
MASARYK UNIVERSITY
FACULTY OF INFORMATICS

}w��������
��������������� !"#$%&'()+,-./012345<yA|
Automated task management

for BOINC infrastructure
and EACirc project

BACHELOR THESIS

L’ubomír Obrátil

Brno, Spring 2015

Declaration

Hereby I declare, that this paper is my original authorial work, which I
have worked out by my own. All sources, references and literature used or
excerpted during elaboration of this work are properly cited and listed in
complete reference to the due source.

L’ubomír Obrátil

Advisor: RNDr. Petr Švenda, Ph.D.

ii

Acknowledgement

I would like to express my gratitude to Pert Švenda for his guidance, in-
spiration and valuable feedback. My further thanks goes to Martin Ukrop
and other lab members for their help and advice. Also, I’d like to thank to
my girlfriend for her continuous support and endless patience.

iii

Abstract

This thesis proposes a way to automate generation and processing of ex-
periments for EACirc application running in BOINC infrastructure. Devel-
oped tool, Oneclick, is tested by recreating EACirc experiments on wide
range of cryptographic functions. Obtained results are compared to results
of older experiments. Comparison is used to detect significant changes
caused by modifications in EACirc implementation. Alternative ways to
test data stream for randomness are presented and three chosen test suites
are compared.

iv

Keywords

automation, experiments recomputation, data stream randomness, statis-
tical test suites, EACirc, CRoCS, BOINC, eStream, SHA-3

v

Contents

1 Introduction . 3
2 Automation of EACirc . 4

2.1 Terminology . 4
2.2 Motivation . 5
2.3 Oneclick design . 5

3 Implementation of Oneclick . 8
3.1 Generation of files . 8

3.1.1 Oneclick options . 8
3.1.2 Configuration files generation 10
3.1.3 Script files generation 10

3.2 Creation of jobs on BOINC server 10
3.2.1 Creation of single batch 10
3.2.2 Automated creation of multiple batches 10
3.2.3 Authentication . 11

3.3 Download of results from BOINC server 11
3.3.1 Downloading results of single workunit 11
3.3.2 Assimilator . 11
3.3.3 Downloading results of single batch 11
3.3.4 Comparison of download times 12
3.3.5 Automated download of multiple batches 12

3.4 Result processing . 12
3.4.1 Consistency and error checks 12
3.4.2 Processing of single batch 13
3.4.3 Post-processors . 13
3.4.4 Processing of multiple batches 13

4 Verification of previous computations 15
4.1 EACirc settings and output 15

4.1.1 Result format . 15
4.2 Random data distinguishing 16
4.3 Oneclick settings . 17

4.3.1 eStream project settings 17
4.3.2 SHA3 project settings 18

4.4 Oneclick performance . 18
4.5 Comparison of results of experiments 19

4.5.1 eStream project results 19
4.5.2 SHA3 project results 22

4.6 Conclusions based on comparison 25
5 Alternative statistical test suites overview 26

5.1 Statistical test suites . 26
5.1.1 NIST Statistical Test Suite 26
5.1.2 DIEHARD . 27
5.1.3 DIEHARDER . 28
5.1.4 TestU01 . 28

1

CONTENTS

5.1.5 PractRand . 29
5.1.6 RaBiGeTe . 29
5.1.7 CryptoStat . 30
5.1.8 YAARX . 31

5.2 Comparison of chosen test suites 31
5.2.1 Comparison results . 32

6 Conclusions . 33
A Data attachment . 37

2

1 Introduction

Automation is an approach, which purpose is to reduce or completely
eliminate human interaction with manufacture of products, management
of production, testing and other processes. Automation process has begun
to occur from year 1920 with invention of automatic production lines and
from 1950 it was being implemented into modern factories. Main aim of
automation is to increase efficiency, save manpower, resources and time,
improve quality of products and eliminate errors made by humans.

EACirc [Š+12] is a project running under CRoCS (Centre for Research
on Cryptography and Security) laboratory [Cen] on Faculty of Informat-
ics, Masaryk University. Currently, EACirc is used for distinguishing of
outputs of cryptographic functions and truly random data. For this pur-
pose, it uses hardware-like circuits emulated by software and generated
using evolutionary algorithms. Considering long duration of this process,
project was modified and is running on BOINC (Berkeley Open Infrastruc-
ture for Network Computing). BOINC [Uni] is infrastructure for distribu-
tion of work units assigned by server between its clients and subsequent
collection of results.

Aim of the thesis was to create a tool usable for automatic generation of
work units for EACirc and processing of their results. Manually, this pro-
cess can take nontrivial amount of time, but with help of developed tool
should be done in matter of minutes with minimal user interaction. Tool
should be extensible, usable on Windows and Linux systems and well doc-
umented. User documentation will be published on wiki of EACirc project.
Actual usability of tool will be tested on automated recomputing of old
EACirc experiments.

Chapter 2 closely describes motivation for this tool, terminology used
in thesis, design of the tool and provides simplified work-flow of proposed
solution. Implementation of individual parts of the tool is in detail de-
scribed in Chapter 3.

In Chapter 4 we describe process of recomputation of old experiments.
Chapter contains settings used for EACirc and our tool. We also present
duration of tool’s operations and comparison and interpretation of results
of older experiments and results of experiments executed by application.

Chapter 5 overviews some of the alternative approaches to randomness
testing. From mentioned statistical test suites we have chosen three and
compared their ability to detect non-randomness in various cryptographic
functions’ outputs.

3

2 Automation of EACirc

2.1 Terminology

Throughout this thesis, we will be using specific terms referring to BOINC
and EACirc environment. Most common of them are listed here:

(EACirc) project
All implemented cryptographic functions in EACirc are subset of project.
Project usually implements set of candidate functions of crypto competi-
tion e.g. eStream [Eur05] or SHA3 [Nat07].

Algorithm
One of the settings of EACirc. Represents tested cryptographic function.
At this moment more than 20 functions are implemented for each EACirc
project.

Rounds
Some algorithms can be limited by numbers of rounds used. EACirc is
aimed mostly on testing algorithms that can be limited, because it’s eas-
ier to spot non-randomness in outputs of weakened algorithms.

(EACirc) job or workunit
Smallest unit of computation. Refers to single run of EACirc application
with specific settings as are algorithm, used project or number of rounds.
One job takes usually from 10 minutes up to 2 hours to complete on BOINC
client computer. Number of possible parallel jobs depends on number of
client computers involved in computing.

Batch
Set of jobs with same settings i.e. clones. EACirc relies on statistics, so one
job and it’s results has no value. For successful results interpretation there
needs to be multiple cloned jobs in batch (usually from 100 up to 1000 jobs).

Batch results
Statistics made from results of all jobs in batch.

Result processing
Getting batch results from files created by single jobs in batch.

(BOINC) server
Part of BOINC infrastructure. Server accepts requests for job creation and
handles distribution of jobs among the clients. After computation, clients
send results back to server.

Evaluator
Module in EACirc application. Evaluator is used in circuit evolution where
it calculates circuit’s fitness based on its output. Circuits with best fitness
survive current generation and continue into the next one [Str02].

4

2. AUTOMATION OF EACIRC

Distinguisher
Circuit generated by EACirc application used for distinguishing random
data from non-random. Strong distinguisher has high success rate, where
its success rate is ratio of correctly indicated non-random data streams and
all data streams.

2.2 Motivation

Process of creating single batch with specific settings on BOINC server, us-
ing web interface is quite simple and fast. Apart from that we need to have
prepared configuration file with settings for EACirc computation. Number
of clones in batch is also specified on and handled by server. Whole action
can be completed in around two minutes.

However, there is often need for multiple batches, with little differences
in settings as algorithms or rounds. That means we need to create and man-
age multiple configuration files, one for each batch. If this process should
be done manually, the risk of error in file making as well as time needed
for job creation rapidly increases.

Another time consuming task is result processing. Each job in batch cre-
ates multiple files that have to be downloaded from BOINC server and then
checked for errors, warnings and processed for results. For numerous batches,
number of files can be in orders of thousands.

Most of these tasks can be automated so we decided to develop tool that
would do this work instead of researchers, so that they can focus on result
interpretation rather than result collecting. Scripts for result processing and
downloading were written before as part of Martin Ukrop’s thesis [Ukr13]
but they weren’t fully automating the whole process.

Purpose of this project was to develop multi-platform, robust and easy-
to-use set of tools that would automatize tasks from workunit creation
to result processing with human interaction as low as possible, hence the
name Oneclick.

2.3 Oneclick design

We decided to use approach, where most of the work with files genera-
tion and result processing handles local machine. Our motivation for this
option was better modifiability and debugging of local application rather
than service running on BOINC server. Another advantage is that user can
influence whole process and adjust it to his/her liking and preferences.
Disadvantage is that user needs to have Oneclick tool on his computer
and numerous result files have to be downloaded to machine before result

5

2. AUTOMATION OF EACIRC

processing.

Alternative to this approach is to control automation through web in-
terface, where all of the work is done on the server. This option doesn’t
require user to have application but also can’t be easily modified.

After discussion with members of CRoCS about different possible ap-
proaches, we broke down automation process into four main steps:

• Generation of files
• Creation of jobs on BOINC server
• Download of results from BOINC server
• Result processing

For Oneclick work-flow, see Figure 2.1

6

2. AUTOMATION OF EACIRC

Figure 2.1: Simplified work-flow of Oneclick tool.

7

3 Implementation of Oneclick

In this chapter, we will go through individual parts of automation process
and describe their implementation and functionality.

3.1 Generation of files

In this part of process, scripts for upload and download of jobs to BOINC
and configuration files for EACirc jobs are generated. User specifies what
files will be created in configuration file for application. These files are re-
quired in next parts of the process.

Step is executed by application developed for this purpose. User creates
single configuration file with instructions for application. Based on this file,
scripts and configuration files are then created.

3.1.1 Oneclick options

Options for Oneclick application are set in it’s configuration file. Config-
urations files for both EACirc and Oneclick are in XML format. Here is de-
scription of possible options that can be set in Oneclick configuration file.

Algorithms
This option sets for which algorithms will be created files.

Rounds
Application will create files for specified numbers of rounds with previ-
ously set algorithms.

Specific rounds
Some algorithms need different rounds for their proper working. In this
option can be set range of rounds that will be used only with single specific
algorithm. This option can be used multiple times.

Additional settings
This option is used for generating multiple configuration files with same
algorithm and rounds, but another EACirc option different for each file.
Range of values for any EACirc setting can be specified. This option can
also be used multiple time.

Workunit identifier
When it’s used, all generated files and jobs will have this as a suffix.

Clones
Option for setting number of jobs in single batch.

8

3. IMPLEMENTATION OF ONECLICK

BOINC project
Specifies for which EACirc application on BOINC jobs will be generated.
Currently, three instances of EACirc are running, one for main computa-
tions and two for testing new implementations.

Static EACirc options
These are options that remain unchanged for all generated configuration
files. After discussion with CRoCS members and EACirc users we decided
to have EACirc configuration file with general options set as part of the
Oneclick file. This was reaction to a fact that even for large number of dif-
ferent batches, most of the options for EACirc have only one value.

<?xml version=" 1 . 0 " ?>
<ONECLICK>

<OC_OPTIONS>
< !−− F i l e s f o r algori thms from 1 to 5

and rounds from 1 to 10 w i l l be created −−>
<ALGORITHMS>1−5</ALGORITHMS>
<ROUNDS>1−10</ROUNDS>
<SPECIFIC_ROUNDS>

< !−− F i l e s f o r algorithm 6 with rounds
from 11 to 15 w i l l be created −−>

<ROUNDS algorithm=" 6 ">11−15</ROUNDS>
< !−− F i l e s f o r algorithm 7 with rounds 1 , 3 , 5 , 6 , 7 and 9

w i l l be crea ted−−>
<ROUNDS algorithm=" 7 ">1 3 5−7 9</ROUNDS>

</SPECIFIC_ROUNDS>
<ADDITIONAL_SETTINGS>

< !−− All f i l e s w i l l have v a r i a n t s
with 10000 and 20000 generat ions −−>

<VALUES path="EACIRC/MAIN/NUM_GENERATIONS">
10000 20000

</VALUES>
</ADDITIONAL_SETTINGS>
< !−− Names of created workunit w i l l have s u f f i x example −−>
<WU_IDENTIFIER>example</WU_IDENTIFIER>
< !−− Each created batch w i l l conta in 100 j o b s −−>
<CLONES>100</CLONES>
< !−− Jobs w i l l be crea ted f o r main a p p l i c a t i o n −−>
<BOINC_PROJECT>EACirc</BOINC_PROJECT>

</OC_OPTIONS>
<EACIRC>

< !−− S e t t i n g s common f o r a l l j o b s −−>
</EACIRC>

</ONECLICK>

Figure 3.1: Example configuration of Oneclick

From these options, only Clones and BOINC project options are manda-
tory. Additionally, file must contain Static EACirc options. Options Algo-
rithms, Rounds, Specific rounds and Additional settings can be set to

9

3. IMPLEMENTATION OF ONECLICK

single value, set of values and range of values. See Figure 3.1 for example
configuration.

3.1.2 Configuration files generation

After parsing of provided XML file, program will start generating configu-
ration files and scripts. All settings from file are taken and for each com-
bination of Algorithms, Rounds, Specific rounds and Additional settings a
single EACirc configuration file is created. This process can take up to few
minutes when creating large number of files e.g. 50000 or more.

3.1.3 Script files generation

Scripts are created from sample script files. Samples are written in Perl
scripting language. In these samples, subroutines for creating single batch
and downloading results from single batch are written. Subroutine call for
each batch is added into scripts. Scripts handle all communication with
server as well as user authentication on server.

3.2 Creation of jobs on BOINC server

During this step, generated configuration files for EACirc are uploaded to
BOINC server and jobs for them are created.

3.2.1 Creation of single batch

In order to create single batch of jobs with same settings, BOINC web in-
terface have to be used. User uploads single configuration file and enters
settings for batch e.g. unique name or numbers of jobs in batch. Server then
clones this job and creates multiple workunits.

3.2.2 Automated creation of multiple batches

This task is carried out by Perl upload script generated in first step. In the
script there is subroutine that fill out form on server as if human would
do it. For each batch, this process is repeated, so for each, there is subrou-
tine call in generated script. Duration of this step depends on number of
batches we are creating, where creation of single batch always takes from
3 to 5 seconds (independently on number of jobs in batch).

10

3. IMPLEMENTATION OF ONECLICK

3.2.3 Authentication

Since BOINC server doesn’t allow creation of jobs by unknown entities,
user of this script has to be authenticated. At the beginning of the script,
user is prompted for his BOINC name and password and this information
is then used to log user in. Login details are stored only for the duration of
the session.

3.3 Download of results from BOINC server

In this part, results are downloaded to local machine and stored for result
processing.

3.3.1 Downloading results of single workunit

By default, server stores results in multiple directories. For each file, 4 byte
hash is calculated from it’s name and file is stored in directory named after
that value. As a result, files belonging to single job are stored in multiple di-
rectories. In order to access them, we have to calculate the hash for each file
and download results one by one. This behavior can be overridden by im-
plementing assimilator. Detailed description of our approach is described
in Section 3.3.2.

For larger number of files, this process gets too lengthy to be viable for
our purpose. Measurements showed that downloading only the most im-
portant results of computation of commonly used size would take several
hours.

3.3.2 Assimilator

In BOINC environment, a code that will execute itself after completion
of job is called assimilator. After discussion, we agreed that storing results
of EACirc in separate directory on server would be beneficial. BOINC servers
comes with sample assimilators and one of them moves results of all project
jobs into single directory. We made changes to this code, so that files would
be sorted into directories based on batch they belong to.

3.3.3 Downloading results of single batch

After implementation of assimilator, all files from single batch was stored
in single directory. To avoid downloading of multiple small files we placed
PHP script on server. This script creates zip archive of directory given in
argument and puts this archive for download. Only one archive per batch

11

3. IMPLEMENTATION OF ONECLICK

is downloaded which reduced number of files downloaded as well as time
needed for this step (see Section 3.3.4).

3.3.4 Comparison of download times

By using default ways for downloading of files we were able to download
approximately 3 files per second. Since files were downloaded one by one,
length of this step does not depend on our connection but rather on time
needed to initialize download of single file, which is ineffective because
initialization takes longer than download time of a small file.

When we used script for directory compression in combination with
assimilator, 50 files per second were downloaded while speed of this pro-
cess largely depends on our connection. Average file size was 20 KB, same
internet connection was used in both measurements.

3.3.5 Automated download of multiple batches

Perl script generated in the first part of the process uses PHP script on server.
For each batch there are function calls that downloads and then extracts the
archive on local machine. Files are then ready for post-processing.

3.4 Result processing

In this step, results downloaded from BOINC are post-processed and statis-
tics for each batch are calculated. These statistics are then saved into human-
readable result file where they are ready for further inspection.

3.4.1 Consistency and error checks

Before statistics calculation, we must check whether jobs in batch are in
expected state.

Firstly, we have to check if all jobs in batch used same configuration file.
In some cases, error on server occurs during workunit creation and one or
more jobs in batch uses different config file for computation, rendering the
jobs irrelevant in the context of the batch. Results of these jobs can’t be
taken into account when calculating statistics for the batch.

Secondly, we need to check log file of each job for errors and warnings.
Results of job with errors are often corrupted or not present at all, therefore
they can’t be accounted into batch results. If only warnings are present in
log, results of job can be still processed but user should be informed about
warnings.

12

3. IMPLEMENTATION OF ONECLICK

3.4.2 Processing of single batch

To obtain statistics of whole batch, we need to process results of all jobs.
Format of results differs depending on evaluator used in EACirc computa-
tion.

Categories Evaluator
This evaluator is used in current computations. For each job, EACirc appli-
cation determines whether given data were uniform or non-uniform based
on their p-value calculated in the EACirc run. Result of batch is then ratio
of uniform jobs and all jobs in batch.

Top Bit Evaluator
This evaluator was used in older computations. Success rate of job’s dis-
tinguishers of non-random data is computed. In order to obtain results of
batch, we need to calculate average of all success rates of jobs in batch.

3.4.3 Post-processors

Post-processor is part of Oneclick application that process batch files and
calculates statistics of the batch. Since result processing is dependent on
evaluator used in computation, we implemented multiple post-processors
into application and application alone was designed so that adding new
post-processors in the future would be possible with minimal effort. Post-
processor type is specified by user at the beginning of result processing via
command line argument. Two post-processors were implemented.

p-values post-processor
This post-processor is compatible with Categories Evaluator. Only logs
from EACirc run are needed for post-processing. p-values are extracted
from logs and stored in single file for each batch. Additionally, file with
ratios of uniform jobs and all jobs for each batch is created. Post-processor
is set as default in application and will be used if not specified otherwise
by user.

averages post-processor
Is compatible with Top Bit Evaluator and was implemented for backward
compatibility and recomputing of old results. Post-processor works only
with log files from batch, success rates are extracted and stored in separate
file for each batch. Averages of success rates of each batch are stored in
single result file.

3.4.4 Processing of multiple batches

Oneclick application is able of checking consistency and errors and calcu-
lating results of multiple batches in one run.

13

3. IMPLEMENTATION OF ONECLICK

At the beginning, consistency of batch is checked. In case this check
fails, the batch is no further processed and this event is logged. If config-
uration files are consistent, logs are checked for errors and warnings. Jobs
with errors are ignored in results calculating and logged.

Batch is then processed by specified post-processor and results are cal-
culated and stored into output files. This process is repeated for each batch
given for post-processing.

14

4 Verification of previous computations

In this chapter we will describe how was Oneclick used in recomputation
of experiments performed as part of Ukrop’s bachelor thesis [Ukr13]. Ex-
periments examined EACirc’s ability to distinguish random data from out-
put of chosen candidate functions of projects eStream and SHA3.

We decided to rerun these computations in order to test actual usability
of Oneclick tool along with implementation of EACirc that has been chang-
ing over the time. Due to time consuming manual testing of implemented
EACirc projects and algorithms, new changes in code were tested only par-
tially. With this process automated, we can compare our results to results
of old experiments and detect any significant changes in application’s be-
havior.

4.1 EACirc settings and output

For the sake of results comparability, our experiments had settings as close
as possible to those used in previous experiments. We couldn’t use exact
same options because of changes in EACirc core and its configuration file.

Application in it’s current state doesn’t support arithmetic functions in
circuit nodes, therefore functions SUM, SUBS, ADD, MULT and DIV weren’t used
in our experiments. Other bit-manipulating functions (OR, AND, XOR, NOR,
NAND, ROTL, ROTR and BITSELECTOR) remained unchanged. We also decided
to clone each job 100 times instead of 30 as in previous experiments. This
change affect accuracy of obtained results not results alone.

Rest of the settings was taken from original experiments and was set to
same or equivalent values.

4.1.1 Result format

Form of the results depends on used evaluator (see Section 3.4.2). In our
experiments, we will be using Top Bit Evaluator.

Thorough the evolution, individuals in population distinguish random
test vectors and test vectors that are outputs of specific algorithm. Test vec-
tors change every 100th generation and success rates of their guesses are
evaluated in generation after test vector change. Success rate is represented
as ratio of correctly guessed test vectors and all test vectors. From these suc-
cess rates is then chosen maximum success rate. At the end of evolution,
average of maximum success rates is calculated. This is result value of a
single job. Result of batch is average of averages of maximum success rates
(referred to as AAM).

15

4. VERIFICATION OF PREVIOUS COMPUTATIONS

Typically there are 20 individuals (distinguishers) in population, 1000
test vectors in a set, evolution runs for 30000 generations and there are
100 jobs in batch.

4.2 Random data distinguishing

Prior to running actual experiments, we need to examine results of EACirc
application when distinguishing two truly random streams of data. We will
test random data with same settings as will be used in the rest of experi-
ments, but with variable number of individuals in population and test vec-
tors in set.

Same experiments on random data were performed in Ukrop’s thesis
[Ukr13]. Due to changes in implementation we don’t expect our values to
be the same, but they should have following attributes in common:

• AAM value should be higher in experiments with more individuals
in population because it’s based on maximum success rates of indi-
viduals, therefore in bigger populations we have bigger chance of
obtaining higher value.

• Experiments with higher number of test vectors in set should have
lower AAM, since high number of vectors decreases chance of correct
random guessing.

Size of test vector set
200 500 1000 2000 5000 10000

Po
pu

la
ti

on
si

ze

5 - - .5014 - - -
10 - - .5027 - - -
20 .5092 .5056 .5042 .5029 .5018 .5013
50 - - .5060 - - -

100 - - .5078 - - -

Table 4.1: AAM values on random data

From the Table 4.1 we can see that AAM values indeed follow our pre-
sumptions as their value rises with individuals in population and decreases
with number of test vectors in set. In further experiments, we will have 20
distinguishers in population and 1000 vectors in set, therefore our refer-
ential value is 0.5042.1 If an experiment result yield value roundable to
0.504, we can rule data stream that experiment was testing as random.

1. Former experiments had referential value 0.52

16

4. VERIFICATION OF PREVIOUS COMPUTATIONS

4.3 Oneclick settings

In this section we will present settings that were used for Oneclick appli-
cation configuration for eStream and SHA3 projects respectively.

4.3.1 eStream project settings

We created experiments for previously tested combinations of algorithms
and rounds. Each combination was run in three separate modes of cipher
initialization:

• Cipher is initialized at the beginning of computation and all test vec-
tors are generated using fixed key.

• All test vectors in single set were generated using fixed key, but key
changed at every test vector set change.

• Every test vector was generated using different key.

Scripts and files generated with configuration file shown in Figure 4.1
were ready to use and no further changes were needed.

<?xml version=" 1 . 0 " ?>
<ONECLICK>

<OC_OPTIONS>
<SPECIFIC_ROUNDS>

<ROUNDS algorithm=" 4 ">1−8</ROUNDS> < !−− Decim −−>
<ROUNDS algorithm=" 9 ">1 4</ROUNDS> < !−− FUBUKI −−>
<ROUNDS algorithm=" 10 ">1−3 13</ROUNDS> < !−− Grain −−>
<ROUNDS algorithm=" 12 ">1 10</ROUNDS> < !−− HERMES −−>
<ROUNDS algorithm=" 13 ">1−4 10</ROUNDS> < !−− LEX −−>
<ROUNDS algorithm=" 20 ">1−3 12</ROUNDS> < !−− Salsa20 −−>
<ROUNDS algorithm=" 25 ">1−13 32</ROUNDS>< !−− TSC−4 −−>

</SPECIFIC_ROUNDS>
<ADDITIONAL_SETTINGS>

< !−− S e t t i n g f o r three modes of c ipher i n i t i a l i z a t i o n −−>
<VALUES path="EACIRC/ESTREAM/CIPHER_INIT_FREQ">0−2</VALUES>

</ADDITIONAL_SETTINGS>
< !−− 100 j o b s in s i n g l e batch −−>
<CLONES>100</CLONES>
< !−− Main EACirc a p p l i c a t i o n −−>
<BOINC_PROJECT>EACirc</BOINC_PROJECT>

</OC_OPTIONS>
<EACIRC>

< !−− S e t t i n g s common f o r a l l j o b s −−>
</EACIRC>

</ONECLICK>

Figure 4.1: Configuration of Oneclick for eStream project

17

4. VERIFICATION OF PREVIOUS COMPUTATIONS

4.3.2 SHA3 project settings

We again created experiments for previously tested combinations of algo-
rithms and rounds.

Scripts and files generated by the configuration file shown in Figure 4.2
was ready to use and didn’t need further changes.

<?xml version=" 1 . 0 " ?>
<ONECLICK>

<OC_OPTIONS>
<SPECIFIC_ROUNDS>

<ROUNDS algorithm=" 2 ">0−4</ROUNDS> < !−−ARIRANG−−>
<ROUNDS algorithm=" 3 ">0−4 17</ROUNDS> < !−−Aurora−−>
<ROUNDS algorithm=" 4 ">0−2 14</ROUNDS> < !−−Blake−−>
<ROUNDS algorithm=" 8 ">0−6 16</ROUNDS> < !−−Cheetah−−>
<ROUNDS algorithm=" 11 ">0−2 8</ROUNDS> < !−−CudeHash−−>
<ROUNDS algorithm=" 12 ">0−2 4</ROUNDS> < !−−DCH−−>
<ROUNDS algorithm=" 13 ">0−8 16</ROUNDS> < !−−Dynamic SHA−−>
<ROUNDS algorithm=" 14 ">1−13 17</ROUNDS> < !−−Dynamic SHA2−−>
<ROUNDS algorithm=" 15 ">1−3 8</ROUNDS> < !−−ECHO−−>
<ROUNDS algorithm=" 21 ">0−4 10</ROUNDS> < !−−Gros t l−−>
<ROUNDS algorithm=" 22 ">0−3</ROUNDS> < !−−Hamsi−−>
<ROUNDS algorithm=" 23 ">0−7 42</ROUNDS> < !−−JH−−>
<ROUNDS algorithm=" 27 ">0−4 32</ROUNDS> < !−−Lesamnta−−>
<ROUNDS algorithm=" 28 ">0−8</ROUNDS> < !−−Luffa−−>
<ROUNDS algorithm=" 31 ">0−10 104</ROUNDS>< !−−MD6−−>
<ROUNDS algorithm=" 39 ">0−2 4</ROUNDS> < !−−SIMD−−>
<ROUNDS algorithm=" 44 ">

0−5 10−24 80</ROUNDS> < !−−Tangle−−>
<ROUNDS algorithm=" 46 ">0−9</ROUNDS> < !−−Twister−−>

</SPECIFIC_ROUNDS>
< !−− 100 j o b s in s i n g l e batch −−>
<CLONES>100</CLONES>
< !−− Main EACirc a p p l i c a t i o n −−>
<BOINC_PROJECT>EACirc</BOINC_PROJECT>

</OC_OPTIONS>
<EACIRC>

< !−− S e t t i n g s common f o r a l l j o b s −−>
</EACIRC>

</ONECLICK>

Figure 4.2: Configuration of Oneclick for SHA3 project

4.4 Oneclick performance

In Table 4.2 we can see that all Oneclick operations took around 45 min-
utes. Our interaction was needed only when we was starting an operation
(executing script or application). Creation and processing of same amount

18

4. VERIFICATION OF PREVIOUS COMPUTATIONS

of jobs manually took around 12 hours of human work.2

SHA3 (14100 jobs) eStream (11700 jobs)

File generation 2 seconds 2 seconds
Job creation 7 minutes 5 minutes
Results download 6 minutes 6 minutes
Post-procesing 10 minutes 5 minutes

Total 23 minutes 18 minutes

Table 4.2: Duration of Oneclick operations

Each job we created, needed approximately 30 minutes to compute. All
of our experiments took over 12900 hours (538 days) of processor time.
Experiments were computed on 20 machines simultaneously for almost 27
days.

4.5 Comparison of results of experiments

In this section we will compare former results and results obtained from
our experiments. Results of former experiment was taken from Ukrop’s
thesis [Ukr13]. Parentheses enclosing value indicate that EACirc wasn’t
able to detect any non-random traits in given data stream.

4.5.1 eStream project results

ro
un

ds Cipher initialization mode
Once per run Once per set Once per vector

Former Present Former Present Former Present

1 1 .988949 .85 .772914 1 .954274
2 .54 .530987 .54 .530297 (.52) (.503635)
3 .53 .514760 .53 .513972 (.52) (.503690)
4 (.52) (.504505) (.52) (.504235) (.52) (.503749)
5 (.52) (.504458) (.52) (.503833) (.52) (.503752)
6 (.52) (.503845) (.52) (.503804) (.52) (.503736)
7 (.52) (.503908) (.52) (.503745) (.52) (.503704)
8 (.52) (.503925) (.52) (.503918) (.52) (.503859)

Table 4.3: DECIM

2. According to Martin Ukrop, whose experiments are used for comparison.

19

4. VERIFICATION OF PREVIOUS COMPUTATIONS

ro
un

ds Cipher initialization mode
Once per run Once per set Once per vector

Former Present Former Present Former Present

1 (.52) (.503656) (.52) (.503795) (.52) (.503642)
4 (.52) (.503793) (.52) (.503738) (.52) (.503718)

Table 4.4: Fubuki

ro
un

ds Cipher initialization mode
Once per run Once per set Once per vector

Former Present Former Present Former Present

1 1 .957750 .67 .521035 (.52) (.503871)
2 1 .933994 .66 .518083 (.52) (.503595)
3 (.52) (.503808) (.52) (.503820) (.52) (.503778)

13 (.52) (.503826) (.52) (.503907) (.52) (.503710)

Table 4.5: Grain

ro
un

ds Cipher initialization mode
Once per run Once per set Once per vector

Former Present Former Present Former Present

1 (.52) (.503992) (.52) (.503767) (.52) (.503770)
10 (.52) (.503698) (.52) (.503795) (.52) (.503758)

Table 4.6: Hermes

ro
un

ds Cipher initialization mode
Once per run Once per set Once per vector

Former Present Former Present Former Present

1 1 .985313 1 .979921 1 .986108
2 1 .978462 1 .979552 1 .978720
3 1 .962568 1 .961080 1 .962609
4 (.52) (.503924) (.52) (.503803) (.52) (.503714)

10 (.52) (.503775) (.52) (.503979) (.52) (.503845)

Table 4.7: LEX

20

4. VERIFICATION OF PREVIOUS COMPUTATIONS

ro
un

ds Cipher initialization mode
Once per run Once per set Once per vector

Former Present Former Present Former Present

1 .87 .743646 .67 .509698 (.52) (.503734)
2 .87 .749229 .67 .509256 (.52) (.503830)
3 (.52) (.503797) (.52) (.503812) (.52) (.503794)

12 (.52) (.503707) (.52) (.503946) (.52) (.503815)

Table 4.8: Salsa20

ro
un

ds Cipher initialization mode
Once per run Once per set Once per vector

Former Present Former Present Former Present

1 1 .991489 1 .990565 1 .990667
2 1 .990171 1 .990729 1 .990315
3 1 .990374 1 .989744 1 .990472
4 1 .990667 1 .991221 1 .990582
5 1 .990339 1 .990587 1 .990681
6 1 .990388 1 .990230 1 .990112
7 1 .990397 1 .991198 1 .990483
8 1 .990640 1 .990484 1 .990531
9 1 .986265 1 .986687 1 .985941

10 1 .954197 1 .954887 1 .953543
11 (.52) (.503854) (.52) (.503898) (.52) (.504011)
12 (.52) (.503850) (.52) (.503889) (.52) (.503804)
13 (.52) (.503973) (.52) (.503751) (.52) (.503861)
32 (.52) (.503710) (.52) (.503903) (.52) (.503836)

Table 4.9: TSC-4

21

4. VERIFICATION OF PREVIOUS COMPUTATIONS

4.5.2 SHA3 project results

rn
ds Results

Former Present

0 1 .997899
1 1 .997988
2 1 .997931
3 1 .997976
4 (.52) (.504012)

Table 4.10: ARIRANG

rn
ds Results

Former Present

0 1 .995859
1 1 .779662
2 1 .800408
3 (.52) (.504213)
4 (.52) (.504059)

17 (.52) (.504003)

Table 4.11: Aurora

rn
ds Results

Former Present

0 1 .998008
1 (.52) (.503708)
2 (.52) (.504165)

14 (.52) (.504178)

Table 4.12: Blake

rn
ds Results

Former Present

1 1 .791128
2 (.52) (.504037)
3 (.52) (.504023)
8 (.52) (.504081)

Table 4.13: ECHO

rn
ds Results

Former Present

0 1 .998795
1 1 .998100
2 1 .998049
3 1 .867146
4 1 .866487
5 (.52) (.503891)
6 (.52) (.504128)
16 (.52) (.504012)

Table 4.14: Cheetah
rn

ds Results
Former Present

0 1 .998955
1 (.52) (.503927)
2 (.52) (.503999)
8 (.52) (.503944)

Table 4.15: CubeHash

rn
ds Results

Former Present

0 1 .997757
1 1 .996739
2 1 .996757
3 1 .954888
4 .74 .743968
5 .61 .613096
6 .59 .604849
7 .59 .611265
8 (.52) (.503998)
16 (.52) (.504122)

Table 4.16: Dynamic SHA

22

4. VERIFICATION OF PREVIOUS COMPUTATIONS

rn
ds Results

Former Present

0 1 .999027
1 1 .769462
2 (.52) (.503943)
4 (.52) (.504094)

Table 4.17: DCH

rn
ds Results

Former Present

1 1 .946162
2 .74 .746828
3 .75 .749253
4 .57 .743968
5 .60 .613096
6 .60 .578779
7 .61 .611265
8 .60 .622003
9 .61 .621060

10 .61 .617805
11 (.52) (.504230)
12 (.52) (.504153)
13 (.52) (.504182)
17 (.52) (.503998)

Table 4.18: Dynamic SHA2

rn
ds Results

Former Present

0 1 .737774
1 .58 .715732
2 .58 .727071
3 (.52) .508260
4 (.52) .508280

10 (.52) (.504088)

Table 4.19: Grøstl

rn
ds Results

Former Present

0 1 .997456
1 1 .992742
2 1 .989812
3 1 .989312
4 1 .995962
5 1 .997072
6 1 .992859
7 (.52) (.503831)
42 (.52) (.504088)

Table 4.20: JH

rn
ds Results

Former Present

0 1 .987366
1 (.52) (.504014)
2 (.52) (.504165)
3 (.52) (.504172)

Table 4.21: Hamsi

rn
ds Results

Former Present

0 1 .999114
1 1 .997608
2 1 .997693
3 1 .997920
4 1 .997618
5 1 .982047
6 .88 .879778
7 .65 .637511
8 .53 .530127
9 (.52) (.504226)
10 (.52) (.504132)
104 (.52) (.504178)

Table 4.22: MD6

23

4. VERIFICATION OF PREVIOUS COMPUTATIONS

rn
ds Results

Former Present

0 1 .997553
1 1 .997540
2 1 .997885
3 (.52) (.504076)
4 (.52) (.503970)

32 (.52) (.504003)

Table 4.23: Lesamnta

rn
ds Results

Former Present

0 1 .997700
1 1 .997768
2 1 .997961
3 1 .997629
4 1 .997472
5 1 .997770
6 1 .997594
7 (.52) (.503949)
8 (.52) (.503935)
9 (.52) (.504077)

Table 4.24: Twister

rn
ds Results

Former Present

0 1 .997909
1 1 .996927
2 1 .994601
3 1 .992327
4 .75 .746475
5 .75 .745629
6 .74 .743688
7 .74 .742861
8 (.52) (.504012)

Table 4.25: Luffa

rn
ds Results

Former Present

0 1 .997892
1 1 .991669
2 1 .995297
3 .85 .888356
4 .84 .851132
5 .80 .840793
10 .64 .648893
11 .63 .648754
12 .64 .650617
13 .64 .649834
14 .64 .648932
15 .64 .650467
16 .64 .648025
17 .60 .622259
18 .60 .627164
19 .60 .590435
20 .60 .590683
21 .54 .559599
22 .54 .558740
23 (.52) (.504081)
24 (.52) (.503924)
80 (.52) (.504165)

Table 4.26: Tangle

rn
ds Results

Former Present

0 1 .991073
1 (.52) (.504102)
2 (.52) (.503945)
4 (.52) (.503958)

Table 4.27: SIMD

24

4. VERIFICATION OF PREVIOUS COMPUTATIONS

4.6 Conclusions based on comparison

In Sections 4.5.1 and 4.5.2 we compared outputs of current implementation
of EACirc to outputs of older implementation. Note that present results
roundable to 0.504 are equivalent to former value 0.52 and present results
higher than 0.9 are equivalent to former value 1.3

Most of the time EACirc outputted values very close to former results
and every time former EACirc detected non-randomness in stream, present
EACirc detected it too.

Present EACirc found distinguishers with notably lower success rate
in outputs of following algorithms: Grain (Table 4.5), Salsa20 (Table 4.8),
Aurora (Table 4.11), ECHO (Table 4.13), Cheetah (Table 4.14) and DCH
(Table 4.17).

Interestingly, present EACirc found non-random traits in product of
Grøstl hash function (Table 4.19) weakened to 3 and 4 rounds even when
former EACirc evaluated these outputs as completely random.

Reason behind these irregularities can be one of or combination of fol-
lowing reasons:

• Full range of node functions used in former computations isn’t im-
plemented in current version of software (see Section 4.1).

• Not completely reproducible settings for evolution (mutation, sexual
cross-overs, probabilities for genetics, etc.).

• Other reason caused by core reimplementation.

Also note that we weren’t using newly implemented Categories Evaluator
that should provide better results. This evaluator wasn’t used because we
wouldn’t be able to compare our results to the old ones if we did.

3. Former value 0.52 means that data are indistinguishable from random data whereas
value 1 means that EACirc can successfully distinguish given data from random data with
high probability. See Section 4.1.1 for details about EACirc output.

25

5 Alternative statistical test suites overview

In this chapter we will present alternative approaches to automated testing
of data stream randomness. Further in the chapter we will show results of
chosen suites on multiple pseudo-random number generators to compare
their ability to spot non-randomness in data.

5.1 Statistical test suites

5.1.1 NIST Statistical Test Suite

A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications is battery of statistical tests implemented by Na-
tional Institute of Standards and Technology [Ruk+10].

The suite is one of the most commonly used tools for testing statistical
properties of output of arbitrary algorithm or pseudo-random generator
but it’s usable on any bit stream. Main aim of this battery is to detect non-
randomness in given data. The randomness of data is determined accord-
ing to the results of following statistical tests.

Frequency Test (within a block)
Calculate ratio of 1s and 0s in whole stream or block and checks whether
it’s close to 0.5.

Runs Test
Sequences of same bits and same lengths are counted and this value is
compared to value produced by truly random generator.

Test For The Longest Run Of 1s In A Block
Compares length of longest sequence of 1s in block of certain length to
predefined value.

Random Binary Matrix Rank test
Test is focused on rank of disjoint sub-matrices of entire data stream. Aim
of this test is to check substrings for linear dependence in the sequence.

Discrete Fourier Transform Test
1s are transformed to +1 and 0s to -1. On this stream is then applied dis-
crete Fourier transformation.

(Non-)overlapping Template Matching Test
Occurrences of certain target substrings are counted within the stream and
compared to predefined values.

Maurer’s Universal Statistical Test
Checks distances between same patterns.

26

5. ALTERNATIVE STATISTICAL TEST SUITES OVERVIEW

Linear Complexity Test
Checks how long is stream until it begins to repeat itself.

Serial Test
Measures frequency of every m-bit sequence in stream and compares it to
predefined frequencies.

Approximate Entropy Test
Counts every overlapping m-bit and (m+1)-bit sequence and then compares
their respective frequencies to frequencies expected in truly random data
stream.

Cumulative Sum Test
0s and 1s are transformed to -1 and +1 respectively. Sums of blocks of
various lengths are then calculated and compared to predefined values.

Random Excursions Test
0s and 1s are transformed to -1 and +1 respectively. Cumulative sums
states within a cycle are then counted are compared to values expected
of random data.

5.1.2 DIEHARD

Diehard Battery of Tests of Randomness was developed at Florida State Uni-
versity by George Marsaglia. Original CD-ROM with test battery was pub-
lished in 1995 [Mar95]. Suite implements following tests to determine qual-
ity of a pseudo-random generator.

Birthday spacing
Random points on certain interval are generated. Spacings between points
should be distributed in a certain way.

Overlapping permutations
Sequences of five numbers are generated. All possible orders (5!) should
occur with equal probability.

Ranks of matrices
Same test as Matrix Rank test in NIST STS (see Section 5.1.1).

Monkey test
Some sequences of generated bits are treated as words. Missing words are
then counted and compared to value expected of truly random stream.

Count the 1s
1s are counted on certain positions or in sequences. The counts are then
converted into words and number of five letter words is checked.

Parking lot test
Random positions for unit circles are generated. Circles are then placed
into 100x100 square. Should new circle overlap with another, this one is
skipped. Number of successfully placed circles is counted after 12000 tries.

27

5. ALTERNATIVE STATISTICAL TEST SUITES OVERVIEW

Minimum distance test
8000 random points positions are generated and then placed into 104x104

square. Minimal distance between two points is then found and checked.

Random spheres test
4000 random points within cube of edge 1000 are generated. Each point is
then center of sphere whose radius is distance to the closest point. Volume
of smallest sphere is checked.

The squeeze test
Random floats from interval (0,1) are generated and multiplied with 231

until 1 is reached. Number of floats needed should be close to predefined
value. This process is repeated 100000 times.

Overlapping sums test
Sums of 100 consecutive floats from interval (0,1) generated by random
generator should follow certain distribution.

Runs test
Long sequence of floats from interval (0,1) is generated. Ascending and
descending sequences are counted and compared to expected values.

The craps test
2000000 rounds of game Craps are played. Number of throws per game
should be close to expected value.

5.1.3 DIEHARDER

This testing suite was developed by Robert G. Brown at the Duke Univer-
sity. It’s main aim is to make process of testing randomness of bit stream
easy while it is still possible for researchers to control tests on low level.

Suite is not just descendant of Diehard, although it mainly includes
tests from this suite in enhanced way. Tests from NIST STS are being incor-
porated into battery as well as entirely new tests developed by it’s authors
and other users. This tool features many improvements over Diehard i.e.
full extensibility, simple user interface or full open surce access [Bro04].

5.1.4 TestU01

TestuU01 is a library for empirical testing of random number generators
implemented in ANSI C language. It was developed at Université de Mon-
tréal mainly by Pierre L’Ecuyer [LS07].

The library implements statistical tests present mainly in NIST STS or in
Dieharder. Detailed description of battery’s tests can be found in documen-
tation [LEc09]. TestU01 also implements wide variety of pseudo-random
number generators (further referred to as PRNG) from many different cat-
egories.

28

5. ALTERNATIVE STATISTICAL TEST SUITES OVERVIEW

Statistical suite implements various batteries intended for different pur-
poses and including different set of tests. Following batteries are present:

SmallCrush Battery
Set of tests intended to make evaluation of a PRNG quickly.

Crush Battery
Intended to determine goodness of a PRNG with high certainty.

BigCrush Battery
Heavyweight collection of tests for thorough examination of a generator.

Rabbit Battery
Tests was selected with aim to detect wide range of non-randomness as
well as to run quickly.

Aplhabit Battery
Tests aiming to examine hardware random number generators.

BlockAlphabit Battery
Alphabit Battery applied to data after reordering the stream by blocks of
different size.

PseudoDiehard Battery
Same set of tests that Diehard test suite implements.

FIPS_140_2
Set of tests from NIST standard FIPS PUB 140-2 [Eva+01].

5.1.5 PractRand

PractRand is a C++ library including pseudo-random generators as well as
statistical tests for PRNGs, developed by Chris Doty-Humphrey [Dot10].
It provides convenient user interface not just for research but also for prac-
tical use and variety of random generator algorithms from multiple cate-
gories.

Statistical suite implements standard tests from Diehard along with
more original tests created by author. Additionally, battery is not limited
in length of stream it can process, provides preliminary results to the tests
without need to restart the testing and supports multithreaded testing for
higher performance on multiple CPU cores.1

5.1.6 RaBiGeTe

RaBiGeTe is a randomness testing framework developed for Windows and
including user friendly GUI as well as multi-thread support. Input stream

1. Author states that PractRand was tested on 100 terabytes long sequence and is ex-
pected to be able to process streams as long as few exabytes

29

5. ALTERNATIVE STATISTICAL TEST SUITES OVERVIEW

can be supplied to program via binary file or via DLL. Library implements
24 statistical tests, among them are improved versions of NIST’s STS tests,
chosen statistical tests described by Knuth [Knu97] and author’s original
tests. Detailed description of implementation and interface can be found in
documentation [Pi04].

5.1.7 CryptoStat

CryptoStat Library is Java framework for statistical analysis of block ciphers
and MACs [KS14]. It uses Bayesian methodology to test of cryptographic
function’s output. Suite implements following tests:

The linear approximation test
Checks whether results of adding different bit groups on plaintext and ci-
phertext mod 2 are uniformly distributed.

The coincidence test
Examine bit groups on ciphertext. Checks whether fixed target value oc-
curs in certain g-bit group with probability 2-g.

The input-output independence test
Tests independence of certain bit group on plaintext on different bit group
on ciphertext.

The complement test
Examined are two ciphertexts that are products of encryption of two plain-
texts that are complementing each other with two keys that are comple-
menting each other. Checks whether the same bit groups on the ciphertexts
are independent.

The cipher independence test
Tests bit groups on one ciphertext. Certain bit group should be indepen-
dent of another bit group.

The strong avalanche test
Compares unaltered ciphertext and ciphertext that was product of plain-
text and key with each bit flipped. Differences between bit groups on ci-
phertexts should be uniformly distributed.

The uniformity test
Checks uniform distribution in bit groups on single ciphertext.

Tested cryptographic primitive must implement CryptoStat’s interface for
functions [Kam+14]. Currently implemented functions are PRESENT (80-bit
key), Kasumi, ThreeWay, Blowfish, AES (128-bit key), IDEA, SipHash and
SQUASH.

All tests use generated ciphertext samples by key-plaintext pairs. Num-
ber of these pairs is specified by parameter S. Then, for each test run 2*S+2

30

5. ALTERNATIVE STATISTICAL TEST SUITES OVERVIEW

encryption keys are created: all-0s key, all-1s key, S random keys and S con-
secutive keys starting from random value. For all combinations of keys and
plaintexts are generated ciphertexts resulting in (2*S+2)2 unique strings.
Furthermore, every test can be redone T times.

5.1.8 YAARX

Yet Another Toolkit for Analysis of ARX Cryptographic Algorithms is a set of
programs for differential analysis of cryptographic algorithms belonging
to ARX family, developed at University of Luxembourg [BV14].

ARX represents class of symmetric-key algorithms that encrypts data us-
ing simple operations such as addition, rotation, XOR, bit rotations or bit
shifting. Such algorithms are for example the block ciphers FEAL, RC5,
TEA, the stream ciphers Salsa20 or the hash functions Skein, BLAKE or
SipHash.

Toolkit is implemented for ciphers TEA and XTEA and provides means
to be applicable to many ARX algorithms. Additionally this tool was used
for analysis of algorithms SPECK and RAIDEN.

Implementation of YAARX provides methods for the calculation of the
differential probabilities of ARX bit operations such as XOR, modular addi-
tion, multiplication, bit shift or bit rotation as well as larger structures built
from them. Fully automated way to look for high-probability differential
trails in ARX algorithms is also provided.

5.2 Comparison of chosen test suites

In this section, we will present results of three test suites applied to multi-
ple pseudo-random number generators. Namely we will compare TestU01
(Section 5.1.4), PractRand (Section 5.1.5) and RaBiGeTe (Section 5.1.6) on
outputs of algorithms HC-256, Mersenne Twister, RC4 and two weakened
Salsa20 variants.

The first three algorithms was chosen because of their wide usage and
quality. Salsa20 variants were chosen because we expect them to contain
non-random traits and we want to see whether any suites will rule out
these data streams as non-random.

Note, that another comparisons of test suites were conducted in the past
as well as testing of certain suite on wide range of functions. EACirc was
compared to NIST STS and Dieharder in Ukrop’s bachelor thesis [Ukr13]
and in following SeCrypt 2013 paper [ŠUM13]. Dieharder and TestU01
were also compared [Jak14] and TestU01 alone was tested on various PRNGs
[LS07].

31

5. ALTERNATIVE STATISTICAL TEST SUITES OVERVIEW

5.2.1 Comparison results

TestU01 PractRand RaBiGeTe

HC-256 PASS PASS PASS
Mersenne Twister 0/2/2 256GB PASS

RC4 PASS 1TB PASS
Salsa20 (3 rounds) 13/-/- 4KB 2KB
Salsa20 (4 rounds) PASS 16GB 32MB

Table 5.1: Results of test suites on multiple algorithms. Data were taken
from PractRand documentation page [Dot10].

PASS means that no bias in data was found by any of the tests in
battery. Any other value in columns with PractRand and RaBiGeTe
shows how long stream had to be for battery to spot non-randomness.
Values in TestU01 columns shows number of failed tests in Small-
Crush/Crush/BigCrush batteries respectively. Dash means that tests in
previous battery failed too many times, stream was no further examined
and ruled as non-random.

As we can see in Table 5.1, out presumptions about quality of HC-256
generator were fulfilled as all tests passed.

Next two generators didn’t pass PractRand battery, but to spot non-
randomness was used nontrivial amount of data. Mersenne Twister also
failed small number of tests in TestU01 batteries.

Salsa20 weakened to 3 rounds also fulfilled our presumption, as it was
ruled as non-random by all three batteries after small amount of data and
tests. Salsa20 with 4 rounds failed PractRand and RaBiGeTe but passed
all TestU01 batteries, which could mean that TestU01 is less sensitive or
doesn’t have right set of tools to spot non-random traits in this data stream.

From presented results, we can conclude that in these cases, PractRand
is more sensitive to non-randomness at cost of large amount of data pro-
cessed.

32

6 Conclusions

In this work we introduced a tool for management and processing of EACirc
experiments called Oneclick. Oneclick consists of multiple smaller scripts
and applications for which we provided documentation as part of source
code, implementation overview in Chapter 3 and user guide with instruc-
tions for building and comfortable use as part of EACirc GitHub wiki
[Š+12]. Application is multiplatform, easily modifiable and extensible and
dependent on EACirc only in parts that are absolutely necessary.

In order to test functionality of introduced tool, we fully reproduced
EACirc results from Martin Ukrop’s bachelor thesis [Ukr13]. When using
complete implementation of Oneclick we were able to reproduce these ex-
periments with minimal user interaction and in fraction of time that was
needed to perform older experiments. During testing we experienced mul-
tiple drawbacks mostly when downloading results from BOINC server. To
overcome them we had to modify default behavior of server (see Section 3.3
for details) allowing us to download results very efficiently.

We compared results of our experiments to results of older experiments
to see whether newer implementation of EACirc has better, same or worse
ability to detect non-randomness in data stream than older implementa-
tion. Based on comparison in Chapter 4 we concluded that EACirc pre-
served its distinguishing qualities. In multiple cases we obtained better or
worse results than we expected. This could be caused by different set of
functions used in circuit nodes or changes in implementation. Our exper-
iments were done using evaluator that is no longer in use, therefore it is
possible that our following computation will deliver better success in dis-
tinguishing outputs of cryptographic functions.

In Chapter 5 we prepared overview of used statistical test suites for
testing data for occurrence of non-random traits. At the end of chapter we
present comparison of performances of few chosen suites on multiple al-
gorithms.

In the future, we plan to recompute experiments again but with use of
current evaluator, settings and circuit functions. After these tests we will
have better knowledge about EACirc’s abilities. Given our current capabil-
ity to run many experiments without effort we can try more combinations
of settings in shorter time. It is also possible that we pick up idea to create
alternative Oneclick as server service, thus removing need for workunit
creation from local machine and local result processing when user doesn’t
need to modify the process. Additionally, we can extend Oneclick from
EACirc to wider range of projects running on our BOINC server.

33

Bibliography

[Bro04] R. G. Brown. (2004). Dieharder, A Random Number Test
Suite. version 3.31.1, Duke University Physics Department,
[Online]. Available:
http://www.phy.duke.edu/~rgb/General/dieharder.php
(visited on 04/21/2015).

[BV14] A. Biryukov and V. Velichkov, “Automatic Search for
Differential Trails in ARX Ciphers”, 2014.
[Online]. Available: https://eprint.iacr.org/2013/853.pdf
(visited on 04/16/2015).

[Cen] Centre for Research on Cryptography and Security.
[Online]. Available: http://www.fi.muni.cz/crocs (visited
on 05/06/2015).

[Dot10] C. Doty-Humphrey. (2010). PractRand. version 0.92,
[Online]. Available: http://pracrand.sourceforge.net
(visited on 04/29/2015).

[Eur05] European Network of Excellence for Cryptology. (2005).
eStream project, Call for stream cipher primitives, [Online].
Available: http://www.ecrypt.eu.org/stream/call/ (visited
on 05/06/2015).

[Eva+01] D. L. Evans et al.,
“Security requirements for cryptographic modules”,
FIPS PUB 140-2, 2001. [Online]. Available:
http://csrc.nist.gov/publications/fips/fips140-
2/fips1402.pdf (visited on 04/29/2015).

[Jak14] K. S. Jakobsson, “Theory, Methods and Tools for Statistical
Testing of Pseudo and Quantum Random Number
Generators”, 2014. [Online]. Available: http://liu.diva-
portal.org/smash/get/diva2:740158/FULLTEXT01.pdf
(visited on 04/29/2015).

[Kam+14] A. Kaminsky et al. (2014). The CryptoStat Library,
Department of Computer Science Rochester Institute of
Technology, [Online]. Available: http:
//www.cs.rit.edu/~ark/parallelcrypto/cryptostat/doc/
(visited on 04/16/2015).

[Knu97] D. E. Knuth, Art of Computer Programming, Volume 2:
Seminumerical Algorithms (3rd Edition).
Addison-Wesley Professional, 1997, ISBN: 0201896842.

34

http://www.phy.duke.edu/~rgb/General/dieharder.php
https://eprint.iacr.org/2013/853.pdf
http://www.fi.muni.cz/crocs
http://pracrand.sourceforge.net
http://www.ecrypt.eu.org/stream/call/
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://liu.diva-portal.org/smash/get/diva2:740158/FULLTEXT01.pdf
http://liu.diva-portal.org/smash/get/diva2:740158/FULLTEXT01.pdf
http://www.cs.rit.edu/~ark/parallelcrypto/cryptostat/doc/
http://www.cs.rit.edu/~ark/parallelcrypto/cryptostat/doc/

BIBLIOGRAPHY

[KS14] A. Kaminsky and J. Sorrell, “CryptoStat, A Bayesian
Statistical Testing Framework for Block Ciphers and MACs”,
2014. [Online]. Available: http:
//www.cs.rit.edu/~ark/students/jls6190/report.pdf
(visited on 04/16/2015).

[LEc09] P. L’Ecuyer. (2009). TestU01. version 1.2.3,
Université de Montréal, [Online]. Available:
http://simul.iro.umontreal.ca/testu01/tu01.html
(visited on 04/29/2015).

[LS07] P. L’Ecuyer and R. Simard, “TestU01: A C Library for
Empirical Testing of Random Number Generators”,
in ACM Transactions on Mathematical Software,
vol. 33, 4, article 22, 2007.

[Mar95] G. Marsaglia. (1995). Diehard Battery of Tests of Randomness,
Florida State University,
[Online]. Available: http://www.stat.fsu.edu/pub/diehard/
(visited on 04/21/2013).

[Nat07] National Institute for Standards and Technology. (2007).
SHA-3, Cryptographic hash algorithm competition,
[Online]. Available:
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
(visited on 05/06/2015).

[Pi04] C. Pi. (2004). RaBiGeTe Documentation. version 2.0.0,
[Online]. Available:
http://cristianopi.altervista.org/RaBiGeTe_MT/ (visited
on 04/29/2015).

[Ruk+10] A. Rukhin et al., “A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic
Applications”, 2010. [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-22-
rev1a/SP800-22rev1a.pdf (visited on 04/21/2015).

[Š+12] P. Švenda, M. Ukrop, M. Prišt’ák, et al. (2012). Eacirc,
Framework for autmatic search for problem solving circuit
via evolutionary algorithms, Laboratory of Security and
Applied Cryptography, Masaryk University,
[Online]. Available: http://github.com/petrs/EACirc
(visited on 05/06/2015).

[Str02] F. Streichert, “Introduction to Evolutionary Algorithms”,
pp. 4–6, 2002. [Online]. Available: http://www.ra.cs.uni-
tuebingen.de/mitarb/streiche/publications/
Introduction_to_Evolutionary_Algorithms.pdf (visited on
04/16/2015).

35

http://www.cs.rit.edu/~ark/students/jls6190/report.pdf
http://www.cs.rit.edu/~ark/students/jls6190/report.pdf
http://simul.iro.umontreal.ca/testu01/tu01.html
http://www.stat.fsu.edu/pub/diehard/
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://cristianopi.altervista.org/RaBiGeTe_MT/
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://github.com/petrs/EACirc
http://www.ra.cs.uni-tuebingen.de/mitarb/streiche/publications/Introduction_to_Evolutionary_Algorithms.pdf
http://www.ra.cs.uni-tuebingen.de/mitarb/streiche/publications/Introduction_to_Evolutionary_Algorithms.pdf
http://www.ra.cs.uni-tuebingen.de/mitarb/streiche/publications/Introduction_to_Evolutionary_Algorithms.pdf

BIBLIOGRAPHY

[ŠUM13] P. Švenda, M. Ukrop, and V. Matyáš, “Towards cryptographic
function distinguishers with evolutionary circuits”, 2013.
[Online]. Available: http://www.fi.muni.cz/~xsvenda/
papers/secrypt2013/Svenda_EACirc_SeCrypt2013.pdf
(visited on 04/29/2015).

[Ukr13] M. Ukrop, “Usage of evolvable circuit for statistical testing of
randomness”, bachelor thesis, Faculty of Informatics Masaryk
University, 2013.
[Online]. Available: http://is.muni.cz/th/374297/fi_b/
(visited on 04/16/2015).

[Uni] University of California, Berkeley.
[Online]. Available: http://en.wikipedia.org/wiki/
Berkeley_Open_Infrastructure_for_Network_Computing
(visited on 05/07/2015).

36

http://www.fi.muni.cz/~xsvenda/papers/secrypt2013/Svenda_EACirc_SeCrypt2013.pdf
http://www.fi.muni.cz/~xsvenda/papers/secrypt2013/Svenda_EACirc_SeCrypt2013.pdf
http://is.muni.cz/th/374297/fi_b/
http://en.wikipedia.org/wiki/Berkeley_Open_Infrastructure_for_Network_Computing
http://en.wikipedia.org/wiki/Berkeley_Open_Infrastructure_for_Network_Computing

A Data attachment

The data attachment contains source codes and results of our experiments
sorted in following structure:

eacirc_oneclick
Source code of EACirc and Oneclick on GitHub. Oneclick related code is in
directory oneclick (contains copy of entire oneclick branch of EACirc’s
repository with last commit c8fb964 from 2015-05-14).

eacirc_wiki
Wiki of EACirc project on GitHub. Contains user documentation for Oneclick
(contains copy of wiki repository with last commit cd4758e from 2015-05-14).

results_estream
Raw results of experiments distinguishing outputs of eStream algorithms
from random data (used in Section 4.5.1).

results_sha3
Raw results of experiments distinguishing outputs of SHA-3 algorithms
from random data (used in Section 4.5.2).

results_random
Raw results of experiments distinguishing random data from random data
(used in Section 4.2).

thesis_src
Source files of thesis, including figures, images and bibliography used in
text.

37

	Introduction
	Automation of EACirc
	 Terminology
	 Motivation
	 Oneclick design

	Implementation of Oneclick
	 Generation of files
	 Oneclick options
	 Configuration files generation
	 Script files generation

	 Creation of jobs on BOINC server
	 Creation of single batch
	 Automated creation of multiple batches
	 Authentication

	 Download of results from BOINC server
	 Downloading results of single workunit
	 Assimilator
	 Downloading results of single batch
	 Comparison of download times
	 Automated download of multiple batches

	 Result processing
	 Consistency and error checks
	 Processing of single batch
	 Post-processors
	 Processing of multiple batches

	Verification of previous computations
	 EACirc settings and output
	 Result format

	 Random data distinguishing
	 Oneclick settings
	 eStream project settings
	 SHA3 project settings

	 Oneclick performance
	 Comparison of results of experiments
	 eStream project results
	 SHA3 project results

	 Conclusions based on comparison

	Alternative statistical test suites overview
	 Statistical test suites
	 NIST Statistical Test Suite
	 DIEHARD
	 DIEHARDER
	 TestU01
	 PractRand
	 RaBiGeTe
	 CryptoStat
	 YAARX

	 Comparison of chosen test suites
	 Comparison results

	Conclusions
	Data attachment

