
Masarykova univerzita
Fakulta informatiky

}w��������
��������������� !"#$%&'()+,-./012345<yA|
Randomness analysis in

authenticated encryption systems

Master thesis

Martin Ukrop

Brno, autumn 2015

Declaration

Hereby I declare, that this paper is my original authorial work, which I have worked out
by my own. All sources, references and literature used or excerpted during elaboration of
this work are properly cited and listed in complete reference to the due source.

Martin Ukrop

Advisor: RNDr. Petr Švenda, Ph.D.

ii

Acknowledgement

Many thanks to you all.

There would be much less algebra, board gaming, curiosity, drama, experience, functional
programmig, geekiness, honesty, inspiration, joy, knowledge, learning, magic, nighttime
walks, OpenLabs, puzzle hunts, quiet, respect, surprises, trust, unpredictability, vigilance,
Wachumba, xylophone, yummies and zeal in the world for me without you.

Access to computing and storage facilities owned by parties and projects contributing to the
National Grid Infrastructure MetaCentrum, provided under the programme „Projects of
Large Infrastructure for Research, Development, and Innovations“ (LM2010005), is greatly
appreciated.

iii

Abstract

This thesis explores the randomness of outputs created by authenticated encryption schemes
submitted to the CAESAR competition. Tested scenarios included three different modes of
public message numbers. For the assessment, four different software tools were used: three
common statistical batteries (NIST STS, Dieharder, TestU01) and a novel genetically in-
spired framework (EACirc). The obtained results are interpreted in two ways: Firstly, to
gain insights into the quality of the proposed CAESAR candidates. Secondly, to compare
and contrast the used randomness testing tools. Directions for future research are proposed
based on the obtained conclusions.

iv

Keywords

statistical randomness, authenticated encryption, CAESAR, evolutionary algorithms, ge-
netic programming, EACirc, NIST STS, Dieharder, TestU01

v

Contents

1 Introduction . 2
2 Previous works . 3

2.1 Cryptoprimitives assessment . 3
2.2 Genetic algorithms in cryptography . 4
2.3 EACirc framework . 4

3 Authenticated encryption . 6
3.1 CAESAR competition . 6

3.1.1 Candidates requirements . 7
3.1.2 Submissions . 8

3.2 Tested ciphers . 8
4 Experiment methodology . 11

4.1 Statistical batteries . 11
4.1.1 NIST STS . 13
4.1.2 Dieharder . 14
4.1.3 TestU01 . 15

4.2 EACirc . 15
4.2.1 Workflow . 16
4.2.2 Implementation and settings . 17
4.2.3 Results interpretation . 21

4.3 Reference experiments . 22
5 Experiment results . 24

5.1 Experiment settings . 24
5.2 Interpretation of results . 26
5.3 Conclusions for CAESAR candidates . 27
5.4 Conclusions for randomness testing tools 28

6 Summary . 37
6.1 High-level conclusions . 37
6.2 Proposed future work . 38

A Data attachment . 44

1

1 Introduction

Nowadays, cryptography interferes with almost every aspect of our lives. Ongoing research
of cryptoprimitives is, therefore, essential to ensure they provide the assurances required.
The assessment can be done in a multitude of ways – this thesis concentrates on randomness
testing. Even though finding patterns in the produced outputs does not prove the design
insecure, it significantly hints at its potential weaknesses.

Historically, randomness was assessed primarily by statistical tests. Over time, multiple
tests were grouped into suites, such as Statistical Test Suite by the National Institute of
Standards and Technology (NIST STS) [Nat97b]. However, creating the tests required an
enormous amount of human analytical work. Furthermore, the tests were limited to pre-
defined data characteristics manually inspected by the analysts. Recently, other approaches
supplementing statistical batteries started to emerge [Š+12; Kam13]. Although they offer
potential to use novel and/or unusual data characteristics, it is wise to complement them
with results obtained by standard means.

In this thesis, we chose to scrutinize submissions of the ongoing CAESAR competi-
tion [CAE13] (Competition for Authenticated Encryption: Security, Applicability, and Ro-
bustness). The authentication tags produced by all candidates are examined using four
different software tools: a novel genetically-inspired framework (EACirc [Š+12]) and three
standard statistical batteries (NIST STS [Nat97b], Dieharder [Bro04] and TestU01 [LS07]).
The research is a natural continuation of previously published works [Ukr13; Sýs+14].

Following this introduction, in chapter 2, accounts of related work are given. Next, in
chapter 3, we summarize the relevant details of the CAESAR competition, its submissions
and the procedures necessary to use them. Chapter 4 describes the methodology of the
performed experiments, introducing the used tools, their fundamental operating principles
and settings. The tests we carried out are reported in chapter 5 along with the interpre-
tation of the measured values. Chapter 6 concludes the thesis by summarizing the main
conclusions and proposing directions for the future.

Although the research presented in this thesis was done mostly by myself, plural is used
in the thesis text. EACirc and the related research is a result of a wider team1 at the Centre
for Research on Cryptography and Security, Masaryk University, where all problems and
ideas are discussed together. Parts primarily done by others are properly attributed when
mentioned.

The thesis text was typeset in LATEX using the fithesis2 package created by S. Fil-
ipčík [Fil09]. The text of this thesis is licensed under a Creative Commons Attribution 4.0
International License.2 The icons used in the diagrams were taken from The Noun Project3
are in public domain or licensed under Creative Commons Attribution 3.0 United States.4

1. The most notable people involved in the creation of this thesis include Petr Švenda, Marek Sýs, Karel
Kubíček, Jiří Novotný and Ľubomír Obrátil.
2. Licence details can be found at https://creativecommons.org/licenses/by/4.0/.
3. Project homepage: https://thenounproject.com
4. Licence details can be found at https://creativecommons.org/licenses/by/3.0/us/.

2

https://creativecommons.org/licenses/by/4.0/
https://thenounproject.com
https://creativecommons.org/licenses/by/3.0/us/

2 Previous works

The research presented in this thesis combines several tools and ideas. Its primary goal
is to assess the output produced by authenticated encryption systems by trying to find
a working distinguisher. The summary of this approach previously applied to other cate-
gories of cryptoprimitives as well as other research on authenticated encryption schemes is
summarized in section 2.1.

Apart from statistical batteries that are commonly used for randomness assessment,
we use a novel genetically inspired framework EACirc. Previous research done using this
framework can be found in section 2.3 and the explanation of its principles and settings in
section 4.2. EACirc is based on genetic programming [Ban+97] – an evolutionary algorithm-
based stochastic methodology inspired by biological evolution to find computer programs
that perform a user-defined task. Such methodologies have been used in cryptography
before – a summary of the most relevant research can be seen in section 2.2.

2.1 Cryptoprimitives assessment

Numerous works tackled the problem of assessing randomness of outputs from cryptoprimi-
tives before. E. Simion [Sim15] gave a nice and readable overview of statistical requirements
for cryptographic primitives and the relevance of statistical testing. Usually, statistical test-
ing with standard batteries of tests is performed. The Ph.D. thesis of K. Jakobsson [Jak14]
gives both a good theoretical background and a comparison of commonly available tools
for random number testing. Its results are based on assessing a variety of pseudo-random
and quantum random number generators.

Cryptographic competitions are often the target of these analyses since the unified
function API allows for effortless evaluation of a high number of schemes. M. Turan et
al. [TDÇ08] performed a detailed examination of eStream phase 2 candidates (both full
and reduced-round) with NIST STS and structural randomness tests, finding six ciphers
deviating from expected values. In 2010, Doganaksoy et al. [Dog+10] applied the same
battery, but only a subset of tests to SHA-3 candidates with a reduced number of rounds
as well as only to their compression functions. 256-bit versions of SHA-3 finalists were then
subjected to statistical tests using a GPU-accelerated evaluation by A. Kaminsky [Kam12]
detecting some deviations in all but the Grøstl algorithm.

CryptoStat [Kam13] constitutes a different view of the problem, using the Bayesian
model selection to evaluate the randomness of block ciphers and MACs.

As CAESAR (Competition for Authenticated Encryption: Security, Applicability, and
Robustness) [CAE13] is an on-going initiative with many submissions (details in chapter 3),
there are still not many publications thoroughly examining the security of all the proposed
algorithms. F. Abed et al. [AFL14] give an excellent overview of the candidates along with
a classification with regard to their core primitives. K. Hakju and K. Kwangjo [HK14]
discuss the features of authenticated encryption and predict the essential characteristics of
the submissions to survive the CAESAR competition.

3

2. Previous works

No deeper competition-wide comparison has been done so far – more detailed anal-
ysis was performed only on a per-candidate basis. For example, R. Ankele in his Ph.D.
thesis [Ank15] analyses the COPA authenticated encryption composition scheme used in
several CAESAR candidates. M. Nandi in his 2014 paper [Nan14] demonstrates a forging
attack on COBRA and POET designs.

2.2 Genetic algorithms in cryptography

Genetic algorithms were previously applied also in cryptography to some extent. A com-
prehensive review of the usage up to the year 2004 can be found in B. Delman’s Ph.D.
thesis [Del04]. A more recent review is provided in the Ph.D. thesis of S. Picek [Pic15].

For testing randomness of outputs from cryptoprimitives using genetic algorithms, Tiny
Encryption Algorithm (TEA) is frequently used. TEA, a simple block cipher designed by
D. Wheeler and R. Needham [WN95], constitutes a useful benchmark due to its simple
design with multiple repeated rounds.

Starting in 2002 with a paper by J. Hernández et al. [Her+02], statistically significant
deviances were found for TEA limited to 1 and 2 rounds. A fixed bitmask with a high
Hamming weight evolved by genetic algorithms was applied both to the cipher input data
and key. The expected distribution of bit patterns of 10 least significant bits of ciphertexts
were then evaluated with a χ2 test. Two years later, using the same approach, a similar
team published improved results [HI04] detecting deviances for 3 and 4 rounds as well.
Subsequent work by W. Hu [Hu10] in 2010 improves an earlier attack with quantum-
inspired genetic algorithms, succeeding for TEA reduced for 5 rounds. However, up to the
publication of this thesis at the beginning of 2016, no distinguisher for a higher number of
rounds was found.

Using a different technique, E. Ma and Ch. Obimbo [MO11] realized an attack on TEA
limited to 1 round in 2011. They utilized genetic algorithms and harmony search for the
derivation of degenerated keys instead of detection of statistical deviances of output.

2.3 EACirc framework

EACirc [Š+12] is also based on the techniques of genetic programming but constructs a
different type of results when compared to the research presented in section 2.2. Instead of
bitmasks, it searches for a program (in the form of a software circuit) working as a random-
ness distinguisher. Furthermore, EACirc tries to find defects in outputs of cryptoprimitives
(such as dependent or biased bits) without directly manipulating plaintexts for the cipher
(unlike the case with the evolved bitmasks).

Previously, we used the framework for assessing the randomness of output produced by
the round-limited eSTREAM and SHA-3 candidates [Ukr13; ŠUM13; ŠUM14]. To improve
the results and increase the number of successfully distinguished rounds, an improved
evaluator module based on χ2-test was developed [Sýs+14]. Although still falling behind
in some cases, this improvement enabled us to surpass NIST STS in a few instances.

4

2. Previous works

To be able to compare EACirc’s capabilities with other used methodologies, round-
limited TEA was inspected as well [Kub+16]. As previously, our achievements were com-
parable to the standard statistical batteries, being able to distinguish TEA with 4 or fewer
rounds.

During the research, a need arose for supporting tools speeding up and simplifying the
performed experiments. On the one hand, implementing crucial parts of the framework in
nVidia CUDA suitable for GPU acceleration [Nov15] enabled us to have significantly more
test vectors. On the other hand, automating the creation, distribution and evaluation
of multiple jobs in a suitable environment with the Oneclick tool [Obr15] made quick
benchmarking possible and convenient.

5

3 Authenticated encryption

A cryptosystem for authenticated encryption simultaneously provides confidentiality, in-
tegrity, and authenticity assurances on data – decryption is combined in a single step
with integrity verification. Authenticated ciphers are often built as various combinations of
block ciphers, stream ciphers, message authentication codes, and hash functions. There are
many examples commonly used today, such as the Offset codebook mode (OCB) [Rog+01]
or Galois/counter mode (GCM) [MV04] based on block ciphers.

Combining confidentiality and integrity assurances into a single scheme has tremendous
advantages as combining a confidentiality mode with an authentication mode could be error
prone and difficult1. Therefore, following a long tradition of cryptography competitions,
CAESAR [CAE13] aims to create a portfolio of authenticated encryption systems intended
for wide public adoption.

The object of this thesis is to assess several authenticated encryption schemes with
regard to the randomness of produced outputs. To ease the testing of a multitude of
systems, we decided to restrict ourselves to just to the CAESAR submissions. This allows
us to take advantage of the unified API prescribed by the competition.

The rest of the chapter contains details on the ciphers tested. In section 3.1, CAE-
SAR competition details are given along with general requirements and statistics of all
its submissions. In section 3.2, we describe the set of tested functions and their necessary
modifications.

3.1 CAESAR competition

CAESAR (Competition for Authenticated Encryption: Security, Applicability, and Robust-
ness) [CAE13] is an effort to identify a portfolio of authenticated ciphers that are suit-
able for widespread adoption and offer an advantage over AES used in Galois/counter
mode [MV04].

The contest builds on a strong tradition of focused cryptography competitions believed
to have boosted the cryptographic research and enhanced the understanding of the underly-
ing primitives. The first and most well-known was an open competition for a new Advanced
Encryption Standard [Nat97a] held in 1997 by the United States National Institute of Stan-
dards and Technology (NIST). In 2004, ECRYPT (Network of Excellence funded by the
European Union) announced eSTREAM, the ECRYPT Stream Cipher Project [Eur05] call-
ing for a new stream ciphers suitable for widespread adoption. In 2007, NIST announced
an open competition for a new hash standard, SHA-3 [Nat07]. Most recently (2013) the
crypto community’s efforts were focused on password processing in the Password Hashing
Competition [PHC13].

1. „It is very easy to accidentally combine secure encryption schemes with secure MACs and still get
insecure authenticated encryption schemes.“ [KVW03]

6

3. Authenticated encryption

The final deadline for CAESAR submissions was on March 15th, 2014. All 56 propos-
als were published for detailed evaluation and wider scrutiny. The organizing committee
expects three regular rounds and one final before announcing the final portfolio. The au-
thors of the original submissions are allowed to perform further tweaks in the subsequent
rounds. The tentative submission deadlines are in mid-2015, the first quarter of 2016 and
the beginning of 2017 respectively.

All submissions should be usable in both software and hardware version. Although the
first round requires only software implementations, each candidate selected for the second
round will also be required to include a reference hardware design. Submitters are free
to choose the intellectual property status of their designs (i.e. patented submissions are
allowed), but the committee states that patenting a cipher is likely to be considered as a
downside.

3.1.1 Candidates requirements

Authenticated ciphers (as required by the CAESAR submission call) take five byte-string
inputs and one byte-string output with different security purposes. The inputs are as
follows:

Key
A mandatory byte-string with length fixed to an arbitrary number (nevertheless, it
is recommended to support 80, 128 and 256-bit keys).
Plaintext
A mandatory variable-length input. Designers are permitted to specify the maxi-
mum length (but not smaller than 65 536 bytes). The proposed cryptosystem should
ensure both integrity and confidentiality for the plaintext.
Associated data
A mandatory variable-length input, the integrity of which must be preserved by the
cipher. The maximum length may be set, but it must not be less than 65 536 bytes.
Public message number
An optional fixed-length field, the integrity of which must be preserved. Designers
may impose single-use limits, see discussion for the secret message number.
Secret message number
An optional byte-string with fixed length. Both integrity and confidentiality must
be retained. The call advises that existing solutions often avoid using secret message
numbers. Candidates are expected to maintain security regardless of the way the
users choose message numbers. However, ciphers are permitted to lose all security
if a single (secret message number, public message number)-pair is used for two
encryptions with the same key.

All submissions must accept all byte-strings meeting the specified lengths. Any length
limits must be thoroughly justified in the submitted documentation. It is permitted to leak
the plaintext length via the ciphertext length (e.g. by having the ciphertext and plaintext
length difference be constant).

7

3. Authenticated encryption

Each submission specifies a family of authenticated ciphers. Family members differ
only in parameters (e.g. key length, the number of „rounds“). The list of recommended
parameter sets must be prioritized and have at most 10 items with justification for each
recommendation. The presented documentation should include the authors, full specifica-
tion, security goals for each parameter set, security analysis, feature list, design rationale
and intellectual property status.

All candidates are required to be self-contained (i.e. the documentation should include
all information necessary to implement the cipher from scratch), except for AES encryption
and decryption utilities with the key lengths of 128, 192 and 256 bits.

3.1.2 Submissions

There were 56 different designs submitted to the first round. Taking into account all possible
parameter sets, this amounts to 172 independent schemes. Till the announcement of the
second-round candidates, 9 designs were withdrawn by their authors. On July 7th, 2015,
29 designs were chosen for the second round.

Each first-round candidate is accompanied by a portable reference software implemen-
tation. This enables extensive public scrutiny of the design and verification of subsequent
implementations. This implementation must cover all recommended parameter sets, and
must compute exactly the function specified in the submission. All submissions are available
in eBACS, the ECRYPT Benchmarking of Cryptographic Systems [Vir08].

3.2 Tested ciphers

Our goal was to test as many authenticated encryption schemes as possible. Using CAESAR
candidates enabled us to test many designs and many configurations automatically due to
the shared API. All the candidate codes were taken from the SUPERCOP repository
managed by eBACS [Vir08].

In the end, there were 168 different ciphers tested in all performed experiments. From
172 submitted independent schemes (56 designs with different parameter sets), 6 were not
tested. Firstly, we could not get the AVALANCHE candidates working properly (segmen-
tation fault while running). Secondly, Julius did not compile due to problems with the
inclusion of the external AES routines provider. Thirdly, POLAWIS seemed not to have
followed the prescribed API. Lastly, the implementation of PAES is probably faulty, since
it did not pass our encrypt-decrypt sanity test. We might have been able to fix most of these
cases, but doing so would require extensive interventions in the code increasing the possi-
bility of error. Apart from the submitted candidates, we tested 2 versions of AES/GCM
referenced by the CAESAR committee as a design baseline.

On the one hand, some modifications of the source code were needed to compile the
ciphers successfully within the EACirc framework. On the other hand, any changes to the
implementations increased the possibility of error potentially causing meaningless results.
Therefore, an highly cautious approach was taken: All used ciphers were accompanied by a

8

3. Authenticated encryption

metadata file and the necessary changes to the source code were thoroughly tracked. The
basic metadata file consists of the following:

Unique identifier of the candidate, the submission family it belongs to and its au-
thors.
The used implementation type and version along with the exact URL and date of
download.
The summary of necessary changes performed in the scheme’s codebase.

Apart from this file, any change in the code is prefixed with a commentary line starting with
a keyword CHANGE and a reason for the adjustment (to ease the subsequent localization of
changes). Furthermore, in the case of nontrivial modifications, the commentary is followed
by the commented original version of the code section.

Due to the high volume of the tested ciphers, the basic adjustments were done auto-
matically using custom-made scripts. This made the subsequent manual inspection of all
source files a must. In the process, the following modifications were made (not exhaustive):

File renaming and creation of the folder structure
Many designers shared the names of the main source files (such as encrypt.c). To
uniquely identify each source file both for comprehension and the ease of compila-
tion, all files were prefixed by the unique name of the design and its parameter set.
The codebase was then hierarchically organized to allow simple work with cipher
families.
Conversion to C++, header includes resolution
To simplify and unify the linking process, all source files written in C were treated
as C++ (and therefore renamed to have a .cpp suffix). To allow for the file renaming
in this and the previous point, all the header file inclusion had to be appropriately
adjusted.
Namespacing, object interface creation
Since all the ciphers were defining the same functions (prescribed by the compe-
tition API), the individual implementations needed to be separated. For this, we
used C++ namespaces, enclosing each cipher into a distinct virtual space. During
the computation, the implementations are accessed via a virtual CAESAR cipher
interface with a generated object for each candidate.
Dependency resolution
As the submission requirements permit the usage of AES routines without imple-
mentation, several designs relied on external libraries such as OpenSSL [Ope98]. In
other cases, the ciphers depended on other routines available in the SUPERCOP
repository [Vir08]. These were separated out and provided to all the candidates in
question.
Preparation for round limitation
To aid the foreseeable future work, an extra variable was added to each namespace
via the generated object interface. If realized, it will be used to weaken the cipher
design by limiting the number of its internal rounds that would enable us to analyze
its security properties more precisely and have a finer comparison of the used tools.

9

3. Authenticated encryption

Although it is not used for the presented work at all, the modifications had been done
since they imposed a negligible overhead during the automatized mass adjustment
phase.
Compiler issues resolution
During experiments, EACirc is run on both Windows and Linux. Thus, the frame-
work is kept compilable using both GNU Compiler Collection and Microsoft Visual
Studio C++ Compiler. Several changes were, therefore, necessary to ensure a clean
build in both these environments, as not all the submissions were perfectly portable.
These included, for instance, swapping the variable length arrays allocations for
standard dynamic memory management, consolidating data types or enforcing a
stricter object management using static casts.
Other specific issues
For some designs, other minor issues needed to be resolved. To name at least
one, CLOC and SILC candidates lacked accompanying calls for dynamic mem-
ory cleanup causing memory leaks. These had to be added since a repeated call for
the encryption routine during the generation of the stream intended for statistical
batteries (see chapter 5 for details on performed experiments) caused a massive
memory consumption increase.

10

4 Experiment methodology

The main goal of this thesis is to assess randomness of outputs produced by different
authenticated encryption schemes. For the ease of implementation, only submissions for
the recent CAESAR competition were evaluated (more information on the competition can
be found in chapter 3).

The high-level overview of the assessment procedure is summarized below as well as in
figure 4.1. The data stream produced by the particular cipher is independently assessed
by several statistical batteries. The usage details, as well as used settings, are described in
section 4.1. Furthermore, a novel genetically inspired framework EACirc is used to replicate
the assessment and provide a different approach to the problem solution. The overview of
EACirc, its settings and interpretation of its results is given in section 4.2. The details on
CAESAR candidates settings, numerical results and their interpretation can be found in
chapter 5. Section 4.3 provides reference experiments for all the used tools.

4.1 Statistical batteries

Evaluating the quality of randomness of a given data stream is a difficult task. In practice,
randomness assessment heavily relies on empirical tests of randomness. Each test examines
the data from a particular point of view, testing certain statistical features (e.g. the ratio
of zeros to ones or the frequency of ones in m-bit blocks). The majority of randomness
tests are based on statistical hypothesis testing. The observed characteristics of data are
compared with the expected test statistic precomputed for infinite random sequences.

However, even a good random number generator sometimes produces sequences (for
instance a sequence of many consecutive ones) with characteristics significantly different
from the values expected in tests. Therefore, we are unable to distinguish with certainty
whether a given sequence with „bad“ characteristics was produced by a defective generator
or by a sound generator in a rare case. Thus, the randomness is expressed as a probability,
usually in terms of p-values. To draw conclusions, we choose a significance level α (the
type I error) indicating the likelihood of error when rejecting the randomness of a given
sequence.

Since statistical randomness can be tested from many points of view, tests are usually
grouped into testing suites to provide more comprehensive randomness analysis. One of
the first compact sets of randomness tests was the Diehard Battery of Tests of Randomness
by G. Marsaglia [Mar95]. Soon after, the Statistical Test Suite by the National Institute
of Standards and Technology (NIST STS) [Nat97b] and the theoretical summary by D.
Knuth [Knu97] followed. The NIST STS has a special importance since it was published
as a NIST standard and is still used for the preparation of many formal certifications
or approvals (for example for selecting AES). As these suites ceased to be maintained
and improved, new efforts for a modular and extensible testing frameworks arose. These
included Dieharder [Bro04], TestU01 [LS07] and ENT [Wal08] to name just a few.

11

4. Experiment methodology

Figure 4.1: High-level overview of the performed experiments. Details about the used tools
can be found in chapter 4. Interpretation of the numerical results are summarized in sec-
tion 5.2.

For the ease of usage (yet still keeping a wider variety of suites) we tested out sequences
with the following three statistical testing suites: NIST STS (older, yet still commonly used
and a valid NIST standard), Dieharder (modern framework reimplementing other suites as
well as adding brand new tests) and TestU01 (another modular framework implementing
many tests).

Although the p-value of a randomness test focusing on a single characteristic has a
clear statistical interpretation, the interpretation of results produced by testing suites is
somewhat problematic. We need to determine what number of failed tests allows us to
reject randomness of the assessed sequence while respecting the chosen significance level.
For this, we use the methods proposed by M. Sýs et al. [Sýs+15]. The resulting threshold
for all batteries can be found in the following subsections.

For all experiments, we chose the significance level of α = 1%. This keeps the type
I. error (false positives) reasonably low while preventing the type II. error (false negatives)
to reach too high values.

12

4. Experiment methodology

4.1.1 NIST STS

A Statistical Test Suite for Random and Pseudorandom Number Generators for Crypto-
graphic Applications [Nat97b] is a battery of statistical tests implemented by National
Institute of Standards and Technology. It consists of 15 independent tests. Five of these
tests (the cumulative sums test, non-overlapping template matching test, serial test, ran-
dom excursions test and random excursions variant test) are performed in more variants.
These can be seen as separate sub-tests, the whole battery, therefore, amounting to 188
tests altogether. It should be noted that some tests (runs, random excursions and random
excursions variant) are not always applicable. These tests are applied only if the sequence
meets certain criteria (frequency test passes, the number of cycles is greater than 500).
Excluding these, there are 162 tests altogether.

We used NIST STS version 2.1.1. When running the tests, we retained the default
parameters (block lengths) for all tests. The confidence level was also left unchanged at
the value of α = 1%. To comply with the minimal required stream length for individual
tests [Ruk+00], we tested 100 independent 1 000 000 bit long sequences for each candidate.
In summary, NIST STS used about 12 MiB of input data for each test. For more details
on the assessed data stream, see section 5.1.

Regarding the interpretation of a single test, NIST STS adopted the following methods:

Proportion of sequences passing the test
The relative number of sequences passing the test should lie within a pre-computed
interval (the width of the interval depends on the chosen significance level).
The uniformity of resulting p-values
p-values computed for random sequences should be uniformly distributed on the
interval [0, 1]. Uniformity of p-values can be tested using a second-level statistical
tests.

For us, the test is considered failed if either of these two methods label the test as failed.
We conclude the assessed data stream was not random (i.e. we reject the randomness
hypothesis on the significance level of α = 1%) if at least 7 tests fail. This interpretation
is based on the research by M. Sýs et al. [Sýs+15].

The main point of the cited paper can be summarized as follows: The chosen significance
level (in our case α = 1%) is the type I error for a single test. So assuming the null
hypothesis holds, and the tested data is random, each test has 1 − α = 99% chance of
passing. That means the probability of all 188 tests passing is 0.99188 ≈ 0.151 = 15.1%
that is far from the chosen significance level. To achieve the required type I error of 1%,
we must allow some tests to fail. Computing the exact probabilities we get to the chosen
significance level for at most 6 failing tests:

6∑
i=0

(
i

188

)
0.99188−i 0.01i ≈ 0.997 = 99.7% > 1 − α

This, however, assumes the independence of all tests in the battery. M. Sýs et al. therefore
confronted the expected distribution with the distribution for a huge amount of quantum

13

4. Experiment methodology

random data. For NIST STS, the difference is small. Nevertheless, the assumption prob-
ably is more violated for other test batteries, as can be seen in our reference experiments
(section 4.3).

4.1.2 Dieharder

This testing suite was developed by R. G. Brown at the Duke University [Bro04]. Its
main aim is to make the process of testing randomness of bit streams easy while it is still
possible for researchers to control tests on a low level. The suite is not just a descendant
of Diehard [Mar95], although it mainly includes tests from this suite in an enhanced way.
Tests from NIST STS are being incorporated into the battery as well as entirely new
tests developed by its authors and other users. This tool features many improvements over
Diehard such as full extensibility, simple user interface or open source code.

The complete suite has 26 different tests (18 based on the original Diehard tests, 3
reimplemented from NIST STS and 5 from other sources) as of 2015. Two tests out of
these were not run – the Diehard sums test (since its usage is strongly discouraged by
the authors) and the Marsaglia and Tsang GCD test (because it requires impractically
long input streams for our scenario). Excluding these two and taking into account all the
variants, there are 55 tests altogether.

We used Dieharder version 3.31.1. The two parametrizable tests were configured with
recommended values (12-tuples for RGB bit distribution test, 8 000 points in 2 dimensions
for RGB generalized minimum distance test). The default significance level for Dieharder is
0.000 1% (strong reject) and 0.5% (weak reject). In order to ease the comparison with the
other used batteries, we decided to reset these to the value of 1%. Although this causes a
loss of information (which rejects were weak and which were strong), we prefer such setting
to improve the comprehension of results presented alongside the outcomes from other tools.

The length of the input stream processed by Dieharder varies from test to test. The
humblest required about 48 kiB, while the greediest one of the run tests takes about
9.2 MiB. To ensure the best possible comparability with the other test suites, we again
analysed 100 independent samples of the input. In summary, Dieharder tests used between
4.7 MiB and 916 MiB of input data (depending on the particular test). For more details
on the assessed data stream, see section 5.1.

The interpretation of the battery results is similar to the case of NIST STS (see sec-
tion 4.1.1). The situation is slightly simpler as there is only a single pass/fail output for each
test (Dieharder does not assess the proportion of the sequences on which the test passed,
only the uniformity of the resulting p-values). Using the same methodology as before, we
expect the assessed data stream is not random (i.e. we reject the randomness hypothesis
on the significance level of α = 1%) if at least 4 tests fail. However, tests in Dieharder does
not seem to be completely independent of each other, see results in section 4.3.

14

4. Experiment methodology

4.1.3 TestU01

TestU01 is a library for empirical testing of random number generators. It was developed at
Université de Montréal mainly by Pierre L’Ecuyer [LS07]. The library implements several
types of random number generators in a generic form, as well as many specific generators
proposed in the literature or found in widely-used software. It provides general implemen-
tations of the classical statistical tests for random number generators, as well as several
others proposed in the literature, and some original ones.

It implements various sub-batteries intended for different purposes and has a differ-
ent set of tests. The most relevant sub-batteries are Rabbit, Alphabit and BlockAlphabit.
These are intended for testing finite binary sequences. Rabbit and Alphabit apply 38 and
17 different statistical tests respectively. BlockAlphabit applies the Alphabit battery re-
peatedly after reordering the bits by blocks of different sizes (2, 4, 8, 16 and 32 bits).
Including all the applicable sub-tests there are 159 tests. We used TestU01 version 1.2.3.

The length of the input stream taken by TestU01 can be set arbitrarily. To have an
amount of data comparable with the other used batteries, we chose to process 230 bits for
each test. In summary, TestU01 thus used about 128 MiB of input data for each test. For
more details on the assessed data stream, see section 5.1.

In order to be as close as possible to the other statistical testing suites, we changed
the default value of the significance level (0.1%) to the common level of α = 1%. The
interpretation of the battery results is similar to the previous cases (see section 4.1.1,
section 4.1.2). Using the same methodology as before, we expect the assessed data stream
is not random (i.e. we reject the randomness hypothesis on the significance level of α = 1%)
if at least 6 tests fail. However, tests in TestU01 are not independent of each other. The
interdependence could have been foreseen, considering the principle of BlockAlphabit. For
more details see section 4.3.

4.2 EACirc

In this section, we try to describe the ideas and workings of EACirc [Š+12], a novel frame-
work for automatically generating statistical randomness tests. Compared to the standard
(manual) way of test creation (as was the case with all the tests used in statistical batteries),
our approach has a couple of advantages:

no prior knowledge of statistical properties of random data is needed;
test creation does not require excessive human analytical labour;
tests are dynamically adapting to the tested data;
atypical and/or yet unknown input data properties may be used to distinguish them
from the reference random data.

The main idea is to use supervised learning techniques based on evolutionary algorithms
to design and further optimize a successful distinguisher – a test determining whether its
input comes from a truly random source or not. The distinguisher will be represented as a

15

4. Experiment methodology

Figure 4.2: Example of software-emulated circuit as used within EACirc in our experiments.

hardware-like circuit consisting of simple interconnected functions. The evolution will use
the principles of genetic programming.

The framework was previously used for assessing randomness of outputs produced by
stream ciphers and hash functions [ŠUM13; Sýs+14]. Although some parts of the design
have since evolved, most of this section is based on the detailed description published
previously [Ukr13; ŠUM14]. The overview of further research based on this tool can be
found in section 2.3.

4.2.1 Workflow

EACirc works with a notion of a circuit – a software representation of a hardware-like
circuit with nodes (responsible for computation of simple functions, e.g. and, or) and
connectors (linking node inputs and outputs). A circuit is formed by several layers of such
nodes. A node may be connected to any number of nodes from the previous layer – to
all, only some of them or none at all. A simple circuit overview can be seen in figure 4.2.
Contrary to real single-layer hardware circuits, connectors may also cross each other.

Circuit usage is versatile – from Boolean circuits where functions computed in nodes
are limited to logical operators to artificial neural networks where nodes compute the
weighted sum of the inputs. Besides studying complexity problems, these circuits were
used in various applications such as the design of efficient image filters. Circuit evaluation
can be performed by a software emulator or directly in hardware when FPGAs are used.

16

4. Experiment methodology

EACirc’s main goal is to find a circuit that will reveal an unwanted defect in the
inspected cryptographic function. For example, if a circuit can correctly predict the nth bit
of a stream cipher output just by observing the previous (n−1) bits, then this circuit serves
as a next-bit predictor [Yao82], breaking the security of the given stream cipher. When a
circuit can distinguish the output of the tested function from a truly random sequence, it
serves as a random distinguisher [EHJ07] providing a warning sign of function weakness.
Note that a circuit does not have to provide correct answers for all inputs – it is sufficient if
a correct answer is provided with a probability significantly higher than random guessing.

The greatest challenge is the precise circuit design. It can be laid out by an experienced
human analyst (representing a known test, e.g. monobit test) or created and further opti-
mized automatically. We use the latter approach and combine a software circuit evaluated
on a CPU/GPU with evolutionary algorithms. The whole process of circuit design, as also
depicted in figure 4.3, is as follows:

0. A set of circuits (possible solutions) is initialized by randomly selecting both func-
tions in nodes and connectors in between them. Note that such a random circuit
will, most probably, not provide any meaningful output for given inputs and can
even have disconnected layers.

1. If necessary, new test vectors used for success evaluation are generated. Half of these
is taken from the pseudorandom stream of assessed data (outputs of authenticated
encryption schemes in our case) while the other half constitutes a reference sample
generated by a truly random generator.

2. Every individual (circuit) in the population is evaluated on all test inputs. The
fitness function assigns each circuit a rating based on the obtained outputs (e.g.
what fraction of inputs were correctly recognized as being outputs of a stream
cipher rather than completely random sequences, see section 4.2.2 for details).

3. What follows is the survival phase, in which worse individuals (the ones with lower
fitness value) are removed from the process.

4. Based on the evaluation provided by the fitness function, a potentially improved pop-
ulation is generated from the existing individuals by mutation and sexual crossover.
Every individual (circuit) may be changed by altering operations computed in nodes
and/or adding/removing connectors between nodes in subsequent layers.

5. The process is repeated from step 2. Usually, hundreds of thousands or more repeats
are necessary until the desired success rate of the distinguisher is achieved.

4.2.2 Implementation and settings

EACirc can be configured in many different ways. The most important factors are inner
workings of the used genetic operators (initializer, fitness assessment, mutation, crossover).
For the genetic programming routines, we used the GAlib genetic algorithm package [Wal95],
written by Matthew Wall at the Massachusetts Institute of Technology. However, as our
individuals are in a form of software circuits, we had to implement the genetic operators
ourselves. The initializer generates the initial circuits at random. The mutator changes

17

4. Experiment methodology

Figure 4.3: A simplified work-flow of the genetic processes in EACirc. The evolution cycle
repeats many times. The fitness data from all generations is later analyzed to assess the
success of the particular EACirc run.

18

4. Experiment methodology

every connector and every node with a small (but non-zero) probability. The crossover is
performed by cutting 2 parent circuits vertically in two parts and joining a part of each
parent to create the offspring. For more details, consult the project codebase [Š+12].

The crucial operator turned out to be the fitness function. Previously [Ukr13; ŠUM13],
we used the proportion of correctly identified test vectors (random vs. non-random) as
the fitness measure. This prooved insufficient, so the assessment was improved [Sýs+14]
as demonstrated in figure 4.4. The idea was to take into account the entire distribution
of the circuit outputs in the form of a histogram. For example, if the circuit output is a
single byte, the observed distribution of its 256 possible values produced by processing all
pseudorandom (i.e. cipher-produced) test vectors was to be compared with the expected
distribution using a standard χ2 test. We approximated the expected distribution by pro-
cessing the same number of truly random reference data. To solve problems occurring from
an inaccurate approximation of expected frequencies, obtained and expected frequencies
can be compared using a two-sample test. In our approach, we use the two-sample χ2

test [Nat93] since the distribution of test statistic values for two-sample χ2 tests is also
the χ2 distribution. The resulting p-value (expressing the divergence of the distributions
produced by truly random and pseudorandom data) is then used as the fitness measure1
for the circuit’s distinguishing capabilities.
In all experiments presented in this thesis, we used the following settings:

In each computation, 30 000 generations were evolved.
Each test vector set consisted of 1 000 bitstreams, half of which was produced by
the assessed cryptoprimitive while the other reference half was taken from a truly
random data source. The test set was renewed in every 100th generation.
The generation consisted only of a single individual. Although more individuals may
increase the success rate and convergence speed towards a well-performing distin-
guisher, larger populations also cause problems with the interpretation of results
(details in section 4.2.3). Therefore, the crossover operator was disabled for now.
For each generation, a single new circuit was generated by mutation and the bet-
ter of the two was passed into the subsequent evolution – an approach similar to
hill-climbing heuristics.
The circuit nodes operate on bytes. The functions applicable are the basic byte
manipulation functions (and, nand, or, xor, nor, not, left and right shifts and
rotations, identity, constant function and function selecting only some bits of the
input).
The evolved circuits are 5 layers with 8 nodes in each intermediate layer. The input
layer size is of variable width (details in section 5.1); the output layer is a single
byte. The inspected output distribution has 8 categories produced by taking the 3
right-most bits of the output byte.

Unfortunately, there are too many variables in the experiments to list the complete settings

1. To be precise, the fitness value is (1−p-value), since more successful individuals (divergent histograms,
low p-values) need to have a higher fitness value than less successful ones (similar histograms, higher p-
values).

19

4. Experiment methodology

Figure 4.4: The summary of fitness computation in EACirc. Each circuit in each generation
is evaluated in this way to assign it a fitness value.

here. Since the experiments are based on previously published works, for detailed settings
the reader should refer to papers mentioned in section 2.3 (most notably [ŠUM14]) or to
the data logs in the attachment.

The used settings cause EACirc to process approximately 2.24 MiB of data produced
by the tested cryptoprimitive for a single EACirc run assuming 16-byte long test vectors
(for details about other used test vector lenghts, refer to chapter 5). This amounts to about
2.24 GiB of data for a single experiment. See figure 4.5 to see the reasoning behind this
number.

The quality of the reference random data is crucial for the good approximation of the
expected frequencies and therefore for the entire fitness assessment. We used a stream
of 1.2 GiB obtained from the High Bit Rate Quantum Random Number Generator Ser-
vice [Nan10]. It is a joint research effort of PicoQuant GmbH and the Nano-Optics groups
at the Department of Physics of Humboldt University providing random bitstreams based
on the quantum randomness of photon arrival times.

20

4. Experiment methodology

Σ = 1 000 runs
experiment ·

(
30 000generations

run
100 generations

test set
· 1

2 · 1 000 vectors
test set · 16 bytes

vector

)
≈ 2, 24GiB

Figure 4.5: The amount of data analyzed by EACirc for a single experiment assuming the
test vectors of 16 bytes.

To leverage the massive computing, the individual evaluation was parallelized [Nov15]
using nVidia CUDA. The computations were run in a highly distributed fashion on the
computers of the Centre for Research on Cryptography and Security at Masaryk Uni-
versity and the National Grid Infrastructure operated by MetaCentrum [Tea15]. The job
management was automated with the Oneclick tool [Obr15] to allow for easy replication
and experiment settings improvement.

4.2.3 Results interpretation

To interpret the results of a single EACirc run, we inspect the fitness of individual partial
solutions (circuits) in the generations just after the test set change. That is, we are inter-
ested in fitness values produced on test vectors never-before-seen by the particular circuit.
This mitigates the effect of over-learning (the circuit adapting to a particular set of test
vectors, not the general characteristics of the assessed stream).

Provided the assessed data be random (our null hypothesis), the fitness values from
these selected generations should be uniformly distributed on the interval [0, 1]. If, however,
the evolution was able to produce a circuit successfully distinguishing the pseudo-random
cipher output from the reference truly random stream, the fitness value distribution will
be biased towards the high end of the interval (lower p-values).

Therefore, at the end of the computation, we perform a Kolmogorov-Smirnov unifor-
mity test [She03] on the vector of fitness values from the selected generations. The run
is considered to have found non-randomness in the data (the uniformity hypothesis is re-
jected) if the p-value resulting from the Kolmogorov-Smirnov test is above the critical value
computed for the significance level of α = 1%.

However, due to the randomized nature of generic algorithms, having a single run is
insufficient. All EACirc experiments were therefore replicated 1 000 times to eliminate
the possible statistical anomalies. Provided the underlying assessed data be random, the
uniformly distributed fitness values in selected generations imply the uniformity of the
p-values of the Kolmogorov-Smirnov uniformity tests. Thus, to evaluate the set of 1 000
EACirc runs, we inspect the proportion of runs rejecting the null hypothesis (uniformity of
the assessed data). If this proportion fluctuates around the set significance level of α = 1%,
we cannot reject the hypothesis. If, on the other hand, the proportion wildly deviates from
this, we conclude the underlying data was not random with a very high certainty.

To recapitulate the complex interpretation process, see the diagram in figure 4.6.

21

4. Experiment methodology

Figure 4.6: The process of evaluating EACirc experiments. For each setting, EACirc run
is replicated 1 000 times and the proportion of runs rejecting uniformity is reported. For
details on outcome interpretation, see section 5.2.

4.3 Reference experiments

To verify at least a basic sanity of the implementation and proposed experiments, we
performed a series of reference tests. These tests use the methodology of real experiments
(see section 5.1 for details), but use truly random data instead of the pseudo-random cipher
stream.

To verify the outputs of statistical batteries, we generated a stream of random data
by EACirc. In order to have the process as similar to the real experiments as possible,
a mock-up cipher was created and used in place of the CAESAR candidate. This cipher
directly outputs the plaintext as a valid ciphertext, prolonged by a 128-bit tag, sampled
from the random generator. Thanks to this, the process of generating the random stream
used most of the CAESAR-handling routines.

To test the sanity of EACirc, we run the experiments trying to distinguish tags from this
random mock-up cipher from truly random data. In summary, we are trying to distinguish
one set of truly random data from another set of truly random data. Obviously, we expected
to fail at this. As most of these computations are randomized in nature, the testing was
replicated 10 times. The results are summarized in table 4.1.

The presented EACirc results confirm our inability of distinguishing two sets of truly
random data from each other – the proportion of runs rejecting the null hypothesis oscillates
around the significance level of α = 1%. Nevertheless, it can be seen that the proportion
dropped below the value of 0.010 only once in 10 replicated experiments. This may have
numerous causes: It may just be a rare case. There may be too little random data for such
reference experiments (a single experiment processed 1000 × 2.24MiB; we have a total

22

4. Experiment methodology

run
(id)

EACirc
(proportion of rejected)

NIST STS
(x/188)

Dieharder
(x/55)

TestU01
(x/159)

1 0.011 187 52 150
2 0.014 187 53 150
3 0.015 188 52 148
4 0.019 187 52 150
5 0.012 188 54 153
6 0.010 188 54 151
7 0.016 185 53 154
8 0.008 187 53 154
9 0.011 188 53 153
10 0.015 188 51 152

Table 4.1: The results of reference experiments running on truly random data. Columns
correspond to four different tools used for the analysis. The cells representing results re-
jecting the null hypothesis using the theoretical thresholds from section 4.1 are coloured in
gray. For further discussion of the results, see section 4.3.

of 1.92GiB of quantum random data). There may be an error in p-value evaluation or
CAESAR processing functions. To be conservative in all the following experiments, only
proportions higher than 2.5% (based on the numbers in the reference experiments) will be
considered as outliers signifying the non-randomness of the assessed data.

The outcomes for NIST STS also confirm the previous findings [Sýs+15] – almost all
the tests pass. Therefore, in all subsequent experiments, the expected level of 7 or more
failed tests for the conclusion of rejected null hypothesis is used.

The case is different for Dieharder and TestU01. The expected thresholds were 4 and 6
failed tests respectively. For Dieharder, this threshold was crossed in one case. This either
is a rare case, or it hints at a small interdependence of the tests. To be on the safe side,
we advance the limit for the subsequent experiments to 6 or more failed tests. TestU01
exhibits even more surprising behaviour, breaching the threshold in all but two cases.
Taking into account also the workings of the battery (BlockAlphabit running the same set
of tests 5 times over), the test independence assumption is rather improbable. Nevertheless,
as we need a threshold to be able to evaluate the tests in a comprehensible manner, we
choose (somewhat arbitrarily) the limit of at least 18 failed tests (three times the expected
number) to indicate found non-randomness.

Although the interpretation of results is not ideal, a much deeper analysis of the used
test suites would need to be undertaken to achieve more rigorous bounds. That, however,
is not in the scope of this thesis and may be performed in subsequent research.

23

5 Experiment results

In this section, we describe and evaluate several experiments and try to provide conclusions
based on the measured results. In a high-level view, we assess the randomness of authen-
tication tags produced by CAESAR candidate ciphers. In total, we tested 168 different
ciphers (53 distinct designs) – for details about submissions not tested, see section 3.2.
We differentiate three distinct modes of public message numbers (fixed, counter-based and
random). Each case is investigated with four separate tools: a novel problem-solving frame-
work based on genetic programming (EACirc) and three statistical testing batteries (NIST
STS, Dieharder and TestU01).

Firstly, in section 5.1, we describe the used CAESAR cipher settings and the method of
creating the binary streams for statistical test suites. Secondly, in section 5.2, we summarize
the interpretation of all numbers presented in the result tables throughout the chapter.
In section 5.3, some conclusions from the measured outcomes regarding the particular
CAESAR candidates are drawn. Lastly, in section 5.4, we use the obtained results to
reason about the randomness testing tools themselves.

5.1 Experiment settings

The aim of the performed experiments is to assess randomness of authentication tags pro-
duced by many authenticated encryption systems. In particular, we inspect tags provided
by CAESAR candidates initialized as stated below. An outline of tag generation is also
given in figure 5.1.

Key
The key length is determined by the design or the particular parameter set. The key
value was taken randomly but was fixed. For EACirc, the 1 000 independent runs
used different keys to allow for variation (otherwise, the same numerical results
would be produced).
Associated data, secret message number
We used two bytes of associated data; the length of the secret message number was
determined by the design or the parameter set. Both fields’ values were fixed to
binary zeros. Note that only three designs used secret message numbers.
Plaintext
The plaintext used is 16 bytes long, formatted as a single counter starting from
zero. We could not use fixed-value plaintext, because, in the case of fixed-value
public message numbers, the produced tags would be identical (considering settings
of the other arguments). A plaintext of binary zeros would have been possible in the
other two modes for public message numbers, but we refrained from doing so to keep
the experiments as comparable as possible (with as similar settings as possible).
Tag length
The length of the produced tag (extra ciphertext bytes when compared to the plain-
text length) is determined by the cipher design. However, to normalize input width

24

5. Experiment results

Figure 5.1: The process of creating the tested bitstream – authentication tags produced by
the CAESAR candidate are concatenated together. For detailed explanation of the cipher
settings, refer to section 5.1.

for the EACirc circuits, we took only the first 128 bits (16 bytes) from the tag.
In the case of shorter tags, the test vectors had 96, 64, 32 or 16 bits (the longest
applicable). Shorter test vectors mean EACirc inspected proportionally less data for
the candidates producing shorter tags. Since these were the tag lengths advised by
the submission call, no bits were dropped from the generated tags in most cases.
Public message number
This was the only parameter explored in different settings. From the nature of the
arguments prescribed by the CAESAR API, public message number is probably
the argument to be most easily (unintentionally) misused. Security requirements for
keys are well known, secret message numbers are usually not used, plaintext and
associated data are mostly self-explanatory. Public message numbers are sometimes
required to be unique (to have the property of nonces), but sometimes this is not
necessary. In a way, we deem testing different modes of public message numbers as
examining the robustness of the cipher design.

For testing purposes, we set public message numbers in three distinct ways – each of which
was tested separately with all the tools:

1. Fixed to a string of binary zeros for the whole time.
2. Increasing as a counter – each value is unique (but all have a low Hamming weight).
3. Having each value completely random.

EACirc produced the necessary tags on-the-fly. For statistical batteries, a standalone file of
1 GiB was generated using EACirc with identical settings by concatenating the tags. The
same file was used for all three suites. To ensure repeatability, the file was generated from

25

5. Experiment results

a fixed seed that can be used to re-generate the same stream again, if necessary. Note that
the file for statistical batteries was not composed of the bit-to-bit identical tags as those
generated by EACirc on-the-fly for its own use. The difference was due to other uses of
the randomness generator in the framework during an ordinary run (as opposed to the run
dedicated only to stream generation). Furthermore, EACirc requires multiple randomized
runs to statistically evaluate the experiment. The most notable difference in the produced
tags was the value of the key – fixed to a single value for the file generation (and thus all
the statistical tests) but set to other values during the independent 1 000 runs of EACirc.

Using different keys in independent EACirc runs should not be a problem since we
aim at assessing the cipher’s global behaviour. Although results produced from statistical
batteries (with a single key) may reflect the weakness of the particular key, the chance
of hitting a weak key is minuscule. As a comparison, DES has 64 keys that should be
avoided [Wil04]. Out of the total 256 possibilities, this is a negligible amount.

5.2 Interpretation of results

The goal of this section is to comprehensibly describe the meaning of all the numbers
presented in tables 5.1 to 5.8. Rows have all the tested CAESAR candidates, and columns
represent the used randomness testing tools grouped into three column-sets according to
the used public message number setting. Each candidate also states the length of the
test vectors used. The three modes and the reasons for varying test vector lengths are
characterized in section 5.1.

For the ease of high-level comprehension, cells rejecting the null hypothesis (claiming
the tested data is not random with a chance of error α = 1%) are coloured gray. Note the
rejection criterion is different for each tool as recounted below.

The tables list most CAESAR candidates assembled into four sections: the reference
AES/GCM scheme (table 5.1), 2 schemes withdrawn by the authors (table 5.1), 16 schemes
that ended in the first round (tables 5.1 to 5.3) and 27 schemes selected for the second
round (tables 5.4 to 5.8). For details on the candidates not tested, refer to section 3.2.
Within sections, the submissions are ordered alphabetically to correspond with the CAE-
SAR website. The stated folder ID serves as a unique identification of the submission and
its parametrization, used as a folder name in the SUPERCOP repository [Vir08], from
where the source codes were downloaded.

As for the statistical tools themselves, the presented numbers are not directly com-
parable – the interpretation is summarized below. Furthermore, let us note that all the
tools inspected a different amount of data. For settings, interpretation reasoning and other
particulars, see chapter 4.

EACirc
The displayed number expresses a proportion of runs rejecting the null hypothesis
(the uniformity of assessed data) out of 1 000 independent runs. For valid null hy-
pothesis, it should oscillate around 0.010 (1%). We interpret the value as rejecting
randomness of the tested data if the proportion is above 0.025.

26

5. Experiment results

NIST STS
A number of passed tests is displayed. If 7 or more tests out of the total 188 failed,
we would reject the null hypothesis. In cases denoted by a small star (?) fewer tests
(though, always at least 162) were applicable. The rejection threshold should be
adjusted in these cases, but the particular value is not stated since almost the entire
test suite failed in all such situations.
Dieharder
Again, we show the number of passed tests. The total is 55 and the threshold for
null hypothesis rejection is set to 6 or more failing.
TestU01
Once more, we present the number of passed tests out of the total 159. The null
hypothesis is rejected if at least 18 tests fail.

5.3 Conclusions for CAESAR candidates

Firstly, let’s compare the outcomes for the three inspected public message number modes.
We expected the random-valued to perform the best, followed by counter-based and then
by zero-fixed public message numbers. We reasoned that the more differences there will
be among the used values, the „easier“ it will be for the cipher to produce a random-
looking tag (since it has more entropy to start from). As stated in the submission call,
the ciphers were allowed to lose all security in case of reused (public message number,
private message number)-pair under the same key. Nevertheless, we expected some (albeit
not many) ciphers will be able to retain the apparent randomness of the produced tag
– even though it would require an adamant avalanche effect (all arguments are identical
apart from a single bit change in plaintext).

From the conducted experiments we see that the primary hypothesis (random values
performing better than a counter and much better than zeros) was confirmed. However,
none out of the tested candidates passed with the public message numbers fixed to zero.
The single bit change in plaintext with all other arguments fixed might not have been
enough to cause the avalanche effect needed to produce a tag looking sufficiently random.

Secondly, let’s inspect the results for the individual candidates. Tags of just five designs
(AES/GCM, Marble, AEC-CMCC, AES-CPFB, Raviyoyla) were distinguishable from ran-
dom streams with counter-valued public message numbers. Three of these designs (Marble,
AES-CMCC, AES-CPFB) also failed in the random-valued scenario. The evidence is still
too weak to deem the designs not secure – it may merely be the case they produce a
constant delimiter between the ciphertext and tag, violating the statistical randomness of
the created tag. To draw any conclusions, a detailed inspection of the designs (starting
with the supporting documentation) would need to be performed. It is, however, worth
mentioning that no candidates failing in either counter- or random-valued scenario were
selected by the CAESAR committee to the second round of the competition.

There is one more observation to be brought to attention: In two cases (the reference
AES/GCM and the first-round AES-CPFB) the 256-bit version passed while the 128-bit

27

5. Experiment results

version was found as non-random. This is highly unexpected and deserves further inspection
– it may turn out to be a bug in either the implementation of the candidate submission or
in our testing methodology.

5.4 Conclusions for randomness testing tools

Apart from the findings for the CAESAR candidates, the results allow us to gain in-
sights into the capabilities of the used randomness testing tools. Based on the previous
works [Ukr13; Sýs+14], we expected the randomness distinguishing abilities of EACirc and
NIST STS will be similar while both will be surpassed by Dieharder and TestU01. On
the one hand, the observed results showed many deficiencies of EACirc – it performed
worse than NIST STS in given tested scenarios. On the other, all three statistical bat-
teries achieved comparable results. However, before any conclusions on the quality of the
batteries are drawn, one has to be aware there are many domains in which these tools
remain incomparable. They inspect different amounts of data and have different modes
of operation (batteries see the stream as a whole, EACirc processes short, distinct test
vectors).

There is one case contrary to the general behaviour observed above: Raviyoyla with
randomly initialized public message numbers for each test vector seems to be successfully
rejected from the random stream by EACirc although none of the statistical batteries
support such result. It appears very promising but also requires additional inspection and
enhanced testing to announce a case of EACirc surpassing all tested statistical batteries.

We can also revisit the set rejection thresholds (although based on the previous research
for NIST STS, the set values were adjusted according to the reference experiments in a bit
arbitrary way, see section 4.3). The rejection margin for Dieharder (49/55 or less passed
tests) was probably too strict. Dieharder’s results were just slightly below the threshold in
11 cases in which no other tool hinted at non-randomness in the data. The tests may be
more interdependent than was expected.

The case was the other way around for TestU01 – the rejection threshold (141/159 or
less passed tests) may have been too benevolent. All seemingly random streams (based on
results from the other tools) have above 150 passed tests while all non-random have below
20. In the end, the tests may have been less interdependent than the reference experiments
suggested. The only case that would be influenced by the threshold raise is Raviyoyla – the
only one where EACirc alone rejected the randomness hypothesis. After the adjustment,
TestU01 would support the non-randomness claim of EACirc.

To determine the most appropriate rejection levels for the used tools, a wider study
similar to the one done by M. Sýs for NIST STS [Sýs+15] would need to be carried out.

Regardless of the exact thresholds, it may seem that Dieharder and TestU01 present
more reliable conclusions since proportionally fewer tests passed in non-random cases in
these batteries when compared to NIST STS. This is a very delicate matter highly de-
pendent on the process of results interpretation. Therefore, we refrain from drawing such
conclusion solely based on the results obtained from experiments performed in this thesis.

28

5.
E

xperim
ent

results
PMN fixed to zero PMN counter-based PMN truly random

Cipher
(official name)

Folder ID
(as used in SUPERCOP [Vir08]) T

V
le

ng
th

(b
it
s)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

AES-GCM aes128gcmv1 128 1.000 93 3 13 1.000 ?14 0 2 0.011 188 51 153
AES-GCM aes256gcmv1 128 1.000 71 1 13 0.013 188 51 156 0.007 188 54 158
Calico calicov8 64 0.013 128 3 8 0.009 186 55 156 0.015 188 53 158
Marble aes128marble4rv1 128 0.016 160 16 6 0.010 168 14 8 0.010 160 16 6
++AE aeadaes128ocbtaglen128v1 128 0.008 157 16 7 0.012 188 54 154 0.010 188 52 154
++AE aeadaes128ocbtaglen64v1 64 0.016 144 7 6 0.006 188 52 158 0.008 187 50 157
++AE aeadaes128ocbtaglen96v1 96 0.011 146 17 5 0.018 185 54 157 0.010 188 53 157
++AE aeadaes192ocbtaglen128v1 128 0.009 163 15 10 0.011 187 49 157 0.012 187 53 157
++AE aeadaes192ocbtaglen64v1 64 0.010 130 6 5 0.003 188 54 158 0.013 188 55 154
++AE aeadaes192ocbtaglen96v1 96 0.012 136 12 6 0.011 188 53 156 0.012 186 52 155
++AE aeadaes256ocbtaglen128v1 128 0.014 171 17 7 0.014 188 48 158 0.007 188 53 157
++AE aeadaes256ocbtaglen64v1 64 0.013 132 9 6 0.004 187 54 153 0.005 188 54 156
++AE aeadaes256ocbtaglen96v1 96 0.010 144 16 9 0.012 188 55 159 0.008 188 54 154
AES-CMCC cmcc22v1 16 1.000 ?0 0 5 1.000 ?0 0 5 1.000 ?0 0 5
AES-CMCC cmcc24v1 16 1.000 ?0 0 5 1.000 ?0 0 5 1.000 ?0 0 5
AES-CMCC cmcc42v1 32 1.000 ?0 0 1 1.000 ?0 0 11 1.000 ?0 0 1
AES-CMCC cmcc44v1 32 1.000 ?0 0 1 1.000 ?0 0 11 1.000 ?0 0 1
AES-CMCC cmcc84v1 64 1.000 ?0 0 2 1.000 ?0 0 4 1.000 ?0 0 2
AES-CPFB aes128cpfbv1 128 1.000 4 0 6 1.000 ?0 0 1 1.000 ?4 0 8
AES-CPFB aes256cpfbv1 128 0.009 159 17 7 0.012 188 54 155 0.007 185 53 157
Artemia artemia128v1 128 0.012 167 11 7 0.015 185 54 157 0.011 187 50 155
Artemia artemia256v1 128 1.000 ?14 0 3 0.013 187 53 154 0.014 186 54 157

Table 5.1: The randomness assessment of the reference AES/GCM, two withdrawn and some first-round CAESAR candidates
(part 1/3) in three different public message number modes. For interpretation of displayed numbers and signs, see section 5.2. For
drawn conclusions, see section 5.3 and section 5.4.29

5.
E

xperim
ent

results

PMN fixed to zero PMN counter-based PMN truly random

Cipher
(official name)

Folder ID
(as used in SUPERCOP [Vir08]) T

V
le

ng
th

(b
it
s)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

CBA cba1 32 0.011 103 3 3 0.010 187 54 155 0.011 188 49 157
CBA cba2 32 0.008 93 3 3 0.012 187 52 157 0.008 187 52 159
CBA cba3 64 0.008 124 6 5 0.006 186 54 156 0.006 188 50 157
CBA cba4 64 0.013 140 7 4 0.009 188 52 158 0.011 188 52 159
CBA cba5 64 0.013 131 5 6 0.011 186 52 158 0.009 188 54 157
CBA cba6 96 0.011 137 10 5 0.012 187 54 156 0.009 188 54 159
CBA cba7 96 0.008 139 13 6 0.010 186 55 157 0.013 188 50 156
CBA cba8 96 0.009 147 7 7 0.013 188 49 158 0.006 188 52 156
CBA cba9 64 0.013 131 5 7 0.005 186 51 152 0.008 188 53 157
CBA cba10 96 0.010 145 11 7 0.013 188 53 155 0.013 187 52 158
Enchilada enchilada128v1 128 1.000 71 2 15 0.017 187 53 157 0.010 186 52 155
Enchilada enchilada256v1 128 1.000 77 1 11 0.013 188 54 156 0.016 188 53 155
iFeed[AES] ifeedaes128n104v1 128 0.017 157 14 11 0.017 188 52 157 0.017 187 55 154
iFeed[AES] ifeedaes128n96v1 128 0.016 163 10 6 0.011 188 53 153 0.007 187 53 155
SCREAM iscream12v1 128 0.013 163 19 6 0.008 187 54 157 0.012 188 52 158
SCREAM iscream12v2 128 0.010 166 14 7 0.010 188 54 157 0.018 188 54 157
SCREAM iscream14v1 128 0.011 172 13 9 0.008 186 53 153 0.013 186 54 156
SCREAM iscream14v2 128 0.011 159 13 8 0.013 188 54 154 0.009 188 54 157
KIASU kiasueq128v1 128 0.017 164 19 6 0.014 188 53 154 0.014 188 55 155
KIASU kiasuneq128v1 128 0.013 169 18 10 0.006 188 53 154 0.014 188 51 157
LAC lacv1 64 0.015 139 6 3 0.008 187 55 156 0.013 187 53 153

Table 5.2: The assessment of first-round CAESAR candidates (part 2/3) in three different public message number modes. For
interpretation of displayed numbers and signs, see section 5.2. For drawn conclusions, see section 5.3 and section 5.4.

30

5.
E

xperim
ent

results

PMN fixed to zero PMN counter-based PMN truly random

Cipher
(official name)

Folder ID
(as used in SUPERCOP [Vir08]) T

V
le

ng
th

(b
it
s)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

Prøst proest128apev1 128 0.005 161 22 9 0.015 184 55 156 0.018 185 53 157
Prøst proest128copav1 128 0.011 160 15 6 0.013 187 50 157 0.010 187 54 155
Prøst proest128otrv1 128 1.000 ?0 0 2 0.008 188 53 152 0.012 186 53 154
Prøst proest256apev1 128 0.017 159 13 5 0.012 188 53 155 0.009 188 53 158
Prøst proest256copav1 128 0.012 158 18 7 0.022 188 54 158 0.010 186 54 156
Prøst proest256otrv1 128 1.000 ?0 0 2 0.013 187 54 154 0.016 187 52 156
Raviyoyla raviyoylav1 128 1.000 22 2 7 1.000 148 28 24 0.295 186 51 144
Sablier sablierv1 32 1.000 5 1 10 0.000 188 53 158 0.009 187 52 158
Silver silverv1 128 0.017 160 13 10 0.009 186 53 155 0.009 187 53 158
Wheesht wheeshtv1mr3fr1t128 128 0.016 166 9 12 0.021 187 53 154 0.020 188 53 157
Wheesht wheeshtv1mr3fr1t256 128 0.018 159 16 5 0.007 188 54 153 0.011 188 52 156
Wheesht wheeshtv1mr3fr3t256 128 0.014 166 18 6 0.016 188 54 154 0.009 188 54 157
Wheesht wheeshtv1mr5fr7t256 128 0.012 172 16 10 0.013 188 55 156 0.013 188 53 154
YAES yaes128v2 128 0.014 160 15 5 0.011 188 50 153 0.007 188 53 156

Table 5.3: The assessment of first-round CAESAR candidates (part 3/3) in three different public message number modes. For
interpretation of displayed numbers and signs, see section 5.2. For drawn conclusions, see section 5.3 and section 5.4.

31

5.
E

xperim
ent

results
PMN fixed to zero PMN counter-based PMN truly random

Cipher
(official name)

Folder ID
(as used in SUPERCOP [Vir08]) T

V
le

ng
th

(b
it
s)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

ACORN acorn128 128 0.009 159 14 8 0.010 187 51 158 0.012 188 53 158
AEGIS aegis128 128 0.012 158 13 6 0.015 188 54 157 0.014 187 53 155
AEGIS aegis128l 128 0.009 160 14 10 0.010 188 54 156 0.012 185 51 158
AEGIS aegis256 128 0.007 155 16 7 0.015 188 54 158 0.015 187 52 159
AES-COPA aescopav1 128 0.007 165 23 4 0.013 187 53 153 0.011 187 55 155
AES-JAMBU aesjambuv1 64 0.013 132 3 10 0.017 187 54 155 0.008 188 54 156
AES-OTR aes128otrpv1 128 0.014 170 16 8 0.007 188 54 156 0.014 187 55 158
AES-OTR aes128otrsv1 128 0.011 160 11 7 0.013 188 55 158 0.018 187 52 154
AES-OTR aes256otrpv1 128 0.013 160 13 6 0.009 187 54 153 0.011 188 53 159
AES-OTR aes256otrsv1 128 0.013 164 14 9 0.013 188 54 154 0.019 188 55 153
AEZ aezv1 128 0.014 169 15 9 0.015 187 52 155 0.010 188 52 157
AEZ aezv3 128 0.016 164 13 6 0.011 188 53 157 0.009 185 50 156
Ascon ascon128v1 128 0.011 175 15 11 0.014 186 52 155 0.010 188 54 155
Ascon ascon96v1 96 0.009 150 9 8 0.008 188 53 156 0.012 187 53 153
CLOC aes128n12clocv1 64 0.009 124 6 10 0.015 187 52 158 0.005 188 52 158
CLOC aes128n8clocv1 64 0.010 129 4 5 0.011 188 55 158 0.014 188 53 156
CLOC twine80n6clocv1 32 0.010 87 6 4 0.011 188 54 158 0.010 187 52 159
SILC aes128n12silcv1 64 0.011 132 10 7 0.012 187 52 153 0.013 187 48 157
SILC aes128n8silcv1 64 0.007 132 10 7 0.006 188 52 155 0.008 186 52 155
SILC led80n6silcv1 32 0.004 93 3 7 0.006 188 55 155 0.014 188 51 155
SILC present80n6silcv1 32 0.010 92 2 4 0.010 187 53 158 0.008 188 54 157
Deoxys deoxyseq128128v1 128 0.009 168 11 5 0.011 188 54 159 0.017 185 51 158
Deoxys deoxyseq256128v1 128 0.014 160 17 10 0.014 188 55 158 0.011 187 53 156
Deoxys deoxysneq128128v1 128 0.016 170 16 9 0.008 185 53 156 0.007 187 55 153
Deoxys deoxysneq256128v1 128 0.011 162 18 11 0.014 187 52 156 0.018 187 55 158

Table 5.4: The assessment of second-round CAESAR candidates (part 1/5) in three different public message number modes. For
interpretation of displayed numbers and signs, see section 5.2. For drawn conclusions, see section 5.3 and section 5.4.

32

5.
E

xperim
ent

results

PMN fixed to zero PMN counter-based PMN truly random

Cipher
(official name)

Folder ID
(as used in SUPERCOP [Vir08]) T

V
le

ng
th

(b
it
s)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

ELmD elmd1000v1 128 0.012 161 16 9 0.009 187 53 155 0.011 187 55 158
ELmD elmd1001v1 128 0.009 166 13 8 0.011 188 55 158 0.013 188 49 156
ELmD elmd101270v1 128 0.009 163 15 8 0.013 188 54 155 0.009 188 51 159
ELmD elmd101271v1 128 0.013 162 18 7 0.012 188 53 158 0.015 187 53 157
ELmD elmd500v1 128 0.009 172 15 8 0.011 188 53 156 0.019 187 50 156
ELmD elmd501v1 128 0.012 166 10 10 0.016 188 54 156 0.012 188 53 158
ELmD elmd51270v1 128 0.013 165 11 11 0.017 186 50 157 0.006 187 54 158
ELmD elmd51271v1 128 0.016 163 15 12 0.009 185 53 158 0.015 188 54 155
HS1-SIV hs1sivhiv1 128 0.016 172 22 6 0.014 187 53 155 0.013 188 55 157
HS1-SIV hs1sivlov1 64 0.012 131 6 9 0.011 188 54 153 0.009 186 50 156
HS1-SIV hs1sivv1 128 0.010 165 14 11 0.008 188 54 153 0.017 188 54 158
ICEPOLE icepole128av1 128 0.012 166 16 7 0.014 188 50 151 0.018 188 54 152
ICEPOLE icepole128v1 128 1.000 ?1 0 5 0.009 186 51 155 0.010 186 53 156
ICEPOLE icepole256av1 128 0.013 169 17 8 0.012 188 53 158 0.017 188 54 156
Joltik joltikeq12864v1 64 0.009 142 4 4 0.010 188 52 154 0.009 187 54 154
Joltik joltikeq6464v1 64 0.010 140 6 6 0.008 187 53 156 0.007 187 53 157
Joltik joltikeq8048v1 64 0.009 137 5 8 0.008 188 51 152 0.014 188 51 155
Joltik joltikeq9696v1 64 0.011 119 6 4 0.012 187 52 158 0.004 188 55 156
Joltik joltikneq12864v1 64 0.017 141 6 7 0.010 187 54 157 0.016 187 54 157
Joltik joltikneq6464v1 64 0.012 130 9 9 0.011 187 52 157 0.007 187 55 157
Joltik joltikneq8048v1 64 0.001 134 3 11 0.011 187 48 154 0.011 187 52 154
Joltik joltikneq9696v1 64 0.004 133 7 6 0.015 188 54 157 0.005 188 51 155

Table 5.5: The assessment of second-round CAESAR candidates (part 2/5) in three different public message number modes. For
interpretation of displayed numbers and signs, see section 5.2. For drawn conclusions, see section 5.3 and section 5.4.

33

5.
E

xperim
ent

results
PMN fixed to zero PMN counter-based PMN truly random

Cipher
(official name)

Folder ID
(as used in SUPERCOP [Vir08]) T

V
le

ng
th

(b
it
s)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

Ketje ketjejrv1 96 0.014 146 8 10 0.012 188 54 155 0.008 187 55 156
Ketje ketjesrv1 128 0.016 170 18 7 0.020 188 54 156 0.016 187 49 157
Keyak lakekeyakv1 128 0.018 165 14 6 0.010 187 54 159 0.007 188 54 156
Keyak oceankeyakv1 128 0.009 160 7 4 0.009 187 54 155 0.013 188 54 156
Keyak riverkeyakv1 128 0.010 163 9 8 0.023 188 54 151 0.015 188 52 155
Keyak seakeyakv1 128 0.021 163 18 8 0.011 188 53 157 0.011 188 52 156
Minalpher minalpherv1 128 0.010 159 20 9 0.008 187 52 158 0.013 188 54 155
MORUS morus1280128v1 128 0.005 160 9 8 0.017 188 51 153 0.011 188 51 156
MORUS morus1280256v1 128 0.017 161 8 9 0.009 187 55 154 0.009 188 54 156
MORUS morus640128v1 128 0.009 165 15 5 0.018 188 54 157 0.014 188 52 156
NORX norx3241v1 128 0.014 165 14 9 0.008 188 52 159 0.011 186 55 158
NORX norx3261v1 128 0.013 166 18 6 0.008 188 53 157 0.016 187 50 156
NORX norx6441v1 128 0.014 156 16 12 0.009 187 51 155 0.018 187 51 154
NORX norx6444v1 128 0.013 167 16 8 0.013 186 53 156 0.011 188 54 153
NORX norx6461v1 128 0.016 162 10 7 0.010 187 52 156 0.014 187 54 156
OMD omdsha256k128n96tau128v1 128 0.012 160 15 5 0.012 187 53 156 0.017 188 55 155
OMD omdsha256k128n96tau64v1 64 0.013 135 10 6 0.008 185 54 156 0.009 187 53 154
OMD omdsha256k128n96tau96v1 96 0.010 157 19 9 0.014 188 54 157 0.013 187 53 156
OMD omdsha256k192n104tau128v1 64 0.010 138 6 6 0.008 187 50 156 0.008 187 51 156
OMD omdsha256k256n104tau160v1 128 0.014 170 16 9 0.015 187 53 157 0.012 188 53 155
OMD omdsha256k256n248tau256v1 128 0.010 160 15 8 0.011 186 51 155 0.011 187 53 155
OMD omdsha512k128n128tau128v1 128 0.011 171 13 7 0.010 188 51 157 0.005 188 52 155
OMD omdsha512k256n256tau256v1 128 0.017 167 10 6 0.010 188 52 156 0.009 188 52 158
OMD omdsha512k512n256tau256v1 128 0.017 159 12 7 0.017 187 55 156 0.015 188 50 156

Table 5.6: The assessment of second-round CAESAR candidates (part 3/5) in three different public message number modes. For
interpretation of displayed numbers and signs, see section 5.2. For drawn conclusions, see section 5.3 and section 5.4.34

5.
E

xperim
ent

results

PMN fixed to zero PMN counter-based PMN truly random

Cipher
(official name)

Folder ID
(as used in SUPERCOP [Vir08]) T

V
le

ng
th

(b
it
s)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

PAEQ paeq128 128 0.010 164 16 7 0.012 188 52 155 0.015 187 50 157
PAEQ paeq128t 128 0.017 168 7 8 0.009 188 55 158 0.011 188 50 158
PAEQ paeq128tnm 128 0.020 158 20 9 0.014 188 54 155 0.008 186 54 158
PAEQ paeq160 128 0.013 158 11 5 0.013 187 53 155 0.013 187 54 157
PAEQ paeq64 64 0.016 142 12 9 0.016 188 49 157 0.008 188 52 156
PAEQ paeq80 64 0.016 130 6 5 0.010 187 52 156 0.017 188 54 152
π-Cipher pi16cipher096v1 128 1.000 ?1 0 3 0.012 187 53 159 0.014 188 52 153
π-Cipher pi16cipher128v1 128 1.000 ?1 0 2 0.015 188 55 157 0.009 188 53 153
π-Cipher pi32cipher128v1 128 1.000 ?0 0 0 0.012 188 52 158 0.008 187 53 155
π-Cipher pi32cipher256v1 128 1.000 ?0 0 2 0.011 188 54 156 0.015 188 53 152
π-Cipher pi64cipher128v1 128 1.000 ?0 0 2 0.011 187 52 156 0.010 186 54 156
π-Cipher pi64cipher256v1 128 1.000 ?0 0 4 0.014 188 48 156 0.008 185 53 154
π-Cipher pi64cipher256v1oneround 128 1.000 ?0 0 8 0.012 187 52 155 0.011 187 53 156
π-Cipher pi64cipher256v1tworounds 128 1.000 ?0 0 2 0.010 187 53 155 0.013 187 53 155
POET aes128poetv1aes128 128 0.009 169 14 4 0.014 188 52 156 0.015 188 54 154
POET aes128poetv1aes4 128 0.010 172 11 8 0.013 187 54 157 0.016 188 52 157
PRIMATEs primatesv1ape120 128 0.013 169 17 11 0.013 187 55 157 0.013 187 51 156
PRIMATEs primatesv1ape80 128 0.019 159 16 8 0.013 188 52 157 0.013 187 54 156
PRIMATEs primatesv1gibbon120 96 0.007 154 12 5 0.014 188 55 154 0.015 188 54 157
PRIMATEs primatesv1gibbon80 64 0.010 128 4 5 0.013 186 52 156 0.006 187 53 156
PRIMATEs primatesv1hanuman120 96 0.009 130 12 7 0.009 188 53 158 0.016 188 53 156
PRIMATEs primatesv1hanuman80 64 0.012 148 13 4 0.007 188 53 153 0.011 186 54 157

Table 5.7: The assessment of second-round CAESAR candidates (part 4/5) in three different public message number modes. For
interpretation of displayed numbers and signs, see section 5.2. For drawn conclusions, see section 5.3 and section 5.4.

35

5.
E

xperim
ent

results

PMN fixed to zero PMN counter-based PMN truly random

Cipher
(official name)

Folder ID
(as used in SUPERCOP [Vir08]) T

V
le

ng
th

(b
it
s)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

E
A

C
ir

c
(p
ro
po

rt
io
n)

N
IS

T
ST

S
(x
/1
88
)

D
ie

ha
rd

er
(x
/5
5)

T
es

tU
01

(x
/1
59
)

SCREAM scream10v1 128 0.015 156 18 4 0.014 187 55 155 0.015 188 54 156
SCREAM scream10v2 128 0.012 163 17 11 0.010 188 52 157 0.013 188 53 154
SCREAM scream12v1 128 0.018 165 13 6 0.011 187 55 158 0.013 188 53 157
SCREAM scream12v2 128 0.017 159 16 12 0.010 186 53 154 0.015 188 52 153
SHELL shellaes128v1d4n64 128 0.009 169 18 4 0.010 187 53 156 0.019 187 53 153
SHELL shellaes128v1d4n80 128 0.017 169 18 4 0.007 187 53 156 0.015 188 52 153
SHELL shellaes128v1d5n64 128 0.011 164 22 10 0.011 188 49 157 0.007 188 53 154
SHELL shellaes128v1d5n80 128 0.009 164 22 10 0.013 188 49 157 0.017 187 55 156
SHELL shellaes128v1d6n64 128 0.014 160 24 13 0.013 186 54 155 0.013 187 51 159
SHELL shellaes128v1d6n80 128 0.012 160 24 13 0.013 186 54 155 0.010 188 52 157
SHELL shellaes128v1d7n64 128 0.019 163 17 9 0.018 186 54 156 0.008 187 53 159
SHELL shellaes128v1d7n80 128 0.019 163 17 9 0.018 186 54 155 0.014 186 53 155
SHELL shellaes128v1d8n64 128 0.015 176 15 8 0.010 188 51 157 0.016 187 53 157
SHELL shellaes128v1d8n80 128 0.013 176 15 8 0.010 188 51 157 0.016 187 53 155
STRIBOB stribob192r1 128 0.016 158 18 12 0.011 187 54 154 0.014 188 53 156
Tiaoxin tiaoxinv1 128 0.009 161 24 8 0.012 188 53 158 0.018 188 53 153
TriviA-ck trivia0v1 128 0.999 140 5 8 0.015 186 52 157 0.005 187 55 154
TriviA-ck trivia128v1 128 0.993 158 12 8 0.017 188 53 158 0.009 188 54 157

Table 5.8: The assessment of second-round CAESAR candidates (part 5/5) in three different public message number modes. For
interpretation of displayed numbers and signs, see section 5.2. For drawn conclusions, see section 5.3 and section 5.4.

36

6 Summary

The aim of this thesis was to analyze randomness of multiple authenticated encryption
systems. In the end, we assessed outputs from 168 distinct schemes (all but six CAESAR
submissions) in three different settings (public message number modes) using four different
software tools (EACirc, NIST STS, Dieharder and TestU01).

There is a new module for EACirc enabling the randomness assessment of tags pro-
duced by authenticated encryption systems. Within this module, there is a codebase of
all CAESAR submissions coherently separated as C++ objects compiling in both Win-
dows and Unix environments. The codebase has a comprehensive change tracking system
enabling additional detailed inspection of performed changes. There is a set of scripts
allowing effortless running of statistical tests.

The conducted tests, taking together thousands of CPU days, were distributed on tens
of cores in two facilities. All necessary metadata of all the performed experiments is retained
to allow for easy replication if necessary.

6.1 High-level conclusions

The obtained results can be understood in two fundamentally different ways. Looking at the
tables row-wise, conclusions can be made for individual CAESAR candidates. Inspecting
them column-wise gives us insights into the used randomness testing tools and their relative
qualities.

We examined a scenario with random (but fixed) keys, counter-based plaintext and
three different settings of public message numbers. As expected, tags produced in configu-
rations with random public message numbers fared better than the ones from counter-based
configurations. Both did better than tags from fixed-value public message numbers – no
submission had an avalanche effect strong enough to produce random-looking tags in the
scenario where all test vectors had the same public message numbers.

Only five CAESAR submissions (AES/GCM,Marble, AEC-CMCC, AES-CPFB, Raviy-
oyla) failed to produce seemingly random tags with counter-based public message numbers.
For entirely random public message numbers, three candidates failed (Marble, AES-CMCC,
AES-CPFB). Importantly, none of these candidates made it to the second round of the
competition. Interestingly, in two designs the 256-bit versions significantly outperformed
the 128-bit versions.

Regarding the tools used for tag evaluation, EACirc seemed to be the least suitable for
the given task, being beaten by all the statistical batteries. The batteries themselves (NIST
STS, Dieharder and TestU01) produced comparable results. The only exception is the case
of Raviyoyla, in which EACirc seems to have outperformed all the other tools. However,
when making comparisons, one has to take into account the amount of data inspected by
each tool and their different modes of operation.

37

6. Summary

It turned out that interpreting the results of sets of statistical tests is far from straight-
forward. The set rejection thresholds influence the conclusions about battery capabilities
a lot. To reliably assign such thresholds for Dieharder and TestU01, a thorough inspection
of the test interdependence, similar to the one done for NIST STS [Sýs+15], would need
to be carried out.

6.2 Proposed future work

The results lead us to several interesting hypotheses requiring further inspection. The can-
didates exhibiting differences in versions with different parameter sets, as well as those
failing in randomness tests, would deserve a deeper manual inspection to prove their po-
tential (in)security.

The used statistical testing suites themselves would be an interesting target for fur-
ther research. It turned out that interpretation of test suites is quite difficult, and thor-
ough research on test interdependence is necessary. Another prospective direction would
be weakening the cipher designs (e.g. by limiting the number of internal rounds) to achieve
a fine-grained comparison of the used tools.

A new area of available research concerns the novel EACirc framework. Probably the
most beneficial for the cryptographic community would be an analysis of the evolved distin-
guisher circuits as this could hint at particular cipher weaknesses. Modifications enabling
EACirc to process longer inputs or keep custom information from the previously tested
vectors might also be helpful. The back-end features of the framework could make advan-
tage of other existing heuristics – we consider superseding the circuits by individuals in the
form of simple polynomials in hopes of speeding the evaluation, easing the interpretation
and enabling the use of existing analytical tools.

38

Bibliography

[AFL14] F. Abed, C. Forler, and S. Lucks. “General Overview of the Authenticated
Schemes for the First Round of the CAESAR Competition”. In: Cryptology
ePrint Archive (2014). url: http://ia.cr/2014/792 (visited on 2016-01-05).

[Ank15] R. Ankele. “Provable Security of Submissions to the CAESAR Cryptographic
Competition”. Master thesis. Graz University of Technology, 2015. url: https:
//securewww.esat.kuleuven.be/cosic/publications/thesis-263.pdf
(visited on 2016-01-05).

[Ban+97] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Program-
ming: An Introduction. On the Automatic Evolution of Computer Programs
and Its Applications. Morgan Kaufmann Publishers, 1997. isbn: 978-1558605107.

[Bro04] R. G. Brown. Dieharder: A Random Number Test Suite. Version 3.31.1. Duke
University Physics Department. 2004. url: http://www.phy.duke.edu/
~rgb/General/dieharder.php (visited on 2016-01-05).

[CAE13] CAESAR committee. CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness. 2013. url: http://competitions.
cr.yp.to/caesar-call.html (visited on 2016-01-05).

[Del04] B. Delman. “Genetic algorithms in cryptography”. PhD thesis. Rochester In-
stitute of Technology, 2004. url: http://scholarworks.rit.edu/theses/
5456/ (visited on 2016-01-05).

[Dog+10] A. Doganaksoy, B. Ege, O. Koçak, and F. Sulak. “Statistical Analysis of Re-
duced Round Compression Functions of SHA-3 Second Round Candidates”.
In: IACR Cryptology ePrint Archive (2010). url: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.187.814&rep=rep1&type=pdf
(visited on 2016-01-05).

[EHJ07] H. Englund, M. Hell, and T. Johansson. “A note on distinguishing attacks”.
In: IEEE Information Theory Workshop on Information Theory for Wireless
Networks. IEEE. 2007, pp. 1–4. doi: 10.1109/itwitwn.2007.4318038.

[Eur05] European Network of Excellence for Cryptology. eStream project: Call for
Stream Cipher Primitives. 2005. url: http://www.ecrypt.eu.org/stream/
call/ (visited on 2016-01-05).

[Fil09] S. Filipčík. “LaTeX Thesis Style”. Bachelor thesis. Faculty of Informatics,
Masaryk University, 2009. url: http://is.muni.cz/th/173173/fi_b/
(visited on 2016-01-05).

[Her+02] J. C. Hernández, J. M. Sierra, P. Isasi, and A. Ribagorda. “Genetic Cryp-
toanalysis of Two Rounds TEA”. In: Computational Science — ICCS 2002.
Springer Berlin Heidelberg, 2002, pp. 1024–1031. isbn: 978-3-540-43594-5. doi:
10.1007/3-540-47789-6_108.

39

http://ia.cr/2014/792
https://securewww.esat.kuleuven.be/cosic/publications/thesis-263.pdf
https://securewww.esat.kuleuven.be/cosic/publications/thesis-263.pdf
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/caesar-call.html
http://scholarworks.rit.edu/theses/5456/
http://scholarworks.rit.edu/theses/5456/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.814&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.814&rep=rep1&type=pdf
http://dx.doi.org/10.1109/itwitwn.2007.4318038
http://www.ecrypt.eu.org/stream/call/
http://www.ecrypt.eu.org/stream/call/
http://is.muni.cz/th/173173/fi_b/
http://dx.doi.org/10.1007/3-540-47789-6_108

BIBLIOGRAPHY

[HI04] J. C. Hernández and P. Isasi. “Finding Efficient Distinguishers for Crypto-
graphic Mappings, with an Application to the Block Cipher TEA”. In: Com-
putational Intelligence 20.3 (2004), pp. 517–525. doi: 10.1111/j.0824-7935.
2004.00250.x.

[HK14] K. Hakju and K. Kwangjo. “Who can survive in CAESAR competition at
round-zero”. In: The 31th Symposium on Cryptography and Information Se-
curity Kagoshima. 2014, pp. 21–24. url: http://caislab.kaist.ac.kr/
publication/paper_files/2014/SCIS2014_HJ.pdf (visited on 2016-01-05).

[Hu10] W. Hu. “Cryptanalysis of TEA Using Quantum-Inspired Genetic Algorithms”.
In: Journal of Software Engineering and Applications 3.01 (2010), pp. 50–57.
doi: 10.4236/jsea.2010.31006.

[Jak14] K. S. Jakobsson. “Theory, Methods and Tools for Statistical Testing of Pseudo
and Quantum Random Number Generators”. PhD thesis. Linköpings univer-
sitet, Sweden, 2014. url: http://liu.diva-portal.org/smash/record.
jsf?pid=diva2:740158&dswid=9282 (visited on 2016-01-05).

[Kam12] A. Kaminsky. “GPU parallel statistical and cube test analysis of the SHA-
3 finalist candidate hash functions”. In: 15th SIAM Conference on Parallel
Processing for Scientific Computing. 2012. url: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.407.3751&rep=rep1&type=pdf
(visited on 2016-01-05).

[Kam13] A. Kaminsky. CryptoStat: Bayesian Statistical Analysis of Cryptographic Func-
tions. 2013. url: https : / / www . cs . rit . edu / ~ark / parallelcrypto /
cryptostat/ (visited on 2016-01-05).

[Knu97] D. E. Knuth. The Art of Computer Programming. Seminumerical Algorithms.
3rd. Vol. 2. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1997. isbn: 0-201-89684-2.

[Kub+16] K. Kubíček, J. Novotný, P. Švenda, and M. Ukrop. “New results on reduced-
round Tiny Encryption Algorithm using genetic programming”. In: IEEE In-
focommunications (2016). Forthcoming.

[KVW03] T. Kohno, J. Viega, and D. Whiting. “The CWC authenticated encryption
(associated data) mode”. In: ePrint Archives (2003). url: http : / / csrc .
nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/cwc/cwc-
spec.pdf (visited on 2016-01-05).

[LS07] P. L’Ecuyer and R. Simard. “TestU01: A C Library for Empirical Testing of
Random Number Generators”. In: ACM Transactions on Mathematical Soft-
ware 33.4 (2007). doi: 10.1145/1268776.1268777.

[Mar95] G. Marsaglia. Diehard Battery of Tests of Randomness. Floridan State Uni-
versity. 1995. url: http://www.stat.fsu.edu/pub/diehard/ (visited on
2016-01-05).

[MO11] E. Ma and C. Obimbo. “An evolutionary computation attack on one-round
TEA”. In: Procedia Computer Science 6 (2011), pp. 171–176. doi: 10.1016/
j.procs.2011.08.033.

40

http://dx.doi.org/10.1111/j.0824-7935.2004.00250.x
http://dx.doi.org/10.1111/j.0824-7935.2004.00250.x
http://caislab.kaist.ac.kr/publication/paper_files/2014/SCIS2014_HJ.pdf
http://caislab.kaist.ac.kr/publication/paper_files/2014/SCIS2014_HJ.pdf
http://dx.doi.org/10.4236/jsea.2010.31006
http://liu.diva-portal.org/smash/record.jsf?pid=diva2:740158&dswid=9282
http://liu.diva-portal.org/smash/record.jsf?pid=diva2:740158&dswid=9282
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.3751&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.3751&rep=rep1&type=pdf
https://www.cs.rit.edu/~ark/parallelcrypto/cryptostat/
https://www.cs.rit.edu/~ark/parallelcrypto/cryptostat/
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/cwc/cwc-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/cwc/cwc-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/cwc/cwc-spec.pdf
http://dx.doi.org/10.1145/1268776.1268777
http://www.stat.fsu.edu/pub/diehard/
http://dx.doi.org/10.1016/j.procs.2011.08.033
http://dx.doi.org/10.1016/j.procs.2011.08.033

BIBLIOGRAPHY

[MV04] D. McGrew and J. Viega. “The Galois/Counter Mode of Operation (GCM)”.
In: Submission to NIST (2004). url: http://siswg.net/docs/gcm_spec.pdf
(visited on 2016-01-05).

[Nan10] Nano-Optics group and PicoQuant GmbH. High Bit Rate Quantum Random
Number Generator Service. Humboldt University of Berlin. 2010. url: http:
//qrng.physik.hu-berlin.de/ (visited on 2016-01-05).

[Nan14] M. Nandi. “Forging Attacks on Two Authenticated Encryption Schemes CO-
BRA and POET”. In: Advances in Cryptology – ASIACRYPT 2014. Vol. 8873.
Springer Berlin Heidelberg, 2014, pp. 126–140. doi: 10.1007/978-3-662-
45611-8_7.

[Nat07] National Institute for Standards and Technology. SHA-3: Cryptographic hash
algorithm competition. 2007. url: http://csrc.nist.gov/groups/ST/hash/
sha-3/index.html (visited on 2016-01-05).

[Nat93] National Institute for Standards and Technology. Two-sample χ2 test. 1993.
url: http://www.itl.nist.gov/div898/software/dataplot/refman1/
auxillar/chi2samp.htm (visited on 2016-01-05).

[Nat97a] National Institute for Standards and Technology. Announcing request for can-
didate algorithm nominations for the advances encryption standard (AES).
1997. url: http://csrc.nist.gov/archive/aes/pre-round1/aes_9709.
htm (visited on 2016-01-05).

[Nat97b] National Institute for Standards and Technology. Statistical Test Suite. Ver-
sion 2.1.1. 1997. url: http://csrc.nist.gov/groups/ST/toolkit/rng/
index.html (visited on 2016-01-05).

[Nov15] J. Novotný. “GPU-based speedup of EACirc project”. Bachelor thesis. Faculty
of Informatics, Masaryk University, 2015. url: http://is.muni.cz/th/
409963/fi_b/ (visited on 2016-01-05).

[Obr15] Ľ. Obrátil. “Automated task management for BOINC infrastructure and EACirc
project”. Bachelor thesis. Faculty of Informatics, Masaryk University, 2015.
url: https://is.muni.cz/th/410282/fi_b/ (visited on 2016-01-05).

[Ope98] OpenSSL commutinty. Cryptography and SSL/TLS Toolkit. 1998. url: https:
//www.openssl.org/ (visited on 2016-01-05).

[PHC13] PHC committee. Password Hashing Competition. 2013. url: https://password-
hashing.net/cfh.html (visited on 2016-01-05).

[Pic15] S. Picek. “Applications of Evolutionary Computation to Cryptology”. PhD
thesis. Radboud Universiteit Nijmegen, 2015. url: http://hdl.handle.net/
2066/141872 (visited on 2015-01-05).

[Rog+01] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. “OCB: A Block-cipher Mode
of Operation for Efficient Authenticated Encryption”. In: Proceedings of the
8th ACM Conference on Computer and Communications Security. ACM, 2001,
pp. 196–205. doi: 10.1145/501983.502011.

41

http://siswg.net/docs/gcm_spec.pdf
http://qrng.physik.hu-berlin.de/
http://qrng.physik.hu-berlin.de/
http://dx.doi.org/10.1007/978-3-662-45611-8_7
http://dx.doi.org/10.1007/978-3-662-45611-8_7
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/chi2samp.htm
http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/chi2samp.htm
http://csrc.nist.gov/archive/aes/pre-round1/aes_9709.htm
http://csrc.nist.gov/archive/aes/pre-round1/aes_9709.htm
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
http://is.muni.cz/th/409963/fi_b/
http://is.muni.cz/th/409963/fi_b/
https://is.muni.cz/th/410282/fi_b/
https://www.openssl.org/
https://www.openssl.org/
https://password-hashing.net/cfh.html
https://password-hashing.net/cfh.html
http://hdl.handle.net/2066/141872
http://hdl.handle.net/2066/141872
http://dx.doi.org/10.1145/501983.502011

BIBLIOGRAPHY

[Ruk+00] A. Rukhin et al. A Statistical Test Suite for Random and Pseudorandom Num-
ber Generators for Cryptographic Applications. Tech. rep. 2000. url: http://
csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
(visited on 2016-01-05).

[Š+12] P. Švenda, M. Ukrop, M. Sýs, et al. EACirc. Framework for autmatic search
for problem solving circuit via evolutionary algorithms. Centre for Research on
Cryptography and Security, Masaryk University. 2012. url: http://github.
com/crocs-muni/EACirc (visited on 2016-01-05).

[She03] D. J. Sheskin. Handbook of parametric and nonparametric statistical proce-
dures. 3rd ed. CRC Press, 2003. isbn: 9781420036268.

[Sim15] E. Simion. “The Relevance of Statistical Tests in Cryptography”. In: IEEE
Security & Privacy (2015), pp. 66–70. doi: 10.1109/MSP.2015.16.

[ŠUM13] P. Švenda, M. Ukrop, and V. Matyáš. “Towards cryptographic function distin-
guishers with evolutionary circuits”. In: Proceedings of the 10th International
Conference on Security and Cryptography. ICETE. 2013, pp. 135–146. doi:
10.5220/0004524001350146.

[ŠUM14] P. Švenda, M. Ukrop, and V. Matyáš. “Determining cryptographic distinguish-
ers for eStream and SHA-3 candidate functions with evolutionary circuits”.
In: E-Business and Telecommunications. Vol. 456. Springer Berlin Heidelberg,
2014, pp. 290–305. doi: 10.1007/978-3-662-44788-8_17.

[Sýs+14] M. Sýs, P. Švenda, M. Ukrop, and V. Matyáš. “Constructing empirical tests of
randomness”. In: Proceedings of the 11th International Conference on Security
and Cryptography. ICETE. 2014. doi: 10.5220/0005023902290237.

[Sýs+15] M. Sýs, Z. Říha, V. Matyáš, K. Márton, and A. Suciu. “On the Interpretation
of Results from the NIST Statistical Test Suite”. In: Romanian Journal of
Information Science and Technology 18.1 (2015), pp. 18–32.

[TDÇ08] M. S. Turan, A. Doganaksoy, and Ç. Çalik. “On Statistical Analysis of Syn-
chronous Stream Ciphers”. PhD thesis. The Middle East Technical University,
2008. url: http://etd.lib.metu.edu.tr/upload/12609581/index.pdf
(visited on 2016-01-05).

[Tea15] Team Czech NGI. MetaCentrum. Virtual Organization of the Czech National
Grid Organization. 2015. url: https://metavo.metacentrum.cz/ (visited
on 2016-01-05).

[Ukr13] M. Ukrop. “Usage of evolvable circuit for statistical testing of randomness”.
Bachelor thesis. Faculty of Informatics, Masaryk University, 2013. url: http:
//is.muni.cz/th/374297/fi_b/ (visited on 2016-01-05).

[Vir08] Virtual Applications and Implementations Research Lab. SUPERCOP: System
for Unified Performance Evaluation Related to Cryptographic Operations and
Primitives. 2008. url: http://bench.cr.yp.to/supercop.html (visited on
2016-01-05).

[Wal08] J. Walker. ENT: A Pseudorandom Number Sequence Test Program. Fourmilab.
2008. url: https://www.fourmilab.ch/random/ (visited on 2016-01-05).

42

http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://github.com/crocs-muni/EACirc
http://github.com/crocs-muni/EACirc
http://dx.doi.org/10.1109/MSP.2015.16
http://dx.doi.org/10.5220/0004524001350146
http://dx.doi.org/10.1007/978-3-662-44788-8_17
http://dx.doi.org/10.5220/0005023902290237
http://etd.lib.metu.edu.tr/upload/12609581/index.pdf
https://metavo.metacentrum.cz/
http://is.muni.cz/th/374297/fi_b/
http://is.muni.cz/th/374297/fi_b/
http://bench.cr.yp.to/supercop.html
https://www.fourmilab.ch/random/

BIBLIOGRAPHY

[Wal95] M. Wall. GAlib: A C++ Library of Genetic Algorithm Components. Mas-
sachusetts Institute of Technology. 1995. url: http://lancet.mit.edu/ga/
(visited on 2016-01-05).

[Wil04] E. B. William C. Barker. Recommendation for the triple data encryption algo-
rithm (TDEA) block cipher. Tech. rep. 2004. url: http://csrc.nist.gov/
publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf (visited on
2016-01-05).

[WN95] D. Wheeler and R. Needham. “TEA: A Tiny Encryption Algorithm”. In: Fast
Software Encryption. Springer. 1995, pp. 363–366. doi: 10 . 1007 / 3 - 540 -
60590-8_29.

[Yao82] A. C. Yao. “Theory and application of trapdoor functions”. In: Proceedings
of the 23rd Annual Symposium on Foundations of Computer Science. IEEE
Computer Society, 1982, pp. 80–91. doi: 10.1109/sfcs.1982.45.

43

http://lancet.mit.edu/ga/
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://dx.doi.org/10.1007/3-540-60590-8_29
http://dx.doi.org/10.1007/3-540-60590-8_29
http://dx.doi.org/10.1109/sfcs.1982.45

A Data attachment

The data attachment available in the thesis repository1 contains source codes and most
experimental results organized in the following structure:

eacirc
Source codes of EACirc (copy of entire project repository with master commit
35c0c0a from 2016-01-05).
eacirc-wiki
Project’s wiki-based documentation (copy of entire wiki repository with master com-
mit 34cec22 from 2016-01-05).
data-eacirc
Underlying data for EACirc results presented in chapter 5 further divided into sub-
directories according to the public message number mode (pmn-zero, pmn-counter
and pmn-random). Only a sample of 10 EACirc runs from 1000 is provided for each
case due to size constraints.
data-statisitcal-batteries
Underlying data for results of statistical batteries presented in chapter 5 further di-
vided into subdirectories according to the public message number mode (pmn-zero,
pmn-counter and pmn-random). The tested binary files are omitted due to their
size.
data-reference
Underlying data for reference results presented in section 4.3 for all four statistical
testing tools. The tested binary files are omitted due to their size. Only a sample of
10 EACirc runs from 1000 is provided for each case (again, due to size constraints).
thesis-src
Thesis text source files including bibliography and used images (repository commit
178f932 from 2016-01-09).

1. http://is.muni.cz/th/374297/fi_m/

44

http://is.muni.cz/th/374297/fi_m/

	Introduction
	Previous works
	 Cryptoprimitives assessment
	 Genetic algorithms in cryptography
	 EACirc framework

	Authenticated encryption
	 CAESAR competition
	 Candidates requirements
	 Submissions

	 Tested ciphers

	Experiment methodology
	 Statistical batteries
	 NIST STS
	 Dieharder
	 TestU01

	 EACirc
	 Workflow
	 Implementation and settings
	 Results interpretation

	 Reference experiments

	Experiment results
	 Experiment settings
	 Interpretation of results
	 Conclusions for CAESAR candidates
	 Conclusions for randomness testing tools

	Summary
	 High-level conclusions
	 Proposed future work

	Data attachment

