New results on reduced-round Tiny Encryption Algorithm
using genetic programming

Karel Kubicéek

karel.kubicek@mail.muni.cz

Masaryk University, Brno, Czech Republic

Abstract

Analysing cryptographic functions usually requires extensive work of a skilled cryptanalyst. However,
some automation is possible, e.g., by using randomness testing batteries such as NIST STS or Dieharder.
Yet such tests are limited to predefined test patterns. However, there is a new approach — EACirc is a
novel randomness testing framework based on finding a distinguisher for a given cipher output. In this
work, we use EACirc to analyse the outputs of Tiny Encryption Algorithm (TEA). TEA was previously
used with genetic algorithms for evolution of bit masks used for restriction of cipher input. In this paper,
we compare the methodology and results of previous works with EACirc. Instead of evolving bit masks,
we create a software circuit applicable as a distinguisher for limited-round TEA (up to 4 rounds). Results
of EACirc are also compared to the standard statistical batteries.

KGYWOI‘dS: randomness statistical testing, TEA, genetic algorithms, randomness distinguisher, soft-
ware circuit

1 Introduction

Automatized randomness testing is useful for checking one of the expected cipher properties — output
ciphertext should be indistinguishable from a stream of random data. This property alone is not suffi-
cient for cipher to be secure, but the ability to distinguish ciphertexts from random data constitutes an
important hint on cipher weakness.

The common way to automate testing of randomness is using statistical batteries. NIST STS [Ruk10]
is a standard battery of tests, that are commonly used for this purpose, together with other batteries
such as Diehard [Mar95], Dieharder [BEB09] or TestU01 [L.S07]. The batteries contain sets of fixed tests
(usually parametrized to form multiple different subtests) checking expected statistics of tested output
stream (TEA ciphertext in our case) in comparison to truly random data.

The limitation of the standard batteries for randomness testing is the fact they implement a fixed set of
tests and can detect only a limited set of patterns and statistical irregularities. If the used set of tests
is fixed and known, a sequence of completely deterministic data can be crafted such that no tests will
detect deviances from truly random data. But as cryptographic functions have a deterministic output
(dependent only on input data and a key), it is a priori expected that they cannot pass all possible tests
of randomness and there are tests of randomness that reveal the sequence as non-random. However, such
a test can be very difficult to find.

In this work we use EACirc [SU 15|, a novel framework for constructing empirical tests of random-
ness that can succeed in finding such a test (at least hypothetically). Our goal is to find an empirical
test of randomness that indicates if a given sequence is either non-random (with a high probability) or
sufficiently indistinguishable from truly random data stream. In the framework, randomness tests are
computed iteratively, adapting to the processed sequence. The construction is stochastic and uses ge-
netic programming. Tests are constructed from a predefined pool of operations (building blocks). Set
of operations, together with a limit for the number of operations, allows us to control the complexity of
the tests. The framework theoretically allows us to construct an arbitrary randomness test over a set
of chosen operations (in practice, however, the total number of operations used is limited). Therefore,
it can be viewed as a general framework for the test construction and should (hypothetically) provide a
better detection ability than standard tests.

We performed several experiments on Tiny Encryption Algorithm. This cipher has been used by other
teams, that used genetic algorithms for testing randomness. Capabilities of our framework are tested on
this cipher and compared with both statistical batteries and other papers.

This paper is organized as follows: Section 2 introduces TEA as a simple encryption algorithm used
nowadays as a benchmark for randomness tests. Section 3 contains information about our framework
EACirc with definition of used settings. Also TEA customization and input data structure is discussed
in this section. Results and their interpretation are presented in section 4 with performance and data
usage of EACirc. In Section 5 we describe future work.

2 Tiny Encryption Algorithm

Tiny Encryption Algorithm (TEA) is a block cipher designed by David Wheeler and Roger Needham of
the Cambridge Computer Laboratory [WN95]. The algorithm was designed to have a simple structure
based on the Feistel network with 32 rounds (we count 2 steps of Feistel network as 1 TEA round). The
cipher uses 64-bit long blocks and 128-bit long keys.

2.1 TEA distinguishers — state of the art

Nowadays, the cipher is not considered to be secure for regular use as it suffers from multiple weaknesses,
most significantly the related-key attack [KSW97]|. However, it was used as a benchmark for randomness
testing using genetic algorithms starting with a paper in 2002 by Julio C. Hernéndez, José M. Sierra,
Pedro Isasi and Arturo Ribagorda [HSIR02]|, who were successful with TEA limited to 1 and 2 rounds.
2 years later, a similar team published new results with improved settings [HI04], which resulted in 3 to
4 rounds. The newest results from 2010 by Wei Hu [Hu+10], using quantum inspired genetic algorithm,
succeeded with 4 to 5 rounds TEA. There were more papers on this topic by other teams too, but they
came later with distinguisher efficient for less rounds.

These works were using a different approach to the distinguisher evolution than us. In [HSIR02], a
genetic algorithms with y? statistic for customized fitness functions was used. The paper focuses on
bit patterns of the least significant 10 bits of ciphertext from reduced-round TEA. The plaintext and
keys were generated using a bit-mask, which was iteratively evolved. Following works then followed this
methodology with only difference of evolution settings, not the approach itself.

3 Our approach

3.1 Randomness testing with genetic programming

As stated in the Introduction, the common way of automate testing of randomness is using statistical
batteries. The approach of genetic algorithms is different then running predefined sets of tests from a
statistical battery. Firstly, a set of individuals is created with each individual representing a candidate
distinguisher function. Secondly, every individual decides if the provided block of input data is random or
non-random. Thirdly, better individuals are randomly mutated or cross-bred to create better descendants
(the ratio of correct guesses constitutes a fitness function). The process follows the principles of biological
evolution. Therefore, if ciphertexts have a common property expressible as a distinguisher function, then
an individual representing this function can be potentially evolved and improved in the process of further
evolution.

Use of genetic algorithms induce a couple of disadvantages. The evolution can be computationally very
expensive, since finding sufficient changes of individual requires up to search over all possible changes to
individual, which is done randomly. This requires enough generations to be executed with no guarantee
that such individual will be found. Also the process of fine-tune of the parameters can be difficult to
achieve good working evolution. For more details of possible problems and their solution in EACirc,
follow to thesis of Martin Ukrop [Ukr13], section 3.1.

3.2 EACirc framework

In case of EACirc, the individual is a hardware-like circuit. It consists of gates and interconnecting
wires, transforming input data into desired output data. Usually, the input is as long as the block of
ciphertext (64 bits for TEA), and the output is 1 byte. The fitness function is a distance statistics over
output bytes produced for the assessed stream and truly random data. Further information can be found
in [SSUM+-14].

AND AND CYCR CYCR CYCR CYCR CONS ROTR
8 133 2 106 155 121 110 46

CYCR NOT " ROTL " cycL NAND NOR " CYCR " ROTL

17 246 66 61 216 63 231
ROTL NOR CYCR " Nop BSLC " NoP CYCR " NAND
39 226 229 59 150 181 60 202
NOT CYCL NOP " NOT " XOR XOR " cycL " XOR

252 75 1 130 104 23 188 19

Figure 1: Software circuit with green input nodes, blue inner nodes and red output node. Inner nodes
and connections are highlighted if they affect output. The circuit is result of experiment with 4 rounds
TEA.

EACirc supposed usage is similar as statistical batteries. The process have to be fully automatized and
the results are simple to interpret. But a top of automatized way of testing, EACirc can be used as
tool for showing weaknesses of cipher for manual cryptoanalysis. For example, from Figure 1, skilled
cryptologist can discover, what part of TEA is weak and maybe also how the weakness can be exploited.

The whole framework is being continuously extended and enhanced by team from Faculty of Informatics
of Masaryk University. Current target is to make it fully automatized and simple to use for extending
statistical batteries as a randomness testing tool. Another target is increasing ability of the distinguisher.
The whole project is accessible on github page with full documentation [SU715].

3.3 EACirc parametrization

EACirc framework has very complex configuration, because both evolution and the circuit can be set up
in various ways. General settings are described in thesis of Martin Ukrop [Ukrl13], chapter 4 and github
documentation [SU-+15]. Following settings are described, because they were changed for TEA analysis.

Functions in nodes Circuit nodes can contain an identity function, constant-producing function, basic
logical binary operators, shifts and rotations, integer comparison functions, masks for bit selection,
input read connector and external C function call. The larger diversity of functions means stronger
expression capability (within the limited space). However, this vastly increases the space of ap-
plicable individuals slowing down the evolution process. Due to this, the set of used function was
restricted (integer comparison function, input read and the external function call were not used).

Circuit dimensions In our case, the input layer has the same size as the TEA working block (8 nodes
with 8 bits each). Other applicable settings include providing more TEA ciphertext blocks as a
single input (which would again slow down the evolution considerably). We used 5 internal layers
with 8 nodes per layer. The last layer contains a node with 1-byte long output used as the circuit’s
overall result. See Figure 1 for used circuit dimension of our experiments.

Test vectors Another important setting influencing the success rate of EACirc is the number of test
vectors used to evaluate the performance of candidate distinguishers (circuits). In our scenario, set
of test vectors consists of 2 subsets: TEA ciphertexts and data from a quantum random number

generator (believed to be completely random), with both subsets of vectors having the same size.
On the one hand, more test vectors mean more data for each iteration of evolution to learn from as
well as more precision for the fitness function. On the other hand, more test vectors also need more
computation time as one candidate circuit is evaluated for every separate test vector.

In this work, we used two main configurations: for CPU-only version, 1000 test vectors were used.
For nVidia CUDA implementation, 32000 test vectors were used. Using these settings, run time
for CPU (Intel Core2Duo E8400 at 3 GHz) was taking about the same time as for CUDA (nVidia
GeForce GTX 460 with 336 CUDA Cores on 1550 MHz).

Generations The number of evolved generations influences the length of searching for the cipher prop-
erties. In our case, 30000 generations were used.

Genome size The last setting discussed in this work is count of individuals in the generation. The
current approach to fitness evaluation is unable to interpret more individuals, because they can
be in correlation, as it uses the Kolmogorov-Smirnov test [She03] for an overall statistic. For this
reason, we currently use only one individual for each iteration, which is mutated into 2 individuals for
evolution. This approach is more similar to hill climbing heuristics than to evolution. Interpretation
of more individuals is a planned future work.

Categories-based evaluator Results of distinguisher consist of series of P-values computed during the
whole evolution. We store only P-values of generations after regeneration of test vector (reason
for this is independence of P-values). For testing uniformity of P-values, we use the Kolmogorov-
Smirnov (KS) test. KS computes its own P-value that can be compared to the significance level
(chosen as o = 5%) to evaluate the KS test. Since P-values computed by the KS test could be
smaller than « even for uniformly distributed P-values, we repeat the whole process 1000 times. For
a proper and clear statistical interpretation we test whether 5% of P-values computed by the KS
test are smaller than the chosen significance level o = 5%.

Oneclick As we use statistics to interpret the outputs of EACirc, we need to run many tests in parallel.
To ease the time-consuming monkey-work of running and post-processing experiments, we use a tool
called Oneclick [vOb15]|, which distributes computations using BOINC infrastructure [citation] on
the laboratory computers. This tool reduces both the necessary human work and also running time
of the experiment.

3.4 TEA customization

For complete automation, the tested ciphers are implemented directly into EACirc, which then both
generates the test vectors and runs the genetic programming of distinguisher. Since we want to test TEA
with a variable number of rounds (not only the recommended 32), we use a slightly changed version of
the cipher.
static const u32 delta = 0x9e3779b9; //u32 typedefed for 32-bits long unsigned int
void encrypt(u32 *data, const u32 *key) {
u32 sum = 0;
for (int j = 0; j < numRounds; j++) { //limited rounds by numRounds
sum += delta;
data[0] += ((data[1]<<4) + key[0])
~ (data[1] + sum)
- ((data[1]>>5) + keyl[1]);

10

11

12

13

14

data[1] += ((data[0]<<4) + key[2])
~ (datal[0] + sum)
~ ((datal[0]1>>5) + keyl[31);

Figure 2: Customized TEA code for EACirc interface with limited number of rounds

Input of the function is one block (64-bits long), stored in data array data with length 2 and the key
with length 128-bits (array of unsigned int of length 4). Output is stored in array data. Only changed
part of the algorithm is limited rounds count to tested numRounds.

3.5 Testing input data

There are various possible settings for generation of output data stream from TEA. The first decision is
therefore which cipher mode should be used. We used the electronic code book (ECB) mode, as this was
the case for previous papers on the topic since the first paper [HSIR02]. This also minimizes the influence
of the used mode on the output stream of data (ciphertext) produced by TEA.

An important factor is how the input plaintext data for TEA are generated. Our framework does not
change the input data (as was the case in [HHSIR02]). Note that even a weak cipher will provide strong
output if completely random input data are supplied as input.

Initially, we chose a biased input stream with a bias towards value 1 of bits of 95 %, (each individual
bit was much more likely to be 1 than 0). This decision provided incorrect results as the probability of
generating a plaintext full of ones was 0.9554 = 0.038. Resulting in around 19 identical test vectors from
the set of 500 (the remaining 500 vectors were taken from a truly random data source). The distinguisher
quickly learned to find these vectors created from the plaintexts of ones even for TEA without artificial
round limitations. The same data stream tested by Dieharder also failed with only about 2 out of 20
tests passing.

To mitigate the described problem, we implemented three different ways to generate plaintext data for
TEA.:

1. The counter incremented by one for each test vector,
2. the vectors with 5 randomly placed 0 and other bits set to 1,

3. the vectors with two almost identical parts differing only in a single bit (useful for the test vectors
twice the length of the TEA block).

These methods do not suffer repeating plaintextes problem as biased input.

A similar reasoning is relevant for generation of the secret key used by cipher. As we already manipulate
input data for the cipher, we used a fixed but completely random key for the whole test. For more
information about impact of key reinitialization frequency, please refer to thesis by Martin Ukrop [Ukr13].

Used settings was chosen to simulate TEA usage. User does not change encryption key for used session
(communication, disc encryption, etc.). Also input data are not fully random, as long as meaningful text
does not seem random. Other input types were developed for searching for inside dependency of the
cipher.

4 Results

4.1 Comparison

Results from previous papers can be difficult to compare with ours, because the approaches are sig-
nificantly different (described in subsection 2.1 and subsection 3.5). There are no results of statistical
batteries from previous works. Therefore, we cannot use them as common basis for the comparison. Our
results can be compared in terms of rounds count, but tested data are completely different.

Although more papers used genetic algorithms on TEA randomness analysis, we compare only these,
that came with best results in their time.

All of previous works published weights of constructed mask, which were used on pair of both input block
and key. This means the mask length is 64 + 128 = 192 bits, which is a maximum weight for unchanged
input. They published the mask weights together with average 2 statistics of maximal deviation from
random distribution.

Rounds || J.C. Hernandez et al. [HSIR02] || J.C. Hernandez et al. [HI04] Wei Hu [Hu+10]
x2 \ Mask weight X2 \ Mask weight x2 \ Mask weight
1 8380416 72 522240 153 522.240 153!
2 1900 77 736.05 155 602 171
3 (untested) 393.6 116 530.756 117.8
4 (untested) 294.86 502 742.632" 67.61
5 (untested) (untested) 631.74 76

Table 1: Comparison of previous results for reduced rounds TEA.

The next table provides results from statistical test batteries NIST STS (version 2.1.1) [Rukl0] and
Dieharder (version 3.31.1) [BEB09]. Dieharder provides three levels of evaluation (pass, weak, fail), we
assigned to these levels values 1, 0.5 and 0 respectively. The result in the cell is sum of the 20 tests. From
NIST STS we were using 162 tests (with pass or fail level). Both batteries were tested with significance
level & = 1%. Result with 0 passed tests is in parenthesis as mark of indistinguishable from random
result. The column for EACirc represents the best achieved results from our measurements. Values from
EACirc represents percentage of runs for which the set of P-values failed the KS test for uniformity with
significance level a = 5%. For the reference random-random distinguishing experiment, the value of 5% is
expected (and also measured), so we mark this value with parenthesis as indistinguishable from random.
For more detailed explanation of this method with proof of correctness interpretation, please refer to
[SSUM +14], section 3.2.

’ Rounds \ NIST \ Dieharder H EACircs ‘

1 162 20 100
2 162 185 100
3 162 16.5 100
4 6 11.0 100
5 (0) (0) ©)

Table 2: Results of statistical batteries in comparison with best result of EACirc.

We tried different settings of EACirc with the goal of finding the best distinguisher possible. Changes
from default settings (specified in subsection 3.3) are following:

1. EACirc; column was tested with input type 2. This means, that plaintexts are all ones (64b for
TEA), with 5 flipped bits to zero on random positions.

2. EACircy column was tested with input type 3. The first half of plaintext is random, second is
identical to the first but for one bitflip on random position.

3. EACirc3 column was tested with input type 1. Plaintexts for test vectors were created by counter
incremented by one for each vector. Also this experiment does not use shifts and rotations in nodes.

4. EACirc, uses same settings as EACircg, except shift and rotations in nodes were allowed.

5. EACircs has same settings as EACircy, but uses nVidia CUDA implementation, which allows to use
32000 test vectors and also to increase of evaluator precision.

] Rounds \ EACirc, \ EACirc, \ EACircs \ EACircy \ EACircs ‘

1 100 (5.6) 100 100 100
2 933 (4.8) 100 100 100
3 (5.6) (5.4) 100 100 100
4 (5.6) (5.4) (5.0) 99.8 100
5 (5.5) (5.2) (3.0) (5.6) (5.3)

Table 3: EACirc results with different settings. The results were obtained from 1000 runs for every
round-limited TEA with basic settings from subsection 3.5.

IThese results are computed as average of values from tables of the original work [Hu+10]. Please, note that average
value is simplified and for more information, refer to the original work.

2For this result, different approach was used. Also the output mask has very low entrophy. For more information, please
refer to the original paper [HI04] (section 2.4).

4.2 Results interpretation

Results on TEA of EACirc are on similar level as results from statistical batteries. EACirc is unable to
find distinguisher for more rounds then NIST STS or Dieharder. EACirc give a little more information,
since we can analyze the successful circuits. As showed on example in Figure 1, we can find which bits
are correlated.

Comparison with previous works is more difficult. If we input random data (or only little changed data),
EACirc cannot evolve sufficient distinguisher. As we do not use evolution to change input, but we evolve
candidate circuit, which works with ciphertext, we have to input nonrandom data. And the level of
nonrandom differs, for how much rounds we can evolve distinguisher. This may be compared with mask
weight in works of other teams. Compared to this, we can use only vectors with very little weight (but
unique) for distinguisher for 4 rounds TEA.

Last, but not least, additional information can be obtained from used settings and corresponding results.
If we allow rotations and bit shifts as primitive operation in nodes, we can evolve distinguisher for four
rounds. Without these operations, distinguisher for only three rounds was found. The final distinguisher
from Figure 1 contains mentioned function repeatedly. As TEA also uses shifts in its code, value shifting
seems to be important operation for TEA distinguisher.

From more runs, we can analyse other circuits. For 4 rounds TEA, we found interesting dependency
on 4. byte of the input (please, see circuits from Figure 1 and appendix). Our hypothesis from this
measurements is, that fourth byte of 4 rounds TEA can be distinguished from random (with our used
key). To confirm this hypothesis, we should use evolved distinguisher on more data and analyze the given
output, which may be part of future work.

4.3 Performance

The runtime of EACirc with basic settings (1000 test vectors and 30000 generations) is around 1 minute
on single core of 3 GHz Intel Core2Duo processor. It includes generation of the test vectors and is not
measurably affected by the number of TEA rounds executed. For the interpretation of the statistics,
we execute every test 1000 times, which gives us a combined computation time of approximately 1000
minutes on single CPU core.

Since the individual runs are independent, execution can be parallelized and distributed over multiple
computers. We used 12 laboratory computers with the above-mentioned 3 GHz Intel Core2Duo proces-
sors, which results in the execution time of about 45 minutes for every single tested scenario. Thus,
testing TEA limited to 1-8 rounds can be executed within a day of computation. For larger sets of tests,
we used the national grid infrastructure provided by Metacentrum [CN15].

Tests with 32000 test vectors were executed on GPUs using nVidia CUDA. The running time for each
test is around 1 minute. Due to parallelization of candidate circuit evaluation, a higher amount of test
vectors are evaluated as more GPU cores are available. The runtime is still linearly dependent on the
generation count — tests with 300 thousands generations and 128 000 test vectors have a running time of
around 30 minutes.

EACirc needs truly random data as a reference stream for a distinguisher evolution phase. We used a
pool of 1920 MiB of data pre-loaded from the Quantum Random Bit Generator Service [Ste07].

Regarding the TEA ciphertext, we generated 1000 test vectors of 64 bits each in 300 test vector sets
in 1000 runs for statistical interpretation. This amounts to 1.2 GiB of ciphertext data for the whole
experiment, or 1.2 MiB for just single run.

s 30 00 &enerations ectors bytes
> =1000 ru.n . e =1 VEeRors 8 YIS) 1,2 GiB per experiment
experiment 100 sepoarons 2 test set ~ vector

5 Discussion and Future work

The EACirc framework is continually developed and extended with different inner settings with the goal
of improving distinguisher success rate. At the moment, we work on 2 alternative circuit representations.
One with the possibility of executing more complex Java byte-code sequences in circuit nodes. The
sequences would be extracted directly from the Java implementation of the tested ciphers. Another

alternative representation is based on polynomials, which should provide better possibilities not only for
creating distinguishers, but also for analyzing the importance of isolated parts of tested function’s output
the distinguisher is based on.

Different heuristics like simulated annealing can be used for the mutation of a single individual, which
may provide better success rate or faster convergence than the currently used hill climbing technique
with a stable mutation probability.

We will also work on interpretation of multi-individuals settings, so we can use full potential of genetic
algorithms for TEA analysis.

We can also work more with input data for the experiments. One of interesting ideas is using masks
evolved in [Hu+10] to modify the input. Using evolved mask together with circuit, which is able to
modify the data, can be very strong combination. Or even EACirc can be altered to change not only the
output data, but even to work with the plaintext used for the test vectors.

It seems, that current implementation of EACirc with input generation found its limits with even by order
more test vectors and generations. But changes suggested in previous paragraphs can lead to creating
successful distinguisher for more-rounds TEA, which we was unable to found with more computations.
Our future aim will be adding these new methods.

Acknowledgements: The access to computing and storage facilities owned by parties and projects
contributing to the National Grid Infrastructure MetaCentrum, provided under the programme "Projects
of Large Infrastructure for Research, Development, and Innovations" (LM2010005), is greatly appreciated.

References

[BEB09] R. G. Brown, D. Eddelbuettel, and D. Bauer, “Dieharder: a random number test suite”,
Duke University Physics Department, 2009.

[CN15] Team Czech NGI. (2015). Metacentrum — Virtual Organization of the Czech National
Grid Organization, [Online|. Available: https://metavo . metacentrum. cz/ (visited on
2015-09-26).

[HIO4] J. C. Hernandez and P. Isasi, “Finding Efficient Distinguishers for Cryptographic Mappings,

with an Application to the Block Cipher TEA”, Computational Intelligence, vol. 20, no. 3,
pp. 517-525, 2004.

[HSIR02] J. C. Hernéndez, J. M. Sierra, P. Isasi, and A. Ribagorda, “Genetic Cryptoanalysis of Two
Rounds TEA”, in Computational Science—ICCS 2002, Springer, 2002, pp. 1024-1031.

[Hu+10] W. Hu et al., “Cryptanalysis of TEA Using Quantum-Inspired Genetic Algorithms”, Journal
of Software Engineering and Applications, vol. 3, no. 01, p. 50, 2010.

[KSW9T| J. Kelsey, B. Schneier, and D. Wagner, “Related-key cryptanalysis of 3-WAY, Biham-DES,
CAST, DES-X NewDES, RC2, and TEA”, 1997.

[LSOT7] P. L’Ecuyer and R. Simard, “TestU01: a C Library for Empirical Testing of Random Num-
ber Generators’, ACM Trans. Math. Softw., vol. 33, no. 4, Aug. 2007, 1ssN: 0098-3500.
DOL: 10.1145/1268776.1268777. [Online]. Available: http://doi.acm.org/10.1145/
1268776.1268777.

[Mar95] G. Marsaglia, The Marsaglia Random Number CDROM including the Diehard Battery of
Tests of Randomness, http://www.stat.fsu.edu/pub/diehard/, 1995.
[Ruk10] A. Rukhin, “A Statistical Test Suite for the Validation of Random Number Generators

and Pseudo Random Number Generators for Cryptographic Applications, Version STS-
2.1”, NIST Special Publication 800-22revia, 2010.

[She03] D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures. crc Press,
2003.
[Ste07] R. Stevanovié¢, Quantum random bit generator service, http://random.irb.hr/, 2007.

[SSUM+14] M. Sys, P. Svenda, M. Ukrop, V. Matyés, et al., “Constructing empirical tests of random-
ness’, SCITEPRESS-Science and Technology Publications, 2014.

[Ukr13] M. Ukrop, “Usage of evolvable circuit for statistical testing of randomness”, Bachelor thesis,
Masaryk university, 2013. [Ounline]. Available: http://is.muni.cz/th/374297/fi_b/
thesis.pdf.

https://metavo.metacentrum.cz/
http://dx.doi.org/10.1145/1268776.1268777
http://doi.acm.org/10.1145/1268776.1268777
http://doi.acm.org/10.1145/1268776.1268777
http://www.stat.fsu.edu/pub/diehard/
http://random.irb.hr/
http://is.muni.cz/th/374297/fi_b/thesis.pdf
http://is.muni.cz/th/374297/fi_b/thesis.pdf

[vOb15]

[vUM13]

[WNO5|

[SU+15]

Lubomir Obratil, “Automated task management for BOINC infrastructure and EACirc
project”, 2015. [Online|. Available: https://is.muni.cz/auth/th/410282/fi_b/thesis.
pdf.

P. Svenda, M. Ukrop, and V. Matyas, “Towards Cryptographic Function Distinguishers
with Evolutionary Circuits.”, in SECRYPT, SciTePress, 2013, pp. 135-146, ISBN: 978-989-
8565-73-0.

D. J. Wheeler and R. M. Needham, “TEA, a tiny encryption algorithm”, in Fast Software
Encryption, Springer, 1995, pp. 363-366.

P. Svenda, M. Ukrop, et al. (2015). EACirc project, [Online|. Available: https://github.
com/petrs/EACirc.

https://is.muni.cz/auth/th/410282/fi_b/thesis.pdf
https://is.muni.cz/auth/th/410282/fi_b/thesis.pdf
https://github.com/petrs/EACirc
https://github.com/petrs/EACirc

A Analysis of output circuits

Figure 3: Circuit from 4 rounds TEA analysis.

Figure 4: Circuit from 4 rounds TEA analysis.

Figure 5: Circuit from 4 rounds TEA analysis.

" BsLC

196

" NoP

" XOR

223

	Introduction
	Tiny Encryption Algorithm
	TEA distinguishers – state of the art

	Our approach
	Randomness testing with genetic programming
	EACirc framework
	EACirc parametrization
	TEA customization
	Testing input data

	Results
	Comparison
	Results interpretation
	Performance

	Discussion and Future work
	Analysis of output circuits

