using standard Java compiler

• Converted using Java Card converter 

– check bytecode for restrictions

– can be signed, encrypted…

• Uploaded and installed into smartcard

– executed in JC Virtual Machine

• Communication using APDU commands

– small packets with header
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JavaCard API versions

• Java Card 2.1.x/2.2.x

– widely supported versions

– basic symmetric and asymmetric cryptography algorithms

– PIN, hash functions, random number generation

– transactions, utility functions

• Java Card 2.2.2 

– last version from 2.x series

– significantly extended support for algorithms and new concepts

• long “extended” APDUs, BigNumber support

• biometric capability

• external memory usage, fast array manipulation methods…

• JavaCard 3.x (classic vs. connected editions)
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DEVELOPING JAVACARD APPS
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APDU (Application Protocol Data Unit)

• APDU is basic logical communication datagram

– header (5 bytes) and up to ~256 bytes of user data 

• Header format

– CLA – instruction class

– INS – instruction number

– P1, P2 – optional data

– Lc – length of incoming data

– Data – user data

– Le – length of the expected output data
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JC development process
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6. Write user Java app 

(javax.smartcardio.*)

1. Extends

javacard.framework.Applet

2. Compile Java*.class 

(Java 1.3 binary format)

3. Convert *.class*.jar/cap 

(Java Card Convertor)

4. Upload *.jar/cap

 smart card (GPPro/GPShell)

5. Install applet 

(GPPro/GPShell)

7. Use applet on 

smart card (APDU)



Quick start

1. Get JavaCard smart card and reader

– Our example card: NXP JCOP J2A081 80K

2. Install Java SDK and ant build environment

– Don’t forget to set proper paths (javac, ant)

3. Download AppletPlayground project

– https://github.com/martinpaljak/AppletPlayground

4. Download GlobalPlatformPro uploader

– https://github.com/martinpaljak/GlobalPlatformPro

25 | Programming JavaCards, SPACE 2015

https://github.com/martinpaljak/AppletPlayground
https://github.com/martinpaljak/GlobalPlatformPro


1. Compile and convert applets 

• > ant toys

– Compiles source with Java compiler (javac)

– Convert with javacard convertor

• (for all projects)
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2. Manage applets on smart card

• GlobalPlatformPro tool

– Authenticates against CardManager

– Establish secure channel with CM

– Manage applets (list/upload/delete)
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Auto-detected ISD AID: A000000003000000

Host challenge: BD525E5585006202

Card challenge: 05211C9591C58232

Card reports SCP02 with version 255 keys

Master keys:

Version 0

ENC: Ver:0 ID:0 Type:DES3 Len:16 Value:404142434445464748494A4B4C4D4E4F

MAC: Ver:0 ID:0 Type:DES3 Len:16 Value:404142434445464748494A4B4C4D4E4F

KEK: Ver:0 ID:0 Type:DES3 Len:16 Value:404142434445464748494A4B4C4D4E4F

Sequence counter: 0521
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>gp -list –verbose

Reader: Gemplus USB SmartCard Reader 0

ATR: 3BF81300008131FE454A434F5076323431B7

More information about your card:

http://smartcard-atr.appspot.com/parse?ATR=3BF81300008131FE454A434F507632343

1B7

Auto-detected ISD AID: A000000003000000

Host challenge: 10FFA96848D9EB62

Card challenge: 0520E372F35B4818

Card reports SCP02 with version 255 keys

Master keys:

Version 0

ENC: Ver:0 ID:0 Type:DES3 Len:16 Value:404142434445464748494A4B4C4D4E4F

MAC: Ver:0 ID:0 Type:DES3 Len:16 Value:404142434445464748494A4B4C4D4E4F

KEK: Ver:0 ID:0 Type:DES3 Len:16 Value:404142434445464748494A4B4C4D4E4F

Sequnce counter: 0520

Derived session keys:

Version 0

ENC: Ver:0 ID:0 Type:DES3 Len:16 Value:654E72AAADA31F0A7B5567160DE4C5A7

MAC: Ver:0 ID:0 Type:DES3 Len:16 Value:C6883A00AB6E56384B845A5A6F68CA6C

KEK: Ver:0 ID:0 Type:DES3 Len:16 Value:3875213C9F2123EB01AA420DC83C18F0

Verified card cryptogram: 62CBE443B3F4FB80

Calculated host cryptogram: 9AAC671F9B1E0630

AID: A000000003000000 (|........|)

ISD OP_READY: Security Domain, Card lock, Card terminate, Default selected, CVM 

(PIN) management

AID: A0000000035350 (|.....SP|)

ExM LOADED: (none)

A000000003535041 (|.....SPA|)



3. Upload applet to smart card

• (already converted applet *.cap is assumed)

• > gp --instal OpenPGPApplet.cap –verbose

• Hint: test with gpg --card-edit
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CAP file (v2.1) generated on Sat Oct 03 15:13:58 CEST 2015

By Sun Microsystems Inc. converter 1.3 with JDK 1.8.0_60 (Oracle Corporation)

Package: openpgpcard v0.0 with AID D27600012401

Applet: OpenPGPApplet with AID D2760001240102000000000000010000

Import: A0000000620101 v1.3

Import: A0000000620201 v1.3

Import: A0000000620102 v1.3

Import: A0000000620001 v1.0

Cap loaded



OpenPlatform Package/applet upload 

• Security domain selection

• Secure channel establishment – security domain

• Package upload

– Local upload in trusted environment

– Remote upload with relayed secure channel 

• Applet installation

– Separate instance from package binary with unique AID

– Applet privileges and other parameters passed

– Applet specific installation data passed
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4. Communicate with smart card 

• > gp --apdu apdu_in_hex

• Example for LabakApplet.java

– gp –apdu B0541000 (generate random numbers)
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>gp --apdu B0541000 -d

[*] Gemplus USB SmartCard Reader 0
SCardConnect("Gemplus USB SmartCard Reader 0", T=*) -> T=1, 3BF81300008131FE454A

434F5076323431B7

SCardBeginTransaction("Gemplus USB SmartCard Reader 0")

A>> T=1 (4+0000) B0541000

A<< (0016+2) (32ms) 801D52307393AC0AB1CC242F6905B7C5 9000



5. Delete applet

• > gp --delete D27600012401 --deletedeps

• (Verify that applet was deleted by gp –list)
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JavaCard application running model

1. Uploaded package – application binary

2. Installed applet from package – running application

3. Applet is running until deleted from card

4. Applet is suspended when power is lost

– Transient data inside RAM are erased

– Persistent data inside EEPROM remain

– Currently executed method is interrupted

5. When power is resumed

– Unfinished transactions are rolled back

– Applet continues to run with the same persistent state

– Applet waits for new command

6. Applet is deleted by service command 
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COMMUNICATION WITH 

SMART CARD
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How to communicate with our applet?

1. Various existing tools

– PGP/GPG, S-MIME (PKCS11 lib), signature application…

– Low-level communication (GPShell, GPPro…)

2. Possibility to send APDU from our own program

– PC/SC standard (PC/SC-lite on Linux)

– SCardxxx Win32 API (winscard.dll)

– javax.smartcardio.* API for Java 6
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JavaCard communication lifecycle
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SYMMETRIC CRYPTO APPLET
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Random numbers 

• javacard.security.RandomData

• Two versions of random generator

– ALG_SECURE_RANDOM (truly random)

– ALG_PSEUDO_RANDOM (usually same as SECURE)

• Generate random block

– RandomData::generateData()

• Very fast and high quality output

– bottleneck is usually card-to-terminal link
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RandomData – source code
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private RandomData m_rngRandom = null;

// CREATE RNG OBJECT

m_rngRandom = RandomData.getInstance(RandomData.ALG_SECURE_RANDOM);

// GENERATE RANDOM BLOCK WITH 16 BYTES

m_rngRandom.generateData(array, (short) 0, ARRAY_ONE_BLOCK_16B);
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Key generation and initialization 

• Allocation and initialization of the key object 

(KeyBuilder.buildKey())

• Receive (or generate random) key value

• Set key value (DESKey.setKey())
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// …. INICIALIZATION SOMEWHERE (IN CONSTRUCT)

// CREATE DES KEY OBJECT

DESKey m_desKey = (DESKey) KeyBuilder.buildKey(KeyBuilder.TYPE_DES,

KeyBuilder. LENGTH_DES3_3KEY, false);

// Generate from RNG

m_rngRandom.generateData(array, (short) 0,

(short) KeyBuilder. LENGTH_DES3_3KEY/8);

// SET KEY VALUE

m_desKey.setKey(array, (short) 0);

42



Symmetric cryptography encryption

• javacard.security.Cipher 

• Allocate and initialize cipher object 

– Cipher::getInstance(), Cipher::init()

• Encrypt or decrypt data 

– Cipher.update(), Cipher.doFinal()
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Encryption – source code
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// INIT CIPHER WITH KEY FOR ENCRYPT DIRECTION

m_encryptCipher.init(m_desKey, Cipher.MODE_ENCRYPT);

//….

// ENCRYPT INCOMING BUFFER

void Encrypt(APDU apdu) {

byte[] apdubuf = apdu.getBuffer();

short dataLen = apdu.setIncomingAndReceive();

// CHECK EXPECTED LENGTH (MULTIPLY OF 64 bites)

if ((dataLen % 8) != 0) ISOException.throwIt(SW_CIPHER_DATA_LENGTH_BAD);

// ENCRYPT INCOMING BUFFER

m_encryptCipher.doFinal(apdubuf, ISO7816.OFFSET_CDATA, dataLen, m_ramArray, (short) 0);

// COPY ENCRYPTED DATA INTO OUTGOING BUFFER

Util.arrayCopyNonAtomic(m_ramArray, (short) 0, apdubuf, ISO7816.OFFSET_CDATA, dataLen);

// SEND OUTGOING BUFFER

apdu.setOutgoingAndSend(ISO7816.OFFSET_CDATA, dataLen);

}
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ALGORITHMS, PERFORMANCE

Algorithms offered, performance of the current hardware
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Problem?
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What kind of 

smart card?

Which algorithms 

supported?

What key 

lengths?

How much RAM 

memory?

How much 

persistent 

memory? What version 

of JavaCard

API?

Which one 

should I 

choose?
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Supported algorithms for JavaCard smart cards

• Same hw sells in several configurations
– e.g., AES present, but disabled

– additional software libraries in later versions of card

• ATR alone is not sufficient identification
– hard to get product description just from ATR

– ATR can be changed via service command

– seller not always aware of details

– http://smartcard-atr.appspot.com/

• More details from certification reports like NIST FIPS 140
– http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm
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JCAlgTester project (test app&database, 43+)
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Supported algorithms - summary

• Always supported: TRNG, 3DES, RSA-1024b, 

SHA-1, MD5, on-card key generation

• Supported by newer cards: AES-128/196/256, 

RSA-2048b, ECC

• Usually supported by newer cards: SHA2-256,    

EC-DH key agreement
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BEST PRACTICES
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Execution speed hints (1)

• Difference between RAM and EEPROM memory

– new allocates in EEPROM (persistent, but slow)

• do not use EEPROM for temporary data

• do not use for sensitive data (keys)

– JCSystem::getTransientByteArray() for RAM buffer

– local variables automatically in RAM

• Use API algorithms and utility methods

– much faster, cryptographic co-processor

• Allocate all resources in constructor

– executed during installation (only once)

– either you get everything you want or not install at all
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Execution speed hints (2)

• Garbage collection usually not available

– do not use new except in constructor

• Keep Cipher or Signature objects initialized

– if possible (e.g., fixed master key)

– initialization with key takes non-trivial time

• Use copy-free style of methods

– foo(byte[] buffer, short start_offset, short length)

• Do not use recursion or frequent function calls

– slow, function context overhead

• Do not use OO design extensively (slow)
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Security hints (1)

• Use API algorithms/modes rather than your own

– API algorithms fast and protected in cryptographic 

hardware

– general-purpose processor leaking more information

• Store session data in RAM 

– faster and more secure against power analysis

– EEPROM has limited number of rewrites (105 - 106 writes)

• Never store keys and PINs in primitive arrays 

– use specialized objects like OwnerPIN and Key 

– better protected against power, fault and memory read-out 

attacks

| Programming JavaCards, SPACE 201553



Security hints (2)

• Erase unused keys and sensitive arrays

– use specialized method if exists (Key::clearKey()) 

– or overwrite with random data (Random::generate())

• Use transactions to ensure atomic operations 

– power supply can be interrupted inside code execution

– be aware of attacks by interrupted transactions - rollback 

attack  

• Do not use conditional jumps with sensitive data

– branching after condition is recognizable with power 

analysis
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Security hints (3)

• Allocate all necessary resources in constructor 

– applet installation usually in trusted environment

– prevent attacks based on limiting available resources

• Use automata-based programming model

– well defined states (e.g., user PIN verified)

– well defined transitions and allowed method calls
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POWER ANALYSIS
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Analyzing implementations  

OpenPlatform Secure channel protocol (SCP’01)

INIT_UPDATE operation
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Reverse engineering of Java Card 

bytecode
• Goal: obtain code back from smart card

– JavaCard defines around 140 bytecode instructions 

– JVM fetch instruction and execute it
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(source code)

m_ram1[0] = (byte) (m_ram1[0] % 1); 

(bytecode)

getfield_a_this 0;

sconst_0;

baload;

sconst_1;

srem;

bastore;

(power trace)

compiler oscilloscope
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Conditional jumps 

• may reveal sensitive info

• keys, internal branches…  
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(bytecode)

sload_1;

ifeq_w L2;

L1: getfield_a_this 0;

sconst_0;

sconst_0;

bastore;

goto L3;

L2: getfield_a_this 0; 

sconst_0;

sconst_1;

bastore;

goto L3;

L3: …

(source code)

if (key == 0) m_ram1[0] = 1;

else m_ram1[0] = 0;

compiler
oscilloscope

(power trace, k != 0)

(power trace, k == 0)
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Thank you for your attention!

Questions
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