
Challenges of fiction in network security –
perspective of virtualized environments

Vit Bukac, Radim Ostadal, Petr Svenda, Tatevik Baghdasaryan and Vashek
Matyas

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{bukac, ostadal, xsvenda, matyas}@mail.muni.cz, tatbagg@gmail.com

Abstract. The paper aims to start a discussion about challenges and
possible caveats of performing network security experiments with high
traffic volumes in virtual environment. A new framework for rapid evolu-
tion of denial-of-service attacks by genetic algorithms is presented. Issues
with virtual environment that were encountered during initial work with
the framework are listed.

Keywords: virtualization, framework, genetic algorithm, denial of ser-
vice attack

1 Background

Virtualization has a significant impact on how network security experiments are
performed. It allows for a high flexibility in both experiment design and scope
setting, and it also supports experiment repeatability with quick restoration of
predefined state. Virtualization enables a great utilization of available resources
with a high scalability. Yet are the environments that were built over standard
hypervisors (e.g., Xen, VMware, Hyper-V) truly representative? Are experiment
results obtained in virtual environment applicable also in physical environment?

We have designed a new generic framework for quick automated evolution
of denial-of-service (DoS) attacks in virtual environment. The framework is suf-
ficiently universal to be used for evaluation of an arbitrary denial-of-service at-
tack. However, we have encountered issues that could have a huge impact on the
results collected in similar environments. We would like to initiate a discussion
about issues that could change our perception of virtual environment as a helpful
servant.

It has been known for a long time that network simulations do not reflect
behavior in real networks correctly, especially when considering high-volume
traffic. Research on denial-of-service attacks has been badly affected, because
simulations assume ideal environment without limitations of the physical world
(e.g., sizes of buffers on routers) [CFS06]. As a response, emulation testbeds
[MBF+10] and hybrid physical-virtual testbeds [SST+10] have been built to
support experimentation with large-scale attacks.



2

2 Our framework

The framework has been initially created to examine possible enhancements
to the HTTP GET flooding attack by modifying HTTP request headers. The
project aim was to search for such HTTP GET headers where their processing
by the victim server would be significantly more resource demanding than the
processing of HTTP GET headers from common web browsers.

The framework applies genetic algorithms to existing DoS attacks in order to
discover advanced, more potent attack variants and also to identify DoS vulner-
abilities in applications that are serving as targets. The architecture is outlined
in Figure 1.

The framework consists of a central management host and multiple physical
computation hosts for conducting experiments themselves. Each computation
host has a hypervisor installed and hosts two virtual machines attacker and
victim. Each management unit can assign tasks to multiple computation hosts,
therefore each generation can be evaluated on dozens of physical hosts simultane-
ously. Virtual machines (VMs) on different physical hosts are clones of attacker
and victim initial source VM images. Thanks to snapshot restoration, each eval-
uation is performed in exactly the same virtual machine state.

The modular architecture enables seamless changes. Employed genetic al-
gorithm, virtual machine operating system and target application can all be
changed with minimal impact on the other parts of the framework. Once the
task and its properties are fixed, the framework can be left to produce relevant
results automatically.

Fig. 1. Framework architecture



3

2.1 Workflow

A – Management module initiates evaluation of a new population.
B1, B2 – Genetic algorithms module creates a list of candidate solutions to be
evaluated in the current round and provides the list to the management module.
Each candidate solution provides a representation of network traffic that needs
to be evaluated.
C1 – Management module maintains a list of active computational hosts. Candi-
date solutions are distributed equally to all available computation hosts in order
to minimize the time required to evaluate the entire population.
C2 – Management module restores snapshots of all virtual machines on compu-
tation hosts. Restoring snapshots is quick and establishes a common initial state
for evaluation of every candidate solution.
D – Attacker virtual machine contains a network traffic generator that can
translate the received specification (i.e., candidate solution) into an arbitrary
network traffic. The actual generated stream of packets is sent towards the victim
virtual machine.
E – Monitoring tools on the victim VM measure the impact of received traffic on
the host (e.g., consumption of RAM, CPU load or values of application-specific
performance counters). Measured values are converted into a common format
and sent as fitness function values (how well candidate solution satisfies the goal
high load in our case) to the genetic algorithms module.
F – Genetic algorithms module evaluates all received fitness function values,
chooses the best solution(s) and provides results to the management module for
a manual review. Once enough results are received, management module starts
a new round.

3 Scenarios

3.1 HTTP requests

As mentioned before, our original goal was just to search for such HTTP GET
headers that could create a burden on the victim server with significantly more
resource demanding load than would be that of a processing of HTTP GET
headers from common web browsers.

A candidate solution is an ordered list of pairs (HTTP header field, value).
Candidate solutions differ in the chosen header fields, appropriate values and the
order of pairs in the header. Each candidate solution is incorporated into HTTP
GET request with a constant URL before being sent. The URL targets a copy
of a well-known news webpage which is running on the victim VM. Each request
is sent 10 000 times. Monitoring tools on the victim VM collect CPU time of all
Apache processes.

Measured values were afterwards compared to CPU time of HTTP requests
that were constructed to mimic requests from common web browsers (i.e., Google
Chrome 35, Internet Explorer 11 and Mozilla Firefox 31).



4

3.2 HTTP requests – Lessons learned

We have encountered a number of problems to cope with:

– Measurement precision. While the deviation of multiple measurements
of the same phenomena was less than 3% with physical hosts, the deviation
increased up to 20% when similar measurements were conducted in virtual
environment.

– No relation of results in virtual environment and physical ma-
chines. We were unable to replicate some results from virtual environment
on real hardware. The example could be the Figure 2 with results from vir-
tual environment. In virtual environment, Best 1, 2 and 3 requests require
higher CPU load than the common IE request. When we sent the same
HTTP headers on two separate physical machines, the difference between
them and IE was negligible.

– Different interpretations on physical machine and in virtualization.
We observed that the same version of Wireshark on the same version of op-
erating system interprets the same network traffic differently, when running
on real HW and when running in a virtualized environment. This behavior
could influence any automated analysis of PCAP files that is based on the
libpcap library.

– Incomparable performance from hosts with different hardware con-
figuration. Virtual machine performance is heavily influenced by underlying
physical hardware. Two virtual machines running on different hardware will
provide different measurement, even though the environment seems to be
exactly the same when observed from inside. All candidate solutions must
be evaluated on computational hosts with similar HW configurations. This
presents a significant challenge for comparability of any cloud-based compu-
tations.

– Cable vs. Wi-Fi connection. We also applied a variant where attacker
VM and victim VM resided on separate physical hosts. Operating system
performance counters values were distinctively different when attack traffic
was sent through Wi-Fi and through cable connection.

– Lower precision bound. When using virtualized environment, there is
always background noise (e.g., fluctuations of CPU load, OS native network
traffic, RAM consumption varying in time). This noise sets a lower bound
for useable precision of measurements. With less than 1000 HTTP requests
during each run, the noise was too dominant for measurements to have any
real informational value. We therefore used at least 10 000 HTTP requests.
Noise in physical environment is arguably lower.

– Results interpretation. Sometimes it was difficult to identify what param-
eters were key influencers of final results (e.g., VM configuration, physical
host properties, network configuration, and internal application configura-
tion). We had to employ try-error approach to interpret some of the observed
anomalies. Also, it was helpful to collect fitness values for minimal size HTTP
requests and then use these fitness values as guidance for mutual comparison
of more complex headers.



5

Figure 2 illustrates some of our findings. Random HTTP headers represent
distribution of CPU consumption of 200 randomly constructed HTTP request
headers. Cluster between 0 and 10 represents malformed requests that are re-
sponded with 400 error code. Cluster between 45 and 60 represents standard
common requests. Best1, Best2 and Best3 show consistency of measurements
of 200 iterations of 3 most demanding requests that we were able to construct.
Measurement precision is sufficient even for a fine-grained evolution. IE baseline
represents consistency of measurements of 200 iterations from common Internet
Explorer 11 request.

Fig. 2. HTTP requests CPU requirements

Our HTTP request project was eventually cancelled. Contrary to our hypoth-
esis, we were unable to find a sequence of HTTP header fields and respective
values whose CPU requirements would be significantly higher than computa-
tional requirements of standard browser requests. Apparently, the impact of
HTTP header fields processing on a standard Apache webserver is negligible,
with the exception of Accept-Encoding field. Accept-Encoding field value can
significantly increase CPU consumption when zip compression is required. How-
ever, such behavior is default for common HTTP requests.

3.3 Slow attacks

Although HTTP requests research project was ultimately unsuccessful, the frame-
work proved to be both simple and effective. Currently we are adapting it for
searching for slow DoS attack opportunities in common protocols. An inherent



6

property of most network protocols is to proceed with next phase of protocol
only when previous phase was completed. Meanwhile, each side has to allocate
its computational resources for any (half-)open connection. Under normal cir-
cumstances, connections are closed only when they are no longer used, either
explicitely with a close message or when an inactivity timeout expires.

For example, a webserver can only send response when full HTTP request has
been received. The Slowloris attack exploits this behavior by sending a never-
ending HTTP header. Therefore, the request is never finished and connection
socket is effectively and indefinitely blocked for other users. If the attacker is able
to maintain sufficient number of simultaneously opened connections, legitimate
users cannot reach the webserver.

We intend to use our framework to identify:

– Time points of message exchange where artificial delays can be introduced
into the communication.

– Separation points in each message where the message can be divided in two
or more smaller messages (i.e., packet fragmentation).

Evaluation criterion will be the maximum time how long it takes to complete
a given sequence of messages (e.g., how long it takes to finish a SSL handshake).

4 Open questions

We are looking for inputs and both good and bad experiences in the following
areas:

– What are other limitations of virtual environment and what are the differ-
ences between virtual environment and physical hosts? How to get consistent
results from virtual environment running on different hardware?

– What protocols and applications may be interesting from the viewpoint of
slow DoS attack verification?

– Where to get an extensive list of available HTTP request header key-value
pairs?

– Are there any similar network security evolution frameworks? Is it possible
to modify existing generic fuzzers such as Peach [Edd11] to support genetic
algorithms and (D)DoS principles?

5 Summary

We have designed a framework that can be used both for automated enhance-
ment of existing denial of service attacks and for generating new types of DoS
attacks. The framework shows potentially serious discrepancies between virtual
and physical environments. We initiate a discussion on hidden caveats of exper-
imenting in virtual environment testbeds.



7

References

[CFS06] Roman Chertov, Sonia Fahmy, and Ness B. Shroff. Emulation versus Sim-
ulation: A Case Study TCP-Targeted Denial of Service Attacks. In 2nd
International Conference on Testbeds and Research Infrastructures for the
Development of Networks and Communities (TRIDENTCOM 2006), pages
316–325, 2006.

[Edd11] Michael Eddington. Peach fuzzing platform. 2011. http://peachfuzzer.com.
[MBF+10] Jelena Mirkovic, Terry V. Benzel, Ted Faber, Robert Braden, John T. Wro-

clawski, and Stephen Schwab. The DETER project: Advancing the science
of cyber security experimentation and test. In In Technologies for Homeland
Security (HST), 2010 IEEE International Conference on, page 7, 2010.

[SST+10] Desmond Schmidt, Suriadi Suriadi, Alan Tickle, Andrew Clark, George Mo-
hay, Ejaz Ahmed, and James Mackie. A distributed denial of service testbed.
In What Kind of Information Society? Governance, Virtuality, Surveillance,
Sustainability, Resilience, pages 338–349. Springer, 2010.


