
On the origin of yet another channel

Petr Švenda and Václav Matyáš
{svenda, matyas}@fi.muni.cz

Masaryk University, Brno, Czech Republic

Abstract. Cryptanalysis of a cryptographic function like stream, block
or hash function usually requires human cryptanalytical skills and labour.
However, some automation is possible – e.g., by randomness testing suites
like NIST/Diehard that can be applied to test statistical properties of
cryptographic function outputs. Yet such testing suites are limited only
to predefined statistical functions. We propose more open approach based
on combination of software circuits and evolutionary algorithms to search
for unwanted statistical properties like next bit predictability or ran-
dom data non-distinguishability. Design of a software circuit acting as
a testing function is automatically evolved by a stochastic optimization
algorithm and uses the potentially unknown “other channel” leaking in-
formation during cryptographic function evaluation.
We tested this approach on candidate algorithms for SHA-3 and eStream
competitions with comparable (but slightly worse) results as STS NIST
and Diehard tests w.r.t. the number of rounds of the inspected algorithm,
where tests are still able to detect unwanted statistical properties in
output. Additionally, the proposed approach is not limited only to assess
randomness-like properties in function output, but can be also used for
other tests like whether a function is invertible or how does its avalanche
effect degrade.

1 Unguided hunt for weaknesses in cryptographic
functions

The main motivation for this work is to provide a tool with the crucial ability
to automatically probe for unwanted properties of cryptographic functions that
signalize flaws in the function design. Such properties might be (note that we
intentionally target a broad range of cryptographic functions):

– predictability of next output bit (stream ciphers),
– corrupted avalanche effect (hash functions, stream ciphers),
– distinguishability of function outputs from truly random data (block ci-

phers), etc.

Typical cryptanalytical approach against new cryptographic function is usu-
ally based on application of various statistical testing tools (STS NIST, Diehard)
as the first step and then application of established cryptanalytical procedures
(algorithmic attacks, differential cryptanalysis) combined with an in-depth knowl-
edge of the inspected function. The first step can be at least partly automated

and (relatively) easy to apply, but will detect only most visible defects in function
construction or apply only to limited number of algorithm rounds. The second
approach usually yields much stronger insight and detected more defects, but
usually requires extensive human cryptanalytical labour. Additionally, general
statistical testing tools are limited to a predefined set of statistical tests. That
on one hand makes the follow-up analytical work easier if the function does not
pass a certain test, yet on the other hand severely limits the potential to detect
other defects.

We designed and tested an automated process that can be used in a similar
manner as general statistical testing suites, but additionally provides the pos-
sibility to construct (again automatically) new tests. We represent “tests” as a
hardware-like circuit with a software emulator to execute the circuit over given
inputs and to compute outputs and evolutionary algorithms (EAs) to design
the circuit layout (“wires” and “gates”). Although such an automated tool will
not (at least for the moment) outperform a skilled cryptographer on particular
cryptographic function, it still has two main advantages:

– It can be applied automatically against multiple different cryptographic func-
tions with no additional human labour working implementation of the in-
spected function is sufficient.

– It may discover and use unanticipated information leakage “channels” from
the function than those usually assumed by cryptographers.

We implemented the tool (more details given in Section 3) and tested our
idea on SHA-3/e-Stream candidate functions (details are given in Section 4).
Results are very similar to those obtained from NIST and Diehard test suites
w.r.t. the number of rounds of the inspected function where tests were able to
find some defects. Based on experience with behaviour and significance of results,
we add detailed discussion about potential extensions, expressive power of an
circuit and interesting behaviour detected (Section 5). Conclusions are given in
Section 6.

2 Previous work

Numerous works tackled the problem of distinguisher construction between data
produced by cryptographic functions and truly random data, both with reduced
and full number of rounds. Usually, statistical testing with battery of tests (e.g.,
STS NIST [Ruk10] or Dieharder [Bro04]) or additional custom tailored statis-
tical tests are performed. The STS NIST battery was used to evaluate fifteen
AES (round 2) candidates, demonstrating some deviation from randomness in
six candidates [Sot99]. In [TDcc06], detailed examination of eStream Phase 2
candidates (full and reduced round tests) with STS NIST battery and structural
randomness tests was performed, finding six ciphers deviating from expected val-
ues. More recently, the same battery, but only a subset of the tests, was applied
to the SHA-3 candidates (in the second round of competition, 14 in total) for a
reduced number of rounds as well as only to compression function of algorithm

[DEKS10]. Additionally, custom-built statistical tests based on strict avalanche
criterion and others were used, resulting in estimation of relative security mar-
gins of candidates w.r.t. the number of rounds. [SDEK10] proposed a method
to test statistical properties of short sequences typically obtained by block ci-
phers or hash algorithms for which some from STS NIST can not be applied
due to insufficient length. Probabilities expressed by p-values are calculated for
each short subinterval and improved method based on recalculation of expected
probabilities is provided. Example results applied to selected block and hash
functions are presented. 256-bit versions of SHA-3 finalists were subjected to
statistical tests using a GPU-accelerated evaluation [Kam12]. Both algorithms
and selected tests from STS NIST battery were implemented for the nVidia
CUDA platform. Because of massive parallelization, superpoly tests introduced
by [DS09] were possible to be performed, detecting some deviations in all but
the Grøstl algorithm.

Stochastic algorithms were also applied in cryptography to some extent, fo-
cusing initially mostly on simple transposition and substitution ciphers or prob-
lems like efficient knapsack algorithm. A nice review of usage of genetic algo-
rithms in cryptography up to year 2004 can be found in [Del04], a more recent
review of evolutionary methods used in cryptography is provided by [PG11].
TEA algorithm [WN95] with a reduced number of rounds is a frequent target
for cryptoanalysis with genetic algorithms [CVn05,Hu10,GHD07]. In [GHD07]
a comparison of genetic techniques is presented, with several suggestions which
genetic techniques and parameters should be used to obtain better results. We
adopted the genetic programming [BNKF97] technique with steady-state re-
placement [LLL08]. An important difference of our approach from previous work
is the production of a program (in the form of a software circuit) that provides
different results depending on given inputs. Previous work produced a fixed re-
sult, e.g., bit mask in [CVn05,Hu10] that is directly applied to all inputs.

Structure of a software circuit resembles artificial neural networks (NN) to
some extent. Notable differences are in the learning mechanism and in a high
number of layers used in our software circuit (NN usually use only three). Re-
cently, deep belief neural networks (DBNN) were proposed [HOT06] with the
learning algorithm based on restricted Boltzmann machines that also use 5 or
even more layers. Still, a software circuit uses mutation and crossover to con-
verge towards an optimum instead of back propagation in case of classical NN
or lay-by-layer learning algorithm for DBNN. Also, different functions may be
computed inside every node in case of software circuit instead of weighted sum
of DBNN.

3 Software circuit designed by evolution

Software circuit is a software representation of a hardware-like circuit with nodes
(“gates”) responsible for computation of simple functions like AND or OR taking
inputs and providing outputs. Nodes are positioned in layers where outputs from
the previous layer are provided as inputs to the nodes in the following layer by

connectors (“wires”). Input to the whole circuit is simulated as an output of
the first layer of nodes and output of last layer is taken as the output of whole
circuit. Connectors might connect node to all nodes from a previous layer or
only to some of them.

Examples of such a circuit might be a Boolean circuit where functions com-
puted in nodes are limited to logical functions or artificial neural networks where
nodes compute the weighted sum of the inputs. Besides studying complexity
problems, these circuits were used in various applications like construction of a
fully homomorphic scheme [Gen10] or in design of efficient image filters [SSV12].

3.1 How to design circuit layout

Circuit evaluation can be performed by a software emulator that propagates in-
put values, computes functions in nodes and collects outputs or possibly directly
in hardware when FPGAs are used [SSV12]. Circuit design can be laid out by an
experienced human designer, automatically synthetized from the source code or
even automatically designed and then improved by an optimization algorithm.
We use the last approach and combine a software circuit evaluated on a CPU (or
also on GPUs) with evolutionary algorithms (EAs). The main goal is (somehow)
to find a circuit that will reveal an unwanted defect in the inspected crypto-
graphic functions. For example, if a circuit is able to correctly predict the nth

bit from a key stream generated by a stream cipher just by observing previous
(n-1) bits, then this circuit serves as a next-bit predictor [Yao82], breaking the
security of the given stream cipher. Note that a circuit need not to provide cor-
rect answers for all inputs – it is sufficient if a correct answer is provided with a
statistically significant probability better than random guessing.

When combined with evolutionary algorithms (broader term than genetic
algorithms, covers also stochastic algorithms inspired by nature evolution), the
whole process of circuit design consists from the following steps:

1. Several software circuits are randomly initialized (randomly selected func-
tions in nodes, randomly assigned existence of connectors between nodes)
forming population of candidate individuals. Every individual is represented
by one circuit. Note that such a random circuit will most probably not pro-
vide any meaningful output for given inputs and can even have disconnected
layers (no output at all).

2. If necessary, generate new test vectors used later by a so-called fitness func-
tion for evaluation.

3. Every individual (circuit) in the population is emulated and obtained outputs
are evaluated by the fitness function that will assign a rating based on how
well does this individual perform in solving a given task (e.g., what fraction
of inputs were correctly recognized as being output of stream cipher rather
than completely random sequence).

4. Based on the evaluation provided by the fitness function, a potentially im-
proved population is generated by mutation and crossover operators (genetic
algorithms) from individuals taken from the previous generation. Design of

every individual (circuit) may be changed by changing operations computed
in nodes or add/remove connectors between nodes in subsequent layers.

5. Repeat from step 2. Usually hundreds of thousands or more repeats are
performed, therefore the evaluation of a single circuit in step 3 must be fast
enough (currently, we are in the milliseconds range).

IN_0 IN_1 IN_2 IN_3

1_0_NOR 1_1_ROL_5 1_2_AND 1_3_NOP

2_0_ROL_0 2_1_SUM 2_2_ADD 2_3_ROR_6

3_0_SUB 3_1_OR_ 3_2_SUB 3_3_DIV

4_0_BSL_3 4_1_DIV 4_2_NAN 4_3_ADD

0_OUT 1_OUT 2_OUT 3_OUT

Fig. 1: Software circuit with input nodes (IN x), inner nodes, output nodes
(x OUT) and connectors. Note that not all input or output nodes need to be
used as well not all inner nodes need to output any value.

3.2 How to evaluate circuit performance?

Evaluation of a circuit performance is a crucial yet tricky part of the proposed
process. Evaluation of a circuit is so called “supervised teaching” – we have pairs
of inputs and expected outputs (given by a “teacher”). Outputs from a circuit
for given inputs are compared with expected outputs and circuit performance
is then graded accordingly. When done incorrectly, the process will not provide
a circuit solving the expected problem. The progress may fail at least on two
fronts:

1. Improperly defined problem to be solved by circuit. For example, if we define
a problem to be solved so that there is more than one correct answer (e.g.,
to find a preimage for a given hash function output) and yet we insist only
on one particular preimage being correct (although other values also provide
same hash), the circuit will not be able to converge towards a working so-
lution, even though the hash function is invertible. Alternatively, a problem
may be too hard to be solved, yet a working solution for a limited number of
rounds still would be of interest from the cryptanalysis perspective. Finally,
a circuit may seem to be solving the problem, yet we do not learn anything

about the function itself – so called “overlearning”). E.g., if we ask the circuit
to distinguish between a function output and a completely random value,
but we do not change the test vectors, so we just learn which particular test
inputs belongs to which category and achieve a very good performance on
the testing set, but not on new verification data.

2. Unsuitable settings for EAs to progress towards a better solution (usually
caused by an improper fitness function or insufficient amount of computa-
tional time). EAs work well where a gradual improvement with small steps
towards a better solution is possible. Problems for which you either have
a solution that solves it at once or you have nothing are not suitable. For
example, defining fitness function as binary YES (all output bits of circuit
match expected bits) or NO (otherwise) will hamper EA chances to find
a working solution. A better approach is to calculate fraction of bits that
match over many different tests vectors (input, expected output). Last but
not least, changing the test vectors either too often (EA fails to adapt) or
too infrequently (EA will overlearn) can lead to dead ends.

So far, we adapted the following problems to be tested by a circuit, with results
presented for the first one (random distinguisher) in Section 4:

1. Random distinguisher – the circuit input is a sequence of bytes produced
either by the inspected function or generated completely randomly and the
output is the guessed source (e.g., if the Hamming weight of circuit output
is higher than 1

2 than it is the function output, otherwise it is a random
sequence). A circuit is successful if able to distinguish function outputs from
random sequences significantly better than by random guessing. Truly ran-
dom sequences were taken from the Quantum random bit generator service
[STS+08].

2. Next bit predictor – the circuit input is a vector of n bits taken from an
output of the function (e.g., stream cipher) and the expected circuit output
is the value of the (n+1)th bit. The problem can be relaxed to the prediction
of multiple bits, Hamming weight or other property of following byte(s). A
circuit is successful if able to predict correct value(s) significantly better than
by random guessing. A typical target would be some keyed function with an
unknown key, yet unkeyed functions can be targeted as well – caution must
be taken to prevent a circuit simply learning the unkeyed function itself and
use it to compute the expected output.

3. Strict Avalanche Criterion defector – the avalanche effect property of func-
tion F (e.g., hash) expects half bits to flip in the output on average, even
for a single bit change in the input. The input for the circuit is a sequence
of bytes X. Expected output from the circuit is such a sequence Y that will
produce significantly more (or less) bit flips than expected when processed
by a function (Hamming distance(F (X), F (Y)) >> |X|/2). A special care
must be taken not to let circuit just learn the function itself.

Note that an interpretation of a circuit output might not be just an exact
match to the expected value. Even when only Yes or No is expected, one can let

the circuit to encode its answer into a bit value/Hamming weight/majority value
of the circuit output, as such a less strict matching allows for multiple ways how
the circuit can signalize Yes answer and gives more flexibility to the EA.

3.3 Practical implementation

We implemented our evaluation software circuit both on CPU and GPU com-
bined with the GAlib optimization library [GL207]. Significantly larger test
vectors are possible (105 instead of 103) with a GPU implementation (nVidia
CUDA), where many different evaluations can be executed in parallel with negli-
gible performance impact. On average, a 70x speedup w.r.t. CPU implementation
was achieved. Additionally, we use BOINC infrastructure to perform distributed
computation with more thousand CPU cores and 16 nVidia GF 465 cards. One
of well described problem of neural networks is difficulty to understand the re-
sulting solution. To ease understanding of our software circuits, we implemented
an automatic removal of nodes and connectors that do not contribute to the
resulting fitness value, transformation into the Graphviz dot format for visual-
ization and also transformation into a C program source code that executes the
functionality of a particular circuit without the need to run circuit emulator. For
start, we used following elementary operations for nodes: no operation (NOP),
logical functions (AND, OR, XOR, NOR, NAND), bit manipulating functions
(ROTR, ROTL, BITSELECTOR), arithmetic functions (ADD, SUBS, MULT,
DIV, SUM), read specified input even from internal layer (READ) and produce
constant value (CONST). Typical initial settings for software circuit parameters
were: 5-8 layers, 16-32 input nodes, 16-32 nodes in internal layer, 1-16 output
nodes. Typical settings for EA parameters were like: 20 individual in population,
1000 test vectors (CPU version), 0.05 probability of mutation, and 0.5 probabil-
ity of crossover.

4 Results for eStream/SHA3 candidates

The approach described above was tested on candidate function for eStream
[ECR04] and SHA-3 [SHA07] competitions. The big advantage came with avail-
ability of implementations with the same programming interface (API) for all
candidates – one can automatically test (e.g., random distinguisher) on large
number of functions without need to change (significantly) corresponding code.

Presented results serve as a baseline over multiple functions rather than the
best result we can achieve against particular function. Because of the significant
number of inspected functions parametrized additionally with different number
of rounds and multiple parallel runs for every such a combination, we were not
able to optimize for best results for every separate function. Indeed, we were
able to obtain improvements (better distinguishing rate) for selected functions
where we selectively applied more optimizations. For example, when circuit with
memory (see Section 5) was used against Decim limited to three rounds, distin-
guishing success rate raised from 0.53 to 0.62.

4.1 eStream candidates

From 34 candidates in the eStream competition, 23 were potentially usable for
testing (renamed or updated versions, problems with compilation). For start,
we limited ourselves to only 7 of these (Decim, Grain, FUBUKI, Hermes, LEX,
Salsa20, TSC) having structure allowing reduction of complexity by decreased
number of rounds in a straightforward way.

In this work, we aim to obtain a software circuit capable of correctly distin-
guishing between a stream of bytes generated by a eStream candidate function
with an unknown key and stream of truly random bytes. We worked with three
scenarios with respect to the frequency of key change:

1. Key is fixed for all generated test sets and vectors. Even when test sets
change, new test vectors are generated using the same key.

2. Every test set was generated using a different key. All test vectors in a
particular test set are generated with the same key.

3. Every test vector (16 bytes) was generated using a different key.

Function name
(total rounds)

Rounds detectable by NIST
(run/set/vector)

Rounds detectable by circuit
(run/set/vector)

Decim (8) 5/5/2 3/3/1

FUBUKI (4) 0/0/0 0/0/0

Grain (13) 2/2/0 2/2/0

Hermes (10) 0/0/0 0/0/0

LEX (10) 3/3/3 3/3/3

Salsa20 (20) 2/2/0 2/2/0

TSC (32) 10/10/10 10/10/10

Table 1: Results for eStream candidates.

4.2 SHA-3 candidates

Similarly, we tested also SHA-3 competition candidates. From 51 candidates for
the first round, only 42 were potentially usable for testing due to compilation
problems, source code size, speed etc. We limited ourselves to 18 candidates
that can be easily limited in complexity by decreasing the number of internal
rounds and while the full (unlimited) version produced a random-looking out-
put, their most limited version did not. Following candidates were considered:
ARIRANG, Aurora, Blake, Cheetah, CubeHash, DCH, Dynamic SHA, Dynamic
SHA2, ECHO, Grøstl, Hamsi, JH, Lesamnta, Luffa, MD6, SIMD, Tangle and
Twister.

Function name
(total rounds)

A
R

IR
A

N
G

(4
)

A
u
ro

ra
(1

7
)

B
la

k
e

(1
4
)

C
h
ee

ta
h

(1
6
)

C
u
b

eH
a
sh

(8
)

D
C

H
(4

)

D
y
n
a
m

ic
S
H

A
(1

6
)

D
y
n
a
m

ic
S
H

A
2

(1
7
)

E
C

H
O

(8
)

G
rø

st
l

(1
0
)

H
a
m

si
(3

)

J
H

(4
2
)

L
es

a
m

n
ta

(3
2
)

L
u
ff

a
(8

)

M
D

6
(1

0
4
)

S
IM

D
(4

)

T
a
n
g
le

(8
0
)

T
w

is
te

r
(9

)

Rounds detectable
by STS NIST

3 3 1 5 1 1 7 12 2 3 1 6 3 7 9 1 22 7

Rounds detectable
by software circuit

3 2 0 4 0 1 7 10 1 2 0 6 2 7 8 0 22 6

Table 2: Results for SHA-3 candidates.

4.3 Discussion

Detailed results including the circuits found, analysis of some of them and details
for the STS NIST settings can be found in this paper supplementary data1 and
[Ukr13]. The following main points were observed:

1. The circuit providing good distinguishing results for the particular combina-
tion of function, number of rounds and used key usually significantly decrease
in success rate when function or even key is changed. Therefore, whole pro-
cess of the evolution to particular combination is to be perceived as a test
in some cases.

2. Not all operations and connectors are relevant for the circuit performance. Ir-
relevant components can be automatically pruned out, easing understanding
of the circuit.

3. STS NIST is better in detection of statistical deviances than proposed ap-
proach for multiple SHA-3 candidates, but usually only one more round.

5 Increasing the expressivness of the circuit

Previous section provided us with the baseline results for the wide range of
functions. We layed out the following metrics to measure the success of the
proposed approach:

1. Proposed approach should have the power to express statistical tests used
in STS NIST battery (i.e., test from NIST can be encoded in the form of
software circuit, but not necessarily automatically by genetic programming).

2. Proposed approach should provide at least same results (w.r.t. number of
rounds of limited function) as the STS NIST battery. Preferably, there should

1 Detailed results can be found at http://www.fi.muni.cz/~xsvenda/papers/

spw2013/.

be at least one (cryptographic) function with the number of rounds limited
to N, where STS NIST fails to detect significant defects in sequence, but
proposed approach does.

3. Proposed approach may fail to achive same results as the STS NIST, but
then should provide other significant advantage like smaller computation or
memory requirements or requiring significantly less input data (thus allowing
for use as function’s online tester).

4. Provide better distinguishing success rate when combined with STS NIST
then STS NIST provides alone (approach is providing additional test cover-
age not provided by STS NIST, even when approach alone cannot distinguish
with better probability than STS NIST).

Generally, we achieved points 1 (when extension with memory is considered,
see Section 5) and 3, in some cases achieved point 2 and failed yet to achieve point
4. Basic version of the proposed approach uses inputs only 16-32 bytes long. Note
that constructing distinguisher between function output and truly random data
based on as short sequence as 16 bytes is significantly more difficult than same
task for long sequence. At first, longer sequence decrease the impact of small
fluctuation of both random data and function’s output (e.g., if there is inbalance
of number of zeroes and ones by only one bit in 16 bytes, it is 1/128 of whole
input, making it relatively significant difference, even when one can completelly
expect such a situation in truly random data. Contrary, if 1 000x1 000 000
bits are used (STS NIST), such a difference is insignificant). Second, function’s
output can produce periodic behavior easily detectable in longer data stream, but
completely invisible in 16 bytes only. Indeed, when data for STS NIST battery
is generated in such a way that change key every 16 bytes, proposed approach
provides exactly same results on the tested functions.

To further improve performance of the evolutionary circuit, we propose addi-
tional extensions of the basic version presented before. Note that as modification
of a circuit is based evolutionary algorithms, performance may be increased by
application of generic techniques for faster convergence towards the optimal so-
lution like modification of EA parameters. We will not cover these techniques
here. Note that increasing the circuit expressiveness may actually decrease the
convergence speed for easier problems as search space is usually increased by
such a technique.

We can divide such techniques into several groups:

– Techniques to increase amount of data processed by the circuit: READX,
memory (block-based, bit-based), circuit providing formula with expected
occurrence counter

– Techniques to increase expressivity of circuit: loops, circuit of circuits

– Techniques to increase complexity of functions used by the circuit: linear
genetic programming inside node, code fragments inside node, complex in-
struction from known tests

5.1 Techniques to increase an amount of data processed by the
circuit

Previous results were provided for the situation where circuit perform distin-
guisher was based on 16 input bytes only – significant disadvantage w.r.t statis-
tical batteries processing from tens up to hundreds of megabytes of data. With
such a setting, it is significantly harder situation for the evolutionary circuit
to find a working distinguisher. Therefore, we propose several techniques how
circuit expressivity and amount of data used can be expanded.

Possibly easiest way how to provide more data to circuit is to introduce
additional instruction (called READX) which provides one of the input byte from
the circuit’s inputs directly to the function node with READX instruction. One
may perceive such an instruction as a direct wire between node and requested
input. Such an input can be already encoded by the circuit, but for the price of
several NOP instructions. With a special instruction, input is directly accessible
and more importantly, length of circuit’s input can be more than the size of input
layer as READX can obtain any value from it. Human interpretation of circuit
with READX instruction is straightforward. However, if the input data should
be enlarged by e.g., one hundred input bytes, one hundred READX instructions
must be present in the circuit to process all inputs by the circuit (but not all
inputs bytes are relevant for a distinguisher).

More promising, but also more complicated (also from the perspective of the
interpretation of well performing circuit) is introduction of a memory. Instead of
circuit processing whole input in a single run, input is divided into B blocks with
same length N and processed one by one. Circuit is extended by additional M
inputs and M outputs (same number). Outputs from a processing block Bi are
provided as inputs for the block Bi+1, together with N inputs from test vector.
Such an extension provides possibility to extract some statistics from input block
Bi, store it into the memory M and later combine with statistics from following
blocks. Most importantly, test vector length can be significantly increased and
all input bytes are directly processed by the circuit. Final output (distinguisher)
is then based on memory and last input block. We already obtained preliminary
results for such a modification which shows better results (better distinguishing
ratio) than single-run circuit. Note that longer input test vector also increases
circuit’s execution time accordingly.

Finally, one can incorporate circuit into bigger framework which will perform
part of the computation and evaluation separately. If evolutionary circuit is pro-
viding working distinguisher, this distinguisher must be based on some redun-
dancy in input stream of a tested function which is not present in truly random
data. Such a redundance is expressed (if found) by some formula encoded inside
the circuit. Circuit’s output is then interpreted not directly as distinguishing
verdict (truly random data or function data), but only as classificator of input
data into one of several categories C1, ..., Cn (e.g., if circuit provide one output
byte, then classifies into 256 categories). If multiple inputs are given to a circuit
and classified, particular distribution over categories Ci is obtained. The goal is
to find such a circuit, which will provide significantly different distribution Df

of categories Ci for inputs coming from the tested function f then a distribu-
tion Dr produced by the inputs taken from truly random data. If such a circuit
can be found, input stream of data (multiple inputs) are signalized as function’s
output if significant deviation from pre-computed distribution Dr is detected in
Df and signalized as truly random data otherwise (with given confidence level).
Fitness function is again defined as a ratio of correctly classified test vectors
from presented test set. Note that test vectors now need to be extended from
single input block to multiple input blocks take from same source (function or
random data) – single input block would provide only very crude distribution
D. Also, much longer input data are naturally provided to circuit to facilitate
decision.

5.2 Techniques to increase inner functions complexity

Set of operations available to software circuit design can be extended from el-
ementary operations like Boolean functions or simple arithmetic operations to
code fragments automatically extracted by parser from implementation of in-
spected function with hope of achieving better results than NIST/Diehard bat-
teries. Previously described circuit constructions used very simple operations like
AND, MULT or SUM in the circuit processing nodes. When a circuit needs some
more complex operation, it needs to be constructed from these simple blocks,
occupying multiple layers and connectors. Potentially, a better performance in
weakness hunting can be obtained if the set of allowed operations are extended
by the more complex ones. As a particular cryptographic function is inspected,
sub-operations of this function might be viable candidates for such a complex
operations. However, selection of such an operation requires some knowledge of
the function itself, hampering advantages of fully automated approach.

We propose to keep with the fully automated approach and let sub-operations
be extracted from an existing implementation of the inspected function automat-
ically. Once extracted, evolution algorithm is allowed to select these fragments
as the function for processing nodes and emulate these fragments on inputs if se-
lected. Note that by partial execution, we do not aim to replicate exact behaviour
of target code (same output for same input), but rather to provide similar code
that can be applied over any input data provided by rest of circuit.

For practical verification of this idea, we choose implementation of target
function (e.g., stream cipher) in the Java language with advantage of human-
readable bytecode generated directly by Java compiler and disassembler (javac
g, javap -c). Resulting file with text representation of bytecode is automatically
parsed and any subpart of code described by triple [method name, start instructi-
on offset and end instruction offset] can be emulated by simple stack-based ex-
ecution machine.

Several challenges need to be tackled with such a partial execution:

– Handling of method inputs – in regular program execution, method argu-
ments are pushed to stack before method call. If method is to be executed
from the middle, stack with arguments has to be filled by other means. In

our implementation, part of values provided by previous layer via connectors
is stored into stack before partial execution is performed.

– Bottom of the stack is reached before end of execution – because not all
instructions in method are executed (e.g., push), bottom of the stack might
be reached prematurely as the current instruction to be executed expects
value(s) on stack whereas there is (are) none. In our implementation, we
simply ignore the instruction in case of not enough arguments are present
on stack.

– Handling of global arrays – in case when global arrays are used to load and
store values during execution, such memory structures must be prepared
and set before first access. In our implementation, part of values provided
by previous layer via connectors is used. Also, instruction is ignored when
data necessary for emulation are not present.

– Form of the output from a partial execution emulated by given node. More
specifically, which byte (or multiple bytes) should be provided as nodes out-
put? In our implementation, we simply take value at the top of the stack as
output.

Note that challenges described above are solved in ad-hoc manner and may
fail to execute many instructions from original code. Still, if target function itself
uses e.g., finite field multiplication (FFMul in AES) partial execution described
above will enable software circuit to directly execute such an operation.

Once execution stack described above is available, fragments can be taken not
only from existing code, but can be also generated randomly. Every fragment
in the node will then consist from several bytecode instruction emulated over
node’s input – technique known as linear genetic programming.

Another options are to use parsers like the ANTLR parser generator [PQ94]
or ASTParser [KT06], alternatively BytecodeParser [God12] working directly on
the bytecode level, thus easing emulation later. Optionally, one may use language
supporting reflection and allowing for runtime code modification. However, this
will decrease the evaluation speed of a single circuit (w.r.t. C/C++ performance)
and prevent a GPU-based acceleration. Note that a large number of candidate
circuits needs to be evaluated; otherwise EAs are unlikely to find a viable solu-
tion.

6 Conclusions

We proposed a general design of a cryptoanalytical tool based on genetic pro-
gramming and applied it to the problem of finding a random distinguisher for
several stream ciphers (with a reduced number of rounds) taken from the SHA-3
(18 functions) and eStream (7 functions) competition. Baseline with results was
established for these functions. In general, the proposed approach proved to be
capable of matching the performance of the NIST statistical testing suite in sce-
nario, where the tested function key is changed for every test vector and close
matching results when key is changed less often. When a key is changed less of-
ten, longer sequence with the same key is produced and available for inspection

by statistical testing suite where a basic version of the proposed approach is not
able to deal with inputs longer than tens of bytes. Therefore, we proposed sev-
eral extensions like circuit with memory or more complex function in the node
capable to process very large inputs.

Future work will be devoted to evaluation of extension proposals and their
comparison with basic version of proposed approach.

Acknowledgements: This work was supported by the GAP202/11/0422
project of the Czech Science Foundation. The access to computing and storage
facilities owned by parties and projects contributing to the National Grid Infras-
tructure MetaCentrum, provided under the programme“Projects of Large Infras-
tructure for Research, Development, and Innovations” (LM2010005) is highly
appreciated. Martin Ukrop provided data from the experiments with SHA-3
candidate functions evaluations.

References

[BNKF97] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone.
Genetic programming: An introduction: On the automatic evolution of com-
puter programs and its applications. Morgan Kaufmann Publishers, 1997.

[Bro04] Robert G. Brown. Dieharder: A random number test suite, version 3.31.1.
2004.

[CVn05] Julio César Hernández Castro and Pedro Isasi Viñuela. New results on the
genetic cryptanalysis of TEA and reduced-round versions of XTEA. New
Gen. Comput., 23(3):233–243, September 2005.

[DEKS10] Ali Doganaksoy, Barıs Ege, Onur Koçak, and Fatih Sulak. Statistical anal-
ysis of reduced round compression functions of SHA-3 second round can-
didates. Technical report, Institute of Applied Mathematics, Middle East
Technical University, Turkey, 2010.

[Del04] Bethany Delman. Genetic algorithms in cryptography. PhD thesis,
Rochester Institute of Technology, 2004.

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomi-
als. In Proceedings of the 28th Annual International Conference on Advances
in Cryptology: the Theory and Applications of Cryptographic Techniques,
EUROCRYPT ’09, pages 278–299. Springer-Verlag, 2009.

[ECR04] ECRYPT. Ecrypt estream competition, announced November 2004. 2004.

[Gen10] Craig Gentry. Computing arbitrary functions of encrypted data. Commun.
ACM, 53(3):97–105, March 2010.

[GHD07] Aaron Garrett, John Hamilton, and Gerry Dozier. A comparison of genetic
algorithm techniques for the cryptanalysis of TEA. International journal of
intelligent control and systems, 12(4):325–330, 2007.

[GL207] Galib 2.4.7, a c++ library of genetic algorithm components. 2007.

[God12] Stephane Godbillon. Bytecodeparser - java bytecode parser and emulator.
2012.

[HOT06] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[Hu10] Wei Hu. Cryptanalysis of TEA using quantum-inspired genetic algorithms.
Journal of Software Engineering and Applications, 3(1):50–57, 2010.

[Kam12] A. Kaminsky. GPU parallel statistical and cube test analysis of the SHA-
3 finalist candidate hash functions. In 15th SIAM Conference on Parallel
Processing for Scientific Computing (PP12), 2012.

[KT06] Kuhn Kuhn and Olivier Thomann. Eclipse ASTParser. 2006.
[LLL08] Liu Liu, Minqiang Li, and Dan Lin. Replacement strategies in steady-state

multi-objective evolutionary algorithm: A comparative case study. In Pro-
ceedings of the 2008 Fourth International Conference on Natural Computa-
tion, ICNC ’08, pages 645–649, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[PG11] S. Picek and M. Golub. On evolutionary computation methods in cryptog-
raphy. In MIPRO, 2011 Proceedings of the 34th International Convention,
pages 1496 –1501, 2011.

[PQ94] Terence J. Parr and Russell W. Quong. ANTLR: A predicated-ll(k) parser
generator. Software Practice and Experience, 25:789–810, 1994.

[Ruk10] A. Rukhin. A statistical test suite for the validation of random number
generators and pseudo random number generators for cryptographic appli-
cations, version STS-2.1. NIST Special Publication 800-22rev1a, 2010.

[SDEK10] Fatih Sulak, Ali Doğanaksoy, Bariş Ege, and Onur Koçak. Evaluation of
randomness test results for short sequences. In Proceedings of the 6th in-
ternational conference on Sequences and their applications, SETA’10, pages
309–319. Springer-Verlag, 2010.

[SHA07] NIST SHA-3. SHA-3 competition, announced 2.11.2007. 2007.
[Sot99] J. Soto. Randomness testing of the AES candidate algorithms. NIST, 1999.
[SSV12] Lukáš Sekanina, Vojtech Salajka, and Zdenek Vaš́ıček. Two-step evolution

of polymorphic circuits for image multi-filtering. In IEEE Congress on Evo-
lutionary Computation, pages 1–8, 2012.

[STS+08] Radomir Stevanović, Goran Topić, Karolj Skala, Mario Stipčević, and
Branka Medved Rogina. Quantum random bit generator service for Monte
Carlo and other stochastic simulations. In Ivan Lirkov, Svetozar Margenov,
and Jerzy Waśniewski, editors, Large-Scale Scientific Computing, pages 508–
515. Springer-Verlag, 2008.

[TDcc06] M. S. Turan, A. Doǧanaksoy, and Ç. Çalik. Detailed statistical analysis of
synchronous stream ciphers. In ECRYPT Workshop on the State of the Art
of Stream Ciphers (SASC’06), 2006.

[Ukr13] Martin Ukrop. Usage of evolvable circuit for statistical testing of random-
ness. uppercaseBachelor thesis, Masaryk University, Czech Republic, 2013.

[WN95] David Wheeler and Roger Needham. TEA, a tiny encryption algorithm. In
Fast Software Encryption, pages 363–366. Springer, 1995.

[Yao82] Andrew C. Yao. Theory and application of trapdoor functions. In Proceed-
ings of the 23rd Annual Symposium on Foundations of Computer Science,
SFCS ’82, pages 80–91, Washington, DC, USA, 1982. IEEE Computer So-
ciety.

