TEA analysis using genetic programming

Karel Kubíček, karel-kubicek@mail.muni.cz Faculty of Informatics, Masaryk University

December 3, 2015

Motivation

- Cipher output should look like random data
- but it is completely deterministic
- If we can distinguish between cipher output and truly random data, cipher is not considered to be secure
- used as one of the test for AES candidate

■ Randomness testing can be automatized

- to save expensive time of skilled cryptanalyst

Common way of randomness testing - statistical batteries

- Common criteria:
- for example monobit test
- From pros to cons:

■ quick
■ interpret
■ but may be hard to design

- Closed set of tests
- there exist nonrandom data, s.t. pass tests

Tiny Encryption Algorithm

- Simple structure
- Blocks of 64 bits, 128 bits key

■ Feistel network, 32 rounds
■ Currently weak (related-key attack)

Tiny Encryption Algorithm

■ Simple structure
■ Blocks of 64 bits, 128 bits key
■ Feistel network, 32 rounds
■ Currently weak (related-key attack)
■ Why to test TEA?
■ used by other teams ([HSIR02], [HIO4], [Hu+10]) with same idea as benchmark

- they evolved a mask to restrict the input

EACirc - software-emulated electronic circuit

■ We want to create tests automatically

EACirc - process

- Generate 2 sets of test vectors

1 output of the cipher
2 truly random data - QRNG (from physical source)
■ let the distinguisher choose, which vector is random and which is nonrandom

- fitness is $\frac{\# \text { correct quesses }}{\# \text { test vectors count }}$

Results - Plaintext mode: counter

- Plaintext: counter incremented by one for each test vector
- EACirc ${ }_{1 a}$ nodes without shifts and rotations
- EACirc ${ }_{1 b}$ shifts and rotations enabled

Rounds	NIST STS	Dieharder	EACirc $_{1 a}$	EACirc $_{1 b}$
1	$1 / 162$	$0 / 20$	100	100
2	$1 / 162$	$0 / 20$	100	100
3	$27 / 188$	$1.5 / 20$	100	100
4	$183 / 188$	$6.0 / 20$	(5.0)	100
5	$188 / 188$	$16.5 / 20$	(3.0)	(5.3)
Expected	$188 / 188$	$20 / 20$	(5.0)	(5.0)

Results - Plaintext mode: strict avalanche criterion

- Plaintext: vector with two almost identical parts (first is random) differing only in a single bit

Rounds	NIST STS	Dieharder	EACirc $_{2}$
1	$29 / 188$	$2.5 / 20$	100
2	$67 / 188$	$2.5 / 20$	100
3	$(186) / 188$	$7.0 / 20$	100
4	$(187) / 188$	$8.5 / 20$	100
5	$(188) / 188$	$16.0 / 20$	(4.5)

Results - interpretation

- 4 rounds TEA distinguisher (fitness 99\%) for counter plaintext

Results - interpretation

- 4 rounds TEA distinguisher (fitness 99\%) for SAC plaintext

Future plans

- Better analysis of defects in data.
- "Give us your data" website

Questions

Questions?

Full version of MKB paper on http://crcs.cz/papers/mkb2015

Bibliography

J. C. Hernández and P. Isasi, "Finding Efficient Distinguishers for Cryptographic Mappings, with an Application to the Block Cipher TEA", Computational Intelligence, vol. 20, no. 3, pp. 517-525, 2004.
J. C. Hernández, J. M. Sierra, P. Isasi, and
A. Ribagorda, "Genetic Cryptoanalysis of Two Rounds

TEA", in Computational Science—ICCS 2002, Springer, 2002, pp. 1024-1031.
国
W. Hu et al., "Cryptanalysis of TEA Using

Quantum-Inspired Genetic Algorithms", Journal of Software Engineering and Applications, vol. 3, no. 01, p. 50, 2010.

