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Abstract. NIST Statistical Test Suite is an important testing suite for
randomness analysis often used for formal certifications or approvals.
Documentation of the NIST STS gives some guidance on how to interpret
results of the NIST STS but interpretation is not clear enough or it uses
just approximated values. Moreover NIST considers data to be random if
all tests are passed yet even truly random data shows a high probability
(80%) of failing at least one NIST STS test. If data fail some tests the
NIST STS recommends the analysis of different samples. We analysed
819200 sequences (100 GB of data) produced by a physical source of
randomness (quantum random number generator) in order to interpret
results computed without analysing any additional samples. The results
indicate that data can be still considered random for the significance level
α = 0.01 if they fail less than 7 NIST STS tests, 7 tests of uniformity of
p-values (100 sequences) or 10 tests of proportion of passing sequences.
We have also defined a more accurate interval of acceptable proportions
computed with a new constant (2.6 instead of 3) for which 1000 sequences
can be considered random if they fail less than 7 tests of proportion.

Keywords: NIST STS; statistical randomness testing; hypothesis testing

1 Introduction

Randomness plays an important role in many areas of cryptography. Generat-
ing random numbers is a difficult task and so is the quality evaluation of the
generated data. In practice randomness assessment relies heavily on empirical
tests of randomness. Each test examines the randomness quality of data from a
specific point of view, testing certain statistical features, such as the frequency
of ones or m-bit blocks in the data, etc. The majority of empirical random-
ness tests are based on statistical hypothesis testing. Each test compares certain
characteristics of data (frequency of ones, frequency of m-bit blocks, etc.) with
the expected test statistic (0.5, 2−m, etc.) that is precomputed for random infi-
nite sequences. In this context randomness is a probabilistic property and it can
be characterized and described in terms of probability. This is due to the fact
that even a good random number generator produces sequences (for instance
sequence of all ones) with characteristics significantly different from the values
expected in tests. Therefore we are not able to distinguish whether a given se-
quence with “bad” characteristics was produced by a defective generator or the
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sequence was produced by a good generator by chance. In the context of empiri-
cal tests of randomness, randomness is described as the probability that a perfect
random number generator would produce sequences with the same or less ran-
domness quality than those exhibited by the analysed sequence. Since statistical
randomness can be tested from many points of view, tests are usually grouped
into testing suites (also called batteries) to provide a more comprehensive ran-
domness analysis. There are three commonly used testing suites for randomness
analysis: NIST Statististical Test Suite [1], Dieharder [3] (a novel version of the
Diehard battery) and TestU01 [4]. The NIST STS has a special importance since
it was published as a NIST standard (also used for selecting AES) and it is used
for the preparation of many formal certifications or approvals.

Results of statistical tests of randomness are typically in the form of a p-
value which represents the probability that a perfect random number generator
would produce less random sequences than the sequence being tested. Although
the p-value of a randomness test focusing on a single characteristic has a clear
statistical interpretation, the interpretation of the results of testing suites (in-
cluding multiple tests) is problematic. Empirical tests of randomness and their
results are usually dependent and correlated. For instance, if frequencies of ones
and zeroes are biased (non-equal) for a given sequence it is likely that frequen-
cies of 2-bit blocks are biased too. For a clear statistical interpretation of results
(set of p-values) we need to analyse dependency/correlation between results of
tests applied on random data since randomness is expressed as the probability
relative to random sequences.

In our work we focus on the interpretation of the results provided by NIST
STS but the proposed approach can be used for other suites as well. Documen-
tation of the NIST STS gives some guidance on how to interpret results of the
NIST STS tests (see Section 4.2 of [1]) but “it is up to the tester to determine
the correct interpretation of the test results”[1]. Moreover the interpretation of
results is not clear enough and therefore “some clear guidance does need to
be given in the interpretation of results” [6]. The goal of our work is to give
a correct interpretation of the results of each testing procedure (proportion of
passing sequences, uniformity of p-values) implemented in the NIST STS. The
major contribution of the paper includes the improved formula computing an
interval of acceptable proportions of passing sequences. In order to interpret the
level of randomness from the perspective of the whole test suite we analysed the
dependency between the results of procedures for particular NIST STS tests. We
tested 100GB of data produced by a physical source of randomness [8] using a
new optimised implementation of the NIST STS [5]. The results of the depen-
dency analysis indicate that particular tests are interdependent and a random
sequence fails usually more tests than it can be expected for independent tests.
The obtained reference results (obtained for truly random data) can also be used
for a more accurate interpretation of results computed by the whole test suite.

This paper is organised as follows: Section 2 represents a brief introduction
into the theory behind the hypothesis testing used in empirical testing of ran-
domness. A reader familiar with the theory used in statistical randomness testing
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can skip this section. Section 3 describes the tests included in NIST STS, their
parameters and recommended settings. The section also describes the testing
strategy, i.e., what tests to use, recommended lengths of sequences and how
many sequences should be tested. This is followed by an illustration of the re-
sults for different testing procedures. An experienced user of the NIST STS can
jump to Section 4. The main results of our work are discussed in Section 4 and
Section 5. The interpretation of results provided by a single NIST STS test is
discussed in Section 4, followed by the presentation of a newly proposed method
that allows a more accurate interval computation for the passing sequences. Sec-
tion 5 describes the interpretation of results provided by the whole test suite
considering default parameters. Section 6 is dedicated to related work and it is
discussing the dependency of the NIST STS tests and finally, Section 7 concludes
the paper.

2 Empirical tests of randomness and hypothesis testing

The majority of empirical randomness tests, including the tests from the NIST
STS, are based on the statistical hypothesis testing. Hence each test is formulated
to evaluate the null hypothesis, namely that the sequence being tested is random,
from the specific point of view of that test, which can be defined by a specific
statistic of bits or blocks of bits. A test statistic is a function of the tested data
and it compresses the measured randomness quality into a single value – the
observed test statistic. In order to evaluate the test, a distribution of the test
statistic must be known under the null hypothesis (when data is expected to be
random). Most of the NIST STS tests have χ2 or normal distribution as their
reference distribution. An observed test statistic is usually transformed into a
p-value using the reference distribution since a p-value can be interpreted more
easily. The p-value represents the probability that a perfect random number
generator would have produced a sequence less random than the tested sequence
[1].

Remark 1. The most important property of the p-values is that for arbitrary
statistical tests (and not only for randomness tests) which satisfy the null hy-
pothesis, the p-values are uniformly distributed on the interval [0, 1). [9] This
means that random sequences processed by an arbitrary empirical test should
be uniformly distributed on [0,1). Therefore the probability that the p-values
computed for a random sequence lies within the interval [a,b) can be expressed
as:

Pr(a ≤ p-value < b) = b− a.

In order to evaluate a test, the resulting p-value is compared with the signif-
icance level α. If the p-value is smaller/bigger than α, the hypothesis is re-
jected/accepted. Since randomness is described in terms of probability we can
commit two type of errors – Type I and Type II. A type I error occurs when
the true hypothesis is rejected although the sequence was produced by a random
number generator. The probability of a Type I error is equal to the significance
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level α and it is chosen by the tester. A type II error is more important for
cryptographers since it represents the probability of accepting the false hypoth-
esis (defective generator). The probability of a Type II error is denoted by β.
Probability β is difficult to express but α and β are related to each other. If α
is small then β is high and vice versa. In the hypothesis testing, the significance
level α is set to small values (less than 0.05). In cryptography, α is commonly
set to smaller values – typically 0.01. Setting α = 0.01 means that we expect to
reject the null hypothesis in less than 1% cases (for a perfect random number
generator).

3 NIST Statistical Test Suite

The NIST STS battery consists of 15 empirical tests specially designed to analyse
binary sequences (bitstreams). The tests examine randomness of data according
to various statistics of bits or statistics of blocks of bits. All NIST STS tests
examine randomness for the whole bitstream. Several tests are also able to detect
local non-randomness and these tests divide the bitstream into several typically
large parts and they compute a characteristic of bits for each part. All these
partial characteristics are then used for the computation of the test statistic.
Each NIST STS test is defined by the test statistic of one of the following three
types and examines randomness of the sequence according to:

1. bits – these tests analyse various characteristics of bits like proportion of
bits, frequency of bit change (runs) and cumulative sums,

2. m-bit blocks – these tests analyse distribution of m-bit blocks (m is typically
smaller than 30 bits) within the sequence or its parts,

3. M -bit parts – these tests analyse complex property of M -bit (M is typically
larger than 1000 bits) parts of the sequence like rank of the sequence viewed
as a matrix, spectrum of the sequence or linear complexity of the bitstream.

All tests are parametrised by n which denotes the bitlength of a binary sequence
to be tested. Several tests are also parametrised by the second parameter denoted
by m or M . Since the reference distributions of NIST STS test statistics are
approximated by asymptotic distributions (χ2 or normal), the tests give accurate
results (p-values) only for certain values of their parameters. Table 1 summarizes
appropriate values of the parameters for each particular test recommended by
NIST [1]. Several of the NIST STS tests are performed in more variants, i.e.,
they execute several sub-tests and examine more properties of the sequence of the
same type. For instance, the Cumulative sum test examines a sequence according
to forward and backward cumulative sum. Table 1 also summarizes the number
of sub-tests performed by each particular test. The Non-overlapping template
matching test is marked by an asterisk since the number of its sub-tests is not
fixed and depends on the value chosen for the parameter m (the number 148
mentioned in the Table 1 corresponds to the default value of the parameter
m = 9).
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Test # Test name n m or M # sub-tests

1. Frequency n ≥ 100 - 1

2. Frequency within a Block n ≥ 100 20 ≤M ≤ n/100 1

3. Runs n ≥ 100 - 1

4. Longest run of ones n ≥ 128 1

5. Rank n > 38 912 - 1

6. Spectral n ≥ 1000 - 1

7. Non-overlapping T. M. n ≥ 8m− 8 2 ≤ m ≤ 21 148∗

8. Overlapping T.M. n ≥ 106 1

9. Maurer’s Universal n > 387 840 1

10. Linear complexity n ≥ 106 500 ≤M ≤ 5000 1

11. Serial 2 < m < blog2 nc − 2 2

12. Approximate Entropy m < blog2 nc − 5 1

13. Cumulative sums n ≥ 100 2

14. Random Excursions n ≥ 106 8

15. Random Excursions Variant n ≥ 106 18

Table 1: The recommended size n of the bitstream for each particular test. Some
tests are parameterised by a second parameter m, M, respectively. The table
shows meaningful settings for the second parameter and the number of sub-tests
executed by each particular test.

3.1 Testing

NIST STS allows the analysis of an input file as one block (sequence) or to divide
it into sequences of a fixed length n, where n is set using the command line. The
user has to choose parameters that are listed here in their order of appearance
in the text-based user interface:

1. file for the analysis – user can choose his own file or data can be generated by
one of the predefined pseudorandom number generators (Blum-Blum-Shub,
several congruential generators, modular exponentiation and others);

2. tests – what test/tests should be applied to data;
3. values for the second parameter (m or M) for several tests – Block frequency

(128), Non-overlapping template matching (9), Overlapping template match-
ing (9), Approximate entrophy (10), Serial (16), Linear Complexity (500)
(default values are listed in brackets behind each test);

4. number of bitstreams to be processed;
5. file format – ASCII (sequence of ASCII 0’s and 1’s) or binary format (each

byte of the file contains 8 bits of the sequence).

Which tests should be chosen for randomness analysis is a difficult question.
It depends on the considered generator (data), its application domain and the
defects in randomness which are not acceptable. Without any information about
the data to be analysed, all NIST STS tests should be used for the randomness
analysis. In order to apply all tests, the parameter n (bitlength of the sequences)
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should be greater than 100000 (see Table 1). The NIST STS documentation
recommends that at least k = α−1 = 100 sequences should be tested. This is
also an appropriate value for the uniformity test of p-values (at least 55 sequences
must be processed). Since p-values are processed by the NIST STS using some
approximation the more sequences are tested the more accurate results will be
obtained. NIST suggests that a number of 1000 or more sequences should be
tested [1].

3.2 Results

All tests when applied to one sequence result in one or more p-values (the exact
number depends on the number of sub-tests, see Table 1). It should be noted
that some tests – Runs, Random Excursions and Random Excursions Variant,
are not always applicable. These tests are applied only if the sequence meets
certain criteria (Frequency test is passed, number of cycles is greater than 500).
If a test is not applicable the resulting p-value is set to 0.

All NIST STS tests produce several files with results. Each test produces
its own result.txt file that stores all resulted p-values computed by the test
(or sub-tests) for all tested sequences. When a test executes sub-tests it also
produces files datai.txt that store p-values computed by the ith sub-test. The
file result.txt stores p-values in the natural order, i.e., the first p-value from
data1.txt, the first p-value from the data2.txt, etc.

The NIST STS processes all results (p-values) from all result.txt files into
the final file finalAnalysisReport.txt. This file stores the “final” table that
summarizes all results of all chosen tests. The following Table 2 illustrates the ta-
ble from the finalAnalysisReport.txt file that was obtained after processing
1000 binary sequences each consisting of 106 bits. Each row of Table 2 corre-

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-value Proportion Test

99 108 91 105 109 104 92 101 93 98 0.920383 0.9910 Frequency
90 89 103 101 111 105 100 94 108 99 0.853049 0.9970 BlockFrequency
90 114 93 114 96 90 102 96 101 104 0.643366 0.9910 CumulativeSums
103 91 101 99 113 97 87 88 114 107 0.506194 0.9930 CumulativeSums
41 44 44 45 50 568 51 48 51 58 0.000000* 0.9970 NonOverlapping
41 44 49 46 47 589 54 41 51 38 0.000000* 1.0000* NonOverlapping
99 107 99 113 94 100 110 87 91 100 0.733899 0.9940 Serial
104 116 103 96 94 95 101 102 84 105 0.695200 0.9890 Serial
97 107 101 111 115 90 100 94 98 87 0.622546 0.9900 LinearComplexity

Table 2: Partial results from the finalAnalysisReport.txt file produced by
the NIST STS after processing of 1000 binary sequences produced by a biased
random number generator.

sponds to one test (or a sub-test). Values in the columns C1, C2, · · · , C10 repre-
sent number of p-values that fall within intervals [0.0, 0.1), [0.1, 0.2), · · · , [0.9, 1.0),
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i.e., 108 of the p-values computed by the Frequency test fall within interval
[0.1, 0.2). Values in the P-value column represent the results for uniformity test-
ing of p-values computed for a given test (see Section 4.2). Value in the column
Proportion represents proportion of sequences that pass a given test. In the
first row (Frequency) we can see that the proportion of sequences that pass the
Frequency test is 0.991, i.e., 991 out of 1000 sequences passed. Results which
NIST interprets as non-randomness of the data are marked by an asterisk. How-
ever these marked results just indicate potential problems with data. Statistical
interpretation of all result is discussed in the next two sections.

4 Interpretation of a single test result

There are several ways to interpret a set of p-values computed by an empirical
test of randomness. NIST adopted the following two ways:

1. The examination of the proportion of sequences that pass a certain statistical
test – relative number of sequences passing the test should lie within a certain
interval.

2. The uniformity testing of p-values – p-values computed for random sequences
should be uniformly distributed on the interval [0, 1). Uniformity of p-values
can be tested again using statistical tests (uniformity of p-values forms a
hypothesis).

The NIST STS also includes analytical routines that analyse the uniformity and
the proportion of the computed p-values for each particular test (sub-test).
The following types of results should be interpreted:

1. set of p-values,
2. proportions of sequences passing a given test (p-values greater than signifi-

cance level α = 0.01),
3. p-values resulted from the uniformity test of p-values computed for a test.

The NIST STS documentation describes a way to interpret the results of a single
empirical test and includes the computed values into the final results (marked
values indicate non-randomness). However, several improvements and correc-
tions can be introduced. When a single sequence is tested, the computed p-value
can be interpreted simply as: “the probability that a perfect random number
generator would have produced a sequence less random than the sequence that
was tested” [1]. Values in the columns P-value and Proportion are meaning-
ful only for an appropriate (NIST recommends at least 100) number of tested
sequences.

4.1 Proportion of sequences passing a test

The probability that a random sequence passes a given test is equal to the
complement of the significance level 1 − α. For multiple random sequences, the
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proportion of sequences that pass a given test is usually different but close to
(1 − α). The proportion of passing sequences should fall into a certain interval
around (1 − α) with a high probability. The NIST STS computes the interval
of acceptable proportions and saves it into the finalAnalysisReport.txt file.
The interval is computed using the significance level α and the number of tested
sequences k as:

(1 − α) ± 3

√
α(1 − α)

k
, (1)

where k is the number of tested sequences. The acceptable proportion of passing
sequences should fall within the interval 0.99±0.0094392 for the significance level
α = 0.01 and the number of tested sequences k = 1000. In Table 2 the value
in the Proportion column for the Frequency test (0.991) lies within the interval
of acceptable proportions. This means that 991 out of 1000 tested sequences
passed the Frequency test (991 of p-values are greater than the significance
level α = 0.01) and therefore the data can be considered random according to
the Frequency test. On the other hand, the proportion (1.0) for two considered
Non-overlapping sub-tests is outside the acceptable region [0.9805607,0.9994392],
therefore the data can be considered non-random – and values are marked by
an asterisk.

Improvements to the computation of the acceptable region of passing
sequences: Formula (1) is based on the approximation of the binomial distri-
bution [1] which is reasonably accurate for many tested sequences (k ≥ 1000).
The probability that the proportion of passing random sequences falls into the
computed interval is 99.73%. It corresponds to the probability 0.27% of the Type
I error (see [11]). Hence we will get the probability of the Type I error closer to
1% if the interval of acceptable proportion is computed by the following formula:

0.99 ± 2.6

√
0.01 ∗ 0.99

k
. (2)

The above formula gives accurate results for large k [11]. For a small number of
tested sequences (k) the tester should use the formula (3) based on the binomial
distribution which is exact, not an approximation as formulas (1 or 2). The
probability that a random sequence passes given test is equal to 1 − α = 0.99.
The probability that k1 out of k random sequences pass a test has a binomial
distribution and it can be computed1 as:(

k

k1

)
(1 − α)k1αk−k1 =

(
k

k1

)
0.99k10.01k−k1 . (3)

The distribution of probabilities (for random data) is “symmetric” about the
mean 1 − α and therefore the interval has 1 − α as its center. The probability

1 When using the online Wolfram Alfa Engine [10] type sum Binomial[k,i]0.99
^i*0.01^(k-i), k= k 1 to k 2.
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that the number of passing sequences fall within the interval [k1, k2] can be
computed as

Pr(k1/k ≤ proportion ≤ k2/k) =

k2∑
i=k1

(
k

i

)
0.99i0.01k−i.

We get Pr( 981
1000 ≤ proportion ≤ 999

1000 ) = 0.9966 (corresponds to 0.34% Type
I error) for the interval computed by formula (1) used in the NIST STS. For
the interval [0.9805,0.9994] computed by the newly proposed formula (2) we get
the probability Pr( 982

1000 ≤ proportion ≤ 998
1000 ) = 0.9926 (Type I error equal

to 0.74%). In order to obtain a probability of the Type I error closer to 1%
it usually suffices to change one of the bounds k1, k2 by 1. For k = 1000 the
most appropriate bounds are k1 = 982, k2 = 997 for which we get Pr( 982

1000 ≤
proportion ≤ 997

1000 ) = 0.9904 with the corresponding 0.96% probability of the
Type I error which is quite close to 1% given by the significance level α.

4.2 Uniformity of p-values

The p-values computed by a singe test should be uniformly distributed on the
interval [0,1). Hence, the uniformity of p-values forms a hypothesis and it can
be tested by a statistical test. The NIST uses one sample χ2 test to assess the
uniformity of p-values. χ2 test measures whether the observed discrete distribu-
tion (histogram) of some feature follows the expected distribution. In the NIST
STS, the interval [0,1) is divided into 10 sub-intervals [i/10, (i + 1)/10) and χ2

test checks whether the number of p-values for each sub-interval (Ci columns of
Table 2) is close to k/10 (where k denotes number of p-values/tested sequences).
For the first considered Non-overlapping sub-test, a number of 568 (C6 column
of Table 2) p-values fall into the interval [0.5,0.6). The observed number 568 is
quite different from the expected 100 and therefore the uniformity test fails.

Remark 2. The χ2 test works well only for k/10 greater than 5.5. Therefore the
number of tested sequences should be at least 55 (k ≥ 55) to get a meaningful
result for the uniformity test.

The value in the P-value column of the final table (Table 2) represents the
results (p-value) of the uniformity test of p-values. A computed small p-value in-
dicates a problem of the generator, but it is hard to identify a concrete weakness.
The NIST STS documentation recommends a very small value for the signifi-
cance level α = 0.0001 for the uniformity test, i.e., p-values are considered as
non-uniform if a p-value from the P-value column is smaller than 0.0001. The
p-values computed by the first considered Non-overlapping template matching
test are non-uniform on [0,1) since the resulted uniformity p-value 0 is smaller
than α = 0.0001. A very small value of the significance level α recommended
by NIST implies a large probability of the Type II error (β - acceptance of bad
generator). From the practical point of view a small β is more important than
a small α. On the other hand the non-uniformity of p-values usually indicates
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that there can be a problem. We believe a less conservative (0.001 or 0.01) value
of the significance level α would be more appropriate for testing the uniformity
of p-values.

5 Interpretation of multiple tests

NIST suggests to consider data to be random if and only if the sequence/sequences
pass all testing procedures (uniformity test of p-values, test of the proportion
of passing sequences). This is slightly misleading since the probability that a
sequence fails at least one of the used procedures increases with the increasing
number of used procedures/tests (sub-tests). At the same time, the NIST STS
recommends the analysis of different samples produced by the same generator.

Remark 3. If the tested sequence(s) fail one or more randomness testing proce-
dures “additional numerical experiments should be conducted on different sam-
ples of the generator to determine whether the phenomenon was a statistical
anomaly or a clear evidence of non-randomness”[1].

Overall a number of 188 tests (sub-tests) are applied to a given sequence in the
default settings of the NIST STS. The probability that a given sequence passes
exactly k1 out of k tests (NIST STS test, uniformity test, test of proportion) all
with α = 1% has again the binomial distribution and can be computed using the
above mentioned formula (3). For instance, the probability that a given sequence
passes 188 independent tests is equal to 0.99188 = 0.15 = 15%. However, due
to interdependency of the NIST STS tests the probability that given sequence
passes all NIST STS tests is higher than the expected 15%.

In order to evaluate the randomness of data we have measured the proba-
bility that a random sequence fails i or more tests for each testing procedure
(proportion of passing sequences, uniformity test). These computed probabilities
can be used to compute a p-value for the whole test suite – probability that a
perfect random number generator would produce sequences with results (set of
p-values) worse than the results computed for the given sequence. We analysed
the results of all 188 NIST STS tests/sub-tests with their default settings. We
have analysed 100 GB of data (downloaded from [8]) produced by a physical
source of randomness. The randomness analysis was performed by an optimised
implementation of the NIST STS [5] which is overall 30x faster than the original
implementation. In order to use all the tests the bitlength of each sequence n
was set to 100000 bits which corresponds to 819200 analysed sequences.

5.1 Considering only one sequence

In this section we focus on the probability Pr(i) that a random sequence fails
(the p-value of the NIST STS tests is smaller than α = 1%) i tests for a given
procedure, and illustrate how to use these probabilities to evaluate the random-
ness of the sequence. The Random Excursions test and the Random Excursions
Variant test and their sub-tests are not always applicable. Random Excursions
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test and Random Excursions Variant are either both (including all the sub-tests)
applicable or non-applicable. Therefore 188 tests or 162 (=188 - 8 - 18) tests are
applicable. We computed two probabilities:

1. The probability Pr(i, 188) that a random sequence fails exactly i NIST STS
tests. Probabilities are computed for 505557 (out of all 819200) sequences
for which all NIST STS are applicable.

2. The probability Pr(i, 162) that a random sequence fails exactly i NIST
STS tests (except the Random Excursions test and the Random Excur-
sions Variant test). Probabilities are computed for the remaining 313643
(= 819200 − 505557) sequences for which the Random Excursions (Variant)
tests are not applicable.

Table 3 shows the probabilities (expected theoretical and observed) that a ran-
dom sequence fails exactly i NIST STS tests. Expected probabilities are com-
puted for k=188 independent tests using the following formula:

(
k
i

)
0.99(k−i)0.01i.

For practical reasons the table also shows the cumulative probability that a ran-
dom sequence fails i or more NIST STS tests. The computed cumulative prob-

number of failed tests (i) 0 1 2 3 4 5 6 7 8 9 10 11

expected 15.1 28.7 27.1 17.0 7.9 2.9 0.9 0.2 0.1 0.0 0.0 0.0

Pr(i, 188) 19.4 28.9 23.8 14.3 7.2 3.3 1.5 0.7 0.3 0.2 0.1 0.1
cumulative 100 80.6 51.7 28.0 13.6 6.4 3.0 1.6 0.8 0.5 0.3 0.1

Pr(i, 162) 20.0 29.5 23.8 14.1 6.9 3.1 1.3 0.6 0.3 0.1 0.1 0
cumulative 100 80.0 50.4 26.6 12.5 5.6 2.5 1.2 0.6 0.3 0.2 0.1

Table 3: Percentage probability that a random sequence fails exactly i out of all
188 NIST STS tests (default setting) or out of 162 NIST STS tests (when the
Random Excursions (Variant) tests are not applicable). Pr(i, 188) is computed
for sequences for which all NIST STS tests are applicable. Pr(i, 162) is computed
for sequences for which Random Excursions (Variant) tests are not applicable.
Cumulative probability represents the corresponding probability that a random
sequence fails i or more empirical tests.

abilities from Table 3 can be simply used for assessing randomness of the given
sequence S. If the sequence S is tested using the NIST STS with the default
settings, S fails 5 tests and the Random Excursions (Variant) tests are applica-
ble (i.e, all NIST STS tests are applicable) then 6.4% of random sequences are
“equally or less random” than the sequence. Since the corresponding value 6.4%
is greater than the significance level α = 1% the sequence S can be considered
random. From the Table 3 a sequence can be considered non-random for α = 1%
if it fails 8 or more NIST STS tests.
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5.2 Considering multiple sequences

In this section we discuss the most common situation in randomness testing
where many sequences are tested by all NIST STS tests. An interpretation of
all computed p-values, 188 p-values of uniformity tests and 188 proportions of
passing sequences is discussed.

Set of p-values: We can use probabilities computed for each particular se-
quence (Table 3 from the previous section 5.1) to interpret a set of p-values
computed by multiple tests for multiple sequences. In order to describe the ran-
domness for k tested sequences S1, · · · , Sk it is sufficient to compute the product
of probabilities pi from Table 3 corresponding to each particular sequence Si.
Let us consider the randomness assessment of data consisting of two sequences
S1, S2. If the sequence S1 fails 2 tests and the Random Excursions (Variant) tests
are not applicable, then for the corresponding probability we have p1 = 0.504. If
the sequence S2 fails 1 test and all tests are applicable then the corresponding
probability is equal to p2 = 0.806. The probability (p-value for the whole test
suite) that two random sequences are less random than S1, S2 can be computed
as p = p1.p2 = 0.504 ∗ 0.806 = 0.4. Therefore data (sequences S1, S2) can be
considered random for α = 0.01 since p > α.

Uniformity of p-values: In order to evaluate randomness of many sequences
for all the NIST STS tests we computed probabilities that random sequences
fail i (or more) uniformity tests for p-values computed by all 188 NIST STS
tests. The probabilities are computed from 8192= 819200/100 sets of sequences
each consisting of k = 100 sequences. It should be noted that the non-applicable
Random Excursions (Variant) tests are not an issue since uniformity of p-values
computed by the Random Excursions (Variant) tests is examined for a smaller
set (60 in average) of p-values. Table 4 shows the observed probability that a
set of 100 random sequences fail exactly i uniformity tests. Table 4 also shows
the cumulative probability that 100 sequences fail i or more uniformity tests for
different significance levels α = 1%, 0.1% and 0.01% recommended by NIST.

number of failed tests (i) 0 1 2 3 4 5 6 7 8 9

expected 15.1 28.7 27.1 17.0 7.9 2.9 0.9 0.2 0.1 0

observed 11.3 24.8 26.6 19.0 10.8 4.8 1.8 0.5 0.2 0.1

cumulative (α = 1%) 100 88.7 63.9 37.3 18.3 7.5 2.7 0.85 0.33 0.09

cumulative (α = 0.1%) 100 21.8 3.1 0 0 0 0 0 0 0

cumulative (α = 0.01%) 100 3.3 0.12 0 0 0 0 0 0 0

Table 4: Percentage probability that 100 random sequences fail exactly i out of
188 uniformity tests used for each particular NIST STS test (α = 1%). Cumula-
tive probabilities represent probability that 100 random sequences fail i or more
uniformity tests for different significance levels α = 1%, 0.1%, 0.01%.
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The computed probabilities can be used for assessing randomness of 100
sequences as follows: Let us assume that 100 sequences are analysed by the
NIST STS in the default settings and sequences fail 5 uniformity tests (5 p-
values in the P-value column of the final table are marked by asterisk). For the
α = 0.01% recommended by NIST, the corresponding probability value from
Table 4 is 0%. Since the probability is smaller than α = 0.01% the data can
be considered non-random according to the uniformity test procedure. On the
other hand, the data can be considered random for the significance level α = 1%
since 7.5% > α.

Proportion of sequences passing a test: We have also computed the prob-
ability that a set of k sequences fails the test of proportion of passing sequences.
We have considered a set of 100 or 1000 sequences (k = 100 or k = 1000). In
order to get more accurate results we have also tested k = 1000 with the interval
of acceptable proportions computed using the new formula (2) (constant 3 is re-
placed by a more accurate value 2.6). Table 5 shows the expected and observed
probability that 100 respectively 1000 random sequences fail i (or more) tests
of proportion of passing sequences. The results were analysed for all 188 NIST
STS tests. The non-applicable Random Excursions (Variant) tests are not an
issue, since a proportion of passing sequences is computed from a smaller set (60
or 600 in average) of p-values computed for sequences for which the Random
Excursions (Variant) tests are applicable.

number of failed tests (i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13

expected 15.1 28.7 27.1 17.0 7.9 2.9 0.9 0.2 0.1 0 0 0 0 0

observed 46.9 33.7 14.7 4.3 0.5 0 0 0 0 0 0 0 0 0

cumulative k = 103, const = 3 100 53.1 19.4 4.8 0.5 0 0 0 0 0 0 0 0 0

cumulative k = 102, const = 3 100 95.9 84.3 66.3 45.6 28.1 15.6 8.2 4.1 1.8 0.8 0.3 0.2 0.1

cumulative k = 103, const = 2.6 100 79.2 48.6 25.2 9.4 3.2 1.2 0.6 0.1 0 0 0 0 0

Table 5: Percentage probability that random sequence fails exactly i out of 188
uniformity tests used for each particular NIST STS test (α = 1%). Cumulative
probability represents percentage probability that a random sequence fails i or
more NIST STS tests for different number of tested sequences k = 100, 1000 and
interval of acceptable proportions given by constants const = 3 or const = 2.6.

Computed cumulative probabilities can be used for assessing the random-
ness of 1000 sequences as follows: Let us assume that k=1000 sequences fail 4
tests of proportions (4 marked values in the Proportion column of a final table).
The corresponding cumulative probability from Table 5 is equal to 0.5%. The
probability is smaller than the significance level α = 1% and therefore sequences
can be considered non-random. On the other hand, computing the interval more
accurately, using the 2.6 value for the constant, sequences can be considered ran-
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dom since the probability that 1000 random sequences fail 4 or more proportion
tests is 9.4% > 1%.

6 Related work

In order to eliminate redundant tests NIST analysed the dependency of p-values
using principal component analysis. The results were “that there is no large re-
dundancy among tests”. However, analyzing p-values, which are not linear, using
principal component analysis assuming linearity, seems awkward, as authors in
the paper [6] have also observed.

According to our best knowledge, there is only one paper [7] focused on
dependency of NIST STS tests. The authors of [7] measured only the interde-
pendency of the NIST STS tests (probability that a random sequence fails two
tests simultaneously). Moreover, quality of random data is essential for the mea-
surement of the interdependency of tests, but authors did not specify how data
were generated. They also skipped several NIST STS tests. In our approach we
are focusing on different aspect of the dependency. In order to evaluate random-
ness of a given sequence we computed the probability that a random sequence
fails more than a given number of tests (empirical test, uniformity tests, test of
proportion).

7 Conclusion

In this paper we focused on the interpretation of results of the NIST STS in its
default settings. The NIST STS suggests to consider data to be random if all
tests are passed – yet even truly random data shows a high probability (80%)
of failing at least one NIST STS test. If data fail some tests the NIST STS
recommends the analysis of additional samples. We analysed 819200 sequences
of 1000000 bits produced by a physical source of randomness (quantum random
number generator) in order to interpret results computed without analysing any
additional samples.

We have computed the reference probabilities that random sequences fail i or
more tests for each particular testing procedure (NIST STS tests, uniformity test,
proportion of passing sequences). Computed probabilities reflect the dependency
between p-values computed by the NIST STS tests, p-values of uniformity tests
and proportions of passing sequences. We also improved the formula computing
the interval of acceptable proportions of passing sequences.

Computed reference cumulative probabilities indicate that a single sequence
can be considered non-random if it fails (p-values are smaller than α = 1%) 7 or
more NIST STS tests. According to the uniformity test, 100 sequences can be
considered non-random if they fail 7 uniformity tests (α = 1%) or 3 uniformity
tests (for α = 0.1% or α = 0.01%). According to the test of proportions, 1000
(100) sequences can be considered non-random if they fail 4 (10) tests of propor-
tion. We have also redefined a more accurate interval of acceptable proportions
computed with a more accurate constant (2.6 instead of 3). Using this interval,
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1000 sequences can be considered non-random if they fail 7 or more test of pro-
portions. For this interval, a tester has to check by hand whether the proportion
of passing sequences is out of the new interval of acceptable proportions since
results in the final table are marked only for the old one. All previous results
indicate that even random sequences often fail one or more tests. However, it is
still necessary to examine additional samples in order to evaluate whether failed
tests show a statistical anomaly or a clear evidence of non-randomness.
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