TEA analysis using genetic programming

Karel Kubíček, karel-kubicek@mail.muni.cz Faculty of Informatics, Masaryk University

December 3, 2015

- Cipher output should look like random data
 - but it is completely deterministic
- If we can distinguish between cipher output and truly random data, cipher is not considered to be secure
 - used as one of the test for AES candidate
- Randomness testing can be automatized
 - to save expensive time of skilled cryptanalyst

Common criteria:

for example monobit test

- From pros to cons:
 - quick
 - interpret
 - but may be hard to design
- Closed set of tests
 - there exist nonrandom data, s.t. pass tests

- Simple structure
- Blocks of 64 bits, 128 bits key
- Feistel network, 32 rounds
- Currently weak (related-key attack)

- Simple structure
- Blocks of 64 bits, 128 bits key
- Feistel network, 32 rounds
- Currently weak (related-key attack)
- Why to test TEA?
 - used by other teams ([HSIR02], [HI04], [Hu+10]) with same idea as benchmark
 - they evolved a mask to restrict the input

EACirc - software-emulated electronic circuit

We want to create tests automatically

Generate 2 sets of test vectors

- 1 output of the cipher
- 2 truly random data QRNG (from physical source)
- let the distinguisher choose, which vector is random and which is nonrandom
- fitness is $\frac{\#_{\text{correct quesses}}}{\#_{\text{test vectors count}}}$

- Plaintext: counter incremented by one for each test vector
- EACirc_{1a} nodes without shifts and rotations
- EACirc_{1b} shifts and rotations enabled

Rounds	NIST STS	Dieharder	EACirc _{1a}	EACirc _{1b}
1	1/162	0/20	100	100
2	1/162	0/20	100	100
3	27/188	1.5/20	100	100
4	183/188	6.0/20	(5.0)	100
5	188/188	16.5/20	(3.0)	(5.3)
Expected	188/188	20/20	(5.0)	(5.0)

 Plaintext: vector with two almost identical parts (first is random) differing only in a single bit

Rounds	NIST STS	Dieharder	EACirc ₂
1	29/188	2.5/20	100
2	67/188	2.5/20	100
3	(186)/188	7.0/20	100
4	(187)/188	8.5/20	100
5	(188)/188	16.0/20	(4.5)

Results - interpretation

• 4 rounds TEA distinguisher (fitness 99%) for counter plaintext

Results – interpretation

• 4 rounds TEA distinguisher (fitness 99%) for SAC plaintext

- Better analysis of defects in data.
- "Give us your data" website

Questions?

Full version of MKB paper on http://crcs.cz/papers/mkb2015

Bibliography

1

J. C. Hernández and P. Isasi, "Finding Efficient Distinguishers for Cryptographic Mappings, with an Application to the Block Cipher TEA", *Computational Intelligence*, vol. 20, no. 3, pp. 517–525, 2004.

J. C. Hernández, J. M. Sierra, P. Isasi, and A. Ribagorda, "Genetic Cryptoanalysis of Two Rounds TEA", in *Computational Science—ICCS 2002*, Springer, 2002, pp. 1024–1031.

W. Hu *et al.*, "Cryptanalysis of TEA Using Quantum-Inspired Genetic Algorithms", *Journal of Software Engineering and Applications*, vol. 3, no. 01, p. 50, 2010.