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Abstract
We propose a novel, automated method of creating statistical randomness tests. Tests are created as
hardware-like circuits using EACirc, the framework for automatic problem solving based on genetic
programming. The basic overview of the framework is given along with the summary of used settings
and a set of reference experiments. The framework is then used to assess the randomness of outputs
produced by chosen eStream cipher candidates and SHA-3 hash function candidates. Success of the tests
generated by EACirc is compared to standard statistical batteries (Sts Nist, Dieharder). Results of one
chosen case are analysed in detail.

Keywords: statistical randomness, random distinguisher, evolutionary algorithms, genetic pro-
gramming, software circuit, SHA-3, eStream.

1 Introduction
Producing random data by computers is extremely difficult1, as they are inherently deterministic. Yet the
quality of random data is crucial for many cryptographic applications. To ease the testing of randomness,
batteries of statistical randomness tests such as Sts Nist [Rukhin et al., 2010] or Dieharder [Brown, 2004]
have been developed. Although convenient in some ways, statistical randomness testing based on human-
designed tests has several important drawbacks. The test creation must be preceded by an idea of
mathematical property and its thorough analysis, which can be extremely time- and people-consuming.
Further on, the tests are limited to one particular property and testing other properties requires beginning
the testing process all over again. Both of the above-mentioned problems would be resolved if tests of
comparable quality could be generated automatically, without the help of human specialists.

In this paper, a novel method of non-randomness testing is given. The proposed approach is based on
evolutionary algorithms and utilizes the idea of software-emulated circuits. Its main benefits lie in easy
automation and high potential of creating new tests, thus surpassing the disadvantages of statistical
batteries. This novel method is implemented in a general problem-solving framework called EACirc.

The following sections use the EACirc framework in practical tests and compare all obtained results with
already existing approach using statistical batteries. The experiments are divided into three categories:
control experiments checking the sanity of our implementation and used referential data, experiments
examining randomness of stream cipher outputs and experiments assessing randomness of hash function
outputs. A single case is then chosen for a more detailed analysis.

Evolutionary algorithms were already used to probe specific problems of a particular function (e.g.,
DES, TEA, XTEA) in the past, yet for their really useful application, the identification of specific
sub-problems like deviation of χ2 Goodness of Fit tests applied to statistic of least significant bits
[Castro and Viñuela, 2005] was required. Our approach may directly provide a distinguisher without
prior identification of such sub-problems as well as be used when such a property was identified, provid-
ing a higher degree of freedom when searching for a distinguisher.

2 Previous work
Numerous works tackled the problem of distinguisher construction between data produced by crypto-
graphic functions and truly random data, both with reduced and full number of rounds. Usually, statis-

1“Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.”
[von Neumann, 1951]



tical testing with battery of tests (e.g., Sts Nist or Dieharder) or additional custom tailored statistical
tests are performed.
TEA algorithm [Wheeler and Needham, 1995] with a reduced number of rounds is a frequent target for
cryptoanalysis with genetic algorithms. In [Castro and Viñuela, 2005], a successful randomness distin-
guisher for XTEA limited to 4 rounds is generated with genetic algorithms. The distinguisher generates
a bit mask with high Hamming weight which when applied to function input, resulting in deviated χ2

Goodness of Fit test of the output. Subsequent work [Hu, 2010] improves an earlier attack with quantum-
inspired genetic algorithms, finding more efficient distinguishers for a reduced round TEA algorithm and
succeeding for the 5-round TEA.
In [Turan et al., 2006], detailed examination of eStream Phase 2 candidates (full and reduced round tests)
with Sts Nist battery and structural randomness tests was performed, finding six ciphers deviating from
expected values. More recently, the same battery, but only a subset of the tests, was applied to the SHA-
3 candidates (in the second round of competition, 14 in total) for a reduced number of rounds as well
as only to the compression function of algorithm [Doganaksoy et al., 2010]. 256-bit versions of SHA-3
finalists were subjected to statistical tests using a GPU-accelerated evaluation [Kaminsky, 2012]. Both
algorithms and selected tests from Sts Nist battery were implemented for the nVidia CUDA platform.
Because of massive parallelization, superpoly tests introduced by [Dinur and Shamir, 2009] were possible
to be performed, detecting some deviations in all but the Grøstl algorithm.
An important difference of our approach from previous work is the production of a program (in the form
of a software circuit) that provides different results depending on given inputs. Previous work produced
a fixed result, e.g., bit mask in [Castro and Viñuela, 2005, Hu, 2010] that is directly applied to all inputs.
To some extent, the structure of a software circuit resembles artificial neural networks (deep belief neural
networks in particular [Hinton et al., 2006]). Notable differences are in the learning mechanism and
circuit dimensions (neural networks usually use very small number of layers). The function of individual
nodes is different as well, since all nodes in artificial neural networks usually perform the same function.

3 Evolution-based randomness testing
In this section we try to describe a method of automatically generating statistical randomness tests.
Compared to the standard (manual) way of their creation, our approach has a couple of advantages:

• no prior knowledge of statistical properties of random data is needed;
• test creation does not require excessive human analytical labour;
• tests are dynamically adapting to the testing data;
• atypical and/or yet unknown data properties may be used.

The main idea is to use supervised learning techniques based on evolutionary algorithms. We apply the
principles of genetic programming to design and optimize a successful distinguisher [Englund et al., 2007]
(a test able to tell the explored data apart from a truly random data). The distinguisher will be repre-
sented as a hardware-like circuit consisting of a number of interconnected simple functions.

3.1 Using software-emulated circuits
We consider distinguishers in the form of hardware-like circuits with gates (function nodes) and a set of
wires (node connectors). Each node is responsible for the computation of a simple function on its inputs
(e. g. binary and operation). Function nodes are positioned into layers, where outputs from one layer
are connected to inputs of the next. Input of the whole circuit is used as an input for the first layer and
output of the last layer is considered the output of the entire circuit. Connectors may only link adjacent
layers, but may cross each other (contrary to real single-layer hardware circuits). An example of such
hardware-like circuit can be seen in figure 1.
In the current implementation, we consider only simple node functions operating on bytes. These include
the standard bit-manipulating functions (and, rotl, . . . ), relation operators (eq, lt, . . . ), constant
function (cons) and an empty function (nop).
It would be sufficient to restrict ourselves to a smaller set of functions (e. g. nand only), since with
such subset we can express arbitrarily complex function. However, the spacial requirements rise with the
function complexity. More complex functions in nodes enable us to limit the circuit to significantly smaller
number of layers and nodes, while retaining a comparable expressive power. We decided to support a
wider variety of functions as a size and human understandability trade-off.



Figure 1: Simple example of software-emulated circuit.

3.2 The EACirc framework

Combining the principles of genetic programming and software circuits, we developed EACirc, the frame-
work for automatic problem solving. The framework tries to evolve a circuit solving the given problem.
The process consists of the following steps:

• Firstly, several software circuits are randomly initialized (randomly selected functions in nodes, ran-
domly assigned existence of connectors between nodes) forming population of candidate individuals.
Every individual is represented by one circuit. Note that such a random circuit will most proba-
bly not provide any meaningful output for given inputs and can even have disconnected layers (no
output at all).

• Secondly, we generate a new set of teaching data (if necessary). This data is used as circuit inputs
in the evaluation phase.

• Every individual (circuit) is evaluated on every test input from the current set. Based on the outputs,
a fitness value (quality measure) is assigned to each circuit.

• Based on the evaluation provided by the fitness function, a potentially improved population is
generated by mutation and crossover operators from individuals taken from the previous generation.
Design of every individual (circuit) may be changed by changing operations computed in nodes or
adding/removing connectors between nodes in subsequent layers.

The whole process (except for the initialization) is repeated multiple times, usually until the desired
success rate of the population is achieved or the required number of generations have evolved. A simplified
work-flow of the EACirc evolution process is summarized in figure 2.

The initial version of EACirc was created by Petr Švenda at the Laboratory of Security and Applied
Cryptography, Masaryk University. Later on, the application was improved by Matej Prišťák and Ondrej
Dubovec (as their master and bachelor theses, respectively [Prišťák, 2012, Dubovec, 2012]).

The core evolutionary features are provided by GAlib, a C++ Library of Genetic Algorithm Components
developed at MIT [Wall, 1995] parametrized by function callbacks (e. g. function for mutation, sexual
crossover, fitness function, . . . ). The framework now contains three different experiments (eStream ci-
phers, SHA-3 functions and a simple file comparator) with modular structure allowing for effortless
integration of new ones.

The fitness function is computed within separate evaluator modules. There are multiple approaches to
evaluation, several of which are implemented in EACirc. While most of the previous runs distinguished
circuit outputs by taking the topmost bit, we now consider a more universal approach based on output
byte categories. The output byte distributions of random and assessed streams are compared using
Pearson’s χ2 test.
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Figure 2: Simplified work-flow of the evolution process in EACirc.

EACirc has a variety of other functions improving the core features of evolutionary algorithms and
software circuit emulation. For full details, user and development documentation, see EACirc wiki at
GitHub [Švenda et al., 2012]. The most important features are the following:

• Bit-reproducibility
EACirc uses genetic programming, which is fundamentally a randomized algorithm. However, to
enable experiment replication and results verification, we use controlled pseudorandomness. This
allowed us to replicate experiments by just providing the same input files and a fixed central seed.

• Computation recommencing
By saving and loading its entire internal state to a set of xml files, EACirc allows for compuration
recommencing. This feature is especially useful for computation-expensive experiments – when the
machine is rebooted, we can continue from last saved state instead of starting all over again.

• Multi-format output
For easy reusing and analysis, the evolved circuits are output in 4 different formats:
– binary output (useful for reloading the circuits into EACirc),
– graph dot output (serves as a visual aid to human analyst),
– simple text output (application-independent export format) and
– program output (a stand-alone C program used for independent static analysis).

To further ease the manual human analysis, circuits can be pruned before export – all disconnected
and unused nodes are removed.

• CUDA support
EACirc supports nVidia CUDA for circuit evaluation during the computation of fitness. When
executed on GPU instead of CPU, the evaluation runtime decreases by the coefficient of about 70.

4 Control experiments
Before performing the experiments themselves, we needed to acquire reference results – what does it
mean streams are indistinguishable from random in out context? Is the referential random data indistin-
guishable from random? What is the achieved fitness value for such distinguishers?

4.1 Experiment settings and output data
Most of the general settings (evolution and circuit parameters) were taken from Matej Prišťák’s thesis
[Prišťák, 2012]. The evolution works with a population of 20 individuals, with a sexual crossover prob-
ability of 20% and a mutation probability set to 5%. In each case (if not stated otherwise), we evolve



30 000 generations with a test vector set (learning data) changing every 100th generation. Thus, a total
of 300 unique test vector sets are used in each run. The circuit dimensions are limited to 5 layers with a
maximum of 8 function nodes per layer. It processes up to 16 input bytes and produces 2 output bytes.

Each testing set consists of 1 000 independent vectors, exactly half of which is truly random with the
other half is generated from the assessed data. According to the previous research, the imbalance in test
vector types complicates the learning phase, since the circuits are also trying to learn which type is more
frequent in the particular set. The order of random and non-random vectors in the set is not fixed. Hence
(equation 1), all the results output by EACirc are based on a sample of about 2.3MB of assessed data.

Σ =
30000 generations

100 generations
test set

· 1

2
· 1000

vector
test set

· 16
bytes
vector

≈ 2.29MB (1)

The expected circuit output is always 0x00 (zero byte) for a non-random vector and 0xff (full byte)
for a random one. The used evaluator considers each of the output bytes separately, taking bytes with
numerical interpretation lower than 128 as indicating a non-random stream and bytes higher than 127 as
indicating a random stream. Hence, the decision is based only on the first bit of each output byte. Using
the output of the evaluator, the fitness of the circuit is quantified as a quotient of a number of correctly
predicted vectors and a total number of vectors in a set.

All the experiments were run 30-times in parallel. This precaution was taken as to mitigate the results
fluctuations common in randomized algorithms. The final result presented is the average of these 30
executions. Further discussion and more detailed settings can be found in [Ukrop, 2013].

When using Sts Nist and Dieharder, we used an external file with 250MB of the assessed stream
produced by EACirc. STS NIST was run on 100 sub-streams, each consisting of 1 000 000 bits. This
amounts to about 11.92MB of assessed data. All 15 available test were run in all supported configurations.
From the Dieharder suite, only the tests corresponding to the original Diehard collection were used. Each
of the chosen tests was rune just once, but was let to process as much data as it required. Running the
whole set processed about 582MB altogether with the smallest test consuming about 3MB and the
largest one about 127MB.

4.2 Searching for non-randomness in quantum random data

The first control experiment tries to distinguish quantum random data from other quantum random
data. We use 193MB of data obtained from Quantum Random Bit Generator Service [Zagreb, 2007].
We presume to fail at this and thus establish the randomness of the assessed data stream.

Using the standard statistical batteries confirmed out expectations – all used Dieharder and Sts Nist
tests failed to provide evidence of the data non-randomness. Running EACirc with the settings described
in subsection 4.1 yielded the average maximum fitness value in generations just after the change of test
vectors of 0.52 with runs differing in 3rd or 4th decimal place.

We anticipated that the difference of obtained fitness from the naïve value of 0.50 was influenced by
population size (bigger population increases fitness variance) and the size of test set (the probability of
just guessing correctly decreases with a bigger test set). We performed further experiments and confirmed
both these presumptions. We can thus conclude that in our settings the fitness value of 0.52 corresponds
to indistinguishable streams.

4.3 Comparing different QRNGs

Secondly, we want to compare quantum random data streams obtained from two different sources
([Zagreb, 2007] and [Berlin, 2010]). We prepared 6 independent files of 5MB from each source and
attempted to find a distinguisher for each pair.

All the results oscillate closely around 0.52 indicating indistinguishable streams (see subsection 4.2). We
can thus conclude that, for our purposes, both sources are equally random and equally reliable. Since no
of the tested files expressed any statistically significant deviation from the others, we can use these files
interchangeably.



4.4 Analysing uncompressed audio streams
The third and last of the control experiments compares the set of audio files. We considered a set of 12
files – 3 quantum random data files, 3 uncompressed audio files with white, pink and Brownian noise, the
same noise files with intermediate mp3 compression and 3 samples of uncompressed black-metal music.
The quantum random data files had about 5MB and were turned into a listenable file by adding a wav
header instructing to interpret the data as 2-channel, 16 bit/sample, 44.1 kHz PCM-encoded audio. The
next subset consisted of 30 seconds samples (about 5.3MB) of white, pink and Brownian noise in the
same audio format. The third subset was created from the above-mentioned generated noises by mp3
compression (bitrate of 128 kbps) and decompression back to the PCM-encoded audio. Note that after
the lossy MP3 compression the files took about 480 kB each (compared to 5.3MB of the uncompressed
version). The last three were 30 seconds samples of transcendental khaoblack metal by Abbey ov Thelema
[Abbey ov Thelema, 2012] all taken from the band’s promo calledMMXII: Here & Now - At the Threshold
ov End Times.
Similarly as in subsection 4.3, we attempted to evolve a distinguisher for each pair of the files. We
analysed the results in the similar manner and concluded the following:

• generated white noise is completely indistinguishable from random data files,
• pink and Brownian noise are easily told apart from each other or the quantum random files (success

rate generally over 80%),
• mp3 compression has small, but detectable effect on the sound (although nearly undetectable by un-

skilled human ear, it successfully shifts the distinguisher success rate to about 0.58 when comparing
with an uncompressed noise of the same kind),

• used metal samples can be reliably distinguished from white noise (general success over 80%), less
so from pink and Brownian noise (success rate only around 65%),

• used metal samples are nearly indistinguishable from each other on the binary level (although the
differences are easily detectable by human ear).

5 Application to stream ciphers and hash functions
The main motivation for this work is to provide a tool with the crucial ability to automatically probe
for unwanted properties of cryptographic functions that signalize flaws in the function design. Therefore,
inspired by [Prišťák, 2012], we decided to analyse randomness of stream cipher outputs. We only consid-
ered stream ciphers from the recent eStream competition [eStream, 2005], since we could use the unified
cipher interface prescribed in the competition.
Similar experiments were performed on candidate hash functions from SHA-3 competition [NIST, 2007]
(inspired by [Dubovec, 2012]). As in eStream ciphers, we utilized the unified hash function interface
prescribed in the competition. We analysed the randomness of streams produced as a concatenation of
hash digests.

5.1 Processing eStream candidates outputs
From 34 candidates in the eStream competition, 23 were potentially usable for testing (due to renamed or
updated versions, problems with compilation, . . . ). Out of these, we limited ourselves to only 7 (Decim,
Grain, FUBUKI, Hermes, LEX, Salsa20 and TSC), since these had internal structure that allowed for
a simple reduction of complexity by reducing a number of internal rounds. For all used ciphers, the
implementation from the last successful phase of the competition was taken. The ciphers were tested
in unlimited versions and then for all lower number of rounds until reaching indistinguishability from a
random stream.
The experiment results are summarized in table 1. We differentiate outcomes: either both EACirc
and statistical batteries were able to distinguish the produced stream from the truly random data, only
statistical batteries were able to make the distinction or no approach succeeded. The results indicate that
in this case, EACirc performs more or less the same as standard statistical batteries (Decim being the
most prominent exception). Dieharder sometimes performed better than Sts Nist, but it has to be taken
into consideration that it is newer and made decision based on a much larger data sample. In general,
both statistical batteries processed longer stream than EACirc (for detailed numbers see subsection4.1).
Regarding the matters of speed, EACirc had a comparably longer learning phase, but usually provided a
distinguisher working working faster than statistical batteries.



cipher
number of rounds

1 2 3 4 5 6 7 8 9 10 11 12 13 15 32
Decim
FUBUKI
Grain
Hermes
LEX
Salsa20
TSC-4

EACirc &
statistical
batteries

statistical
batteries

none

round n/a

Table 1: Comparing EACirc with statistical testing batteries Dieharder and Sts Nist on eStream cipher
candidates outputs.

5.2 Processing SHA-3 candidates outputs
From 64 hash functions that entered the competition, 51 were selected to the first round. Out of these,
42 were potentially usable for testing (due to source code size, speed and compilation problems). The
implementations (taken from the last successful phase of the competition) and modifications limiting the
number of rounds in these functions were taken over from previous work [Dubovec, 2012] and revised.
In the end, 18 most promising candidates were chosen: ARIRANG, Aurora, Blake, Cheetah, CubeHash,
DCH, Dynamic SHA, Dynamic SHA2, ECHO, Grøstl, Hamsi, JH, Lesamnta, Luffa, MD6, SIMD, Tangle,
and Twister. These were the candidates fulfilling the following two requirements:

• the hash functions could be effortlessly limited in complexity by decreasing the number of internal
rounds and

• while the unlimited version produced a random-looking output, their most limited version did not.

As opposed to the work we were inspired by, we generated continuous output stream by hashing a simple
4-byte counter starting from a randomly generated value. We obtained a 256-bit digest, which we cut
in half to produce 2 independent test vector inputs of 16 bytes each. In case of generating a continuous
stream (for the purposes of Dieharder and Sts Nist), we concatenated the digests.

The results, summarized in table 2, indicate that in this case, EACirc performs slightly worse than
standard statistical batteries. Although in most of the cases it found a statistically significant variation
from a neutral success rate of 0.52, it can be seen that it often failed in the last round successfully
distinguished by statistical batteries. Once again, when interpreting these results, we must be aware
of the imbalance of test data available to statistical batteries and EACirc (for detailed numbers see
subsection 4.1).

Another observation worth noting is the consistency of the results within the 30 runs of the same exper-
iment. Previously (mainly subsection 5.1), all the results within an experiment were consistent (all 30
runs reached more or less the same results). The computations in this experiment display the variations
characteristic to evolutionary algorithms – only some of the runs are successful (the randomized evolution
in the other just did not succeed). It may be interesting to consider a larger amount of runs in border
cases, where statistical batteries were successful but EACirc was not.

6 Inspection of Salsa20 output stream
After performing a wide range of experiments, we analysed one selected case in a more detailed manner.
We studied the dependence of distinguisher success rate on the number of generations already computed.
Further attention was paid to the evolved circuit and the statistical properties it uses to draw the final
verdict (random vs. non-random).

6.1 Distinguisher success rate
The general relationship between fitness value and the number of evolved generations in evolutionary
algorithms is very specific – a typical example can be seen in figure 3. This jaw-like curve represents
the the success rate of a circuit trying to distinguish two independent random streams. The success rate



cipher
number of rounds

0 1 2 3 4 5 6 7 8 9 10 11 12 13 22 23 24 max

ARIRANG

Aurora 17

Blake 14

Cheetah 16

CubeHash

DCH

DSHA 16

DSHA2 17

Echo

Grøstl

Hamsi

JH 42

Lesamnta 32

Luffa

MD6 104

Twister

SIMD

Tangle 80

distinguished by both EACirc and statistical batteries
distinguished only by statistical batteries
not distinguished
round not available

Table 2: Comparing EACirc with statistical testing batteries Dieharder and Sts Nist on SHA-3 hash
candidates outputs.

rises, during the period when the test vector set remains unchanged (100 generations in our setting) and
then suddenly drops after the set change. This is caused by the circuit over-learning on a specific test
vector set (circuits are learning to distinguish this particular set instead of general characteristics of the
streams). As can be easily seen in the graph, the behaviour repeats almost periodically. However, notice
that the success rate does never exceed the value of 0.55.

The phenomenon of over-learning can be easily suppressed by changing the test vectors more frequently
or increasing the number of vectors in a set. On the other hand, higher test set change frequency or more
vectors would increase computational complexity. Therefore a reasonable trade-off is used.

In figure 4 we see similar relationship for circuit distinguishing Salsa20 cipher limited to 2 rounds. The
over-learning tendency (repeating continual rise and sudden drop) is partly present as well, but in contrast
to the previous case the circuits success rate reaches much higher values. Even if not evolving a universal
distinguisher, this would be a sufficient evidence for non-randomness of Salsa20 output stream.

We can further notice that after initial fluctuations the circuit success rate show another periodic be-
haviour about every 4 000 generations. The circuit stabilises at distinguishing the Salsa20 output and
then suddenly drops back to about a success of random guessing. It than gets better again and after
about 4 000 generations (equivalent to about 450KB of data) drops again. This behaviour is specific to
Salsa20 and its source probably comes the the cipher design. A detailed analysis will be the part of our
future work.
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6.2 Evolved circuit analysis

Other type of detailed study of Salsa20 limited to 2 rounds included the evolved distinguishers. An
example interpretation of one such circuit is demonstrated on the circuit shown in figure 5. We took
an evolved distinguisher circuit, pruned it (removing all nodes not participating in computing the final
fitness), generated 1 000 000 random input sequences for the circuit and inspected the distribution of
values coming from every node.

As can be seen in the diagram, we can conclude that both output bytes (1_out and 2_out) depend
solely on 7th input byte (in_6). Circuits evolved in parallel runs exhibited very similar behaviour –
in many of them, the output bytes (and thus the final verdict) depended only on the 7th input byte.
It is difficult to tell what is the exact form of this weakness, but it draws out attention to the ever-
mentioned byte 7. It definitely implies a possible design flaw in Salsa20 limited to 2 rounds influencing
the randomness of every 7th output byte.

After analysing the output of internal nodes, we concentrated on the circuit output and its final verdict
(random vs. non-random). We used circuit from figure 5, where both output bytes produce the same
value (this happened in most of the parallel runs). We made statistics of all values output by the circuit



Figure 5: Analysis of a distinguisher evolved for Salsa20 limited to 2 rounds (pruned version of the circuit
is displayed).

for random data stream and Salsa20 (limited to 2 rounds) output stream. In both cases, 1 000 000 input
sequences were used. The frequencies of output values are plotted in figure 6 in form of a cumulative bar
chart. Each coloured block represents a single value, its width proportional to the number of times this
value was output.
The evaluator used interpreted the circuit outputs as follows:

• if the numerical value of the output byte was less or equal to 127, the stream was concluded to
originate from Salsa20;

• otherwise (numerical value of the output byte equal to or greater than 128) it was concluded to be
from a random source.

Two important conclusions can be drawn from the data in figure 6. Firstly, the circuit succeeds in distin-
guishing Salsa20 limited to 2 rounds most of the times, but not always. Secondly, while the distribution
of output values in case of random stream is more or less even, in case of Salsa20 the value of 126 was
far more frequent (85.02%). From the latter fact, we could possibly backtrack through the circuit to
establish the exact bits in the 7th input byte causing the stream to be distinguishable from random, if
such analysis was required.

7 Conclusions
This work explored automated methods of creating statistical randomness tests. Tests were created as
hardware-like circuits using EACirc, framework for automatic problem solving based on genetic program-
ming principles.
Firstly, capabilities of the framework were checked by numerous reference experiments. The assumed
behaviour when trying to distinguish two sets of quantum random data (even from different sources) was
confirmed. A set of audio files was confronted with various types of noise and random data.
After performing these control experiments, cryptographically interesting applications of randomness
were investigated. The randomness of 7 different eStream cipher outputs was assessed. The evaluation
was done both using the proposed automated method (EACirc) and utilising standard statistical batteries
(Dieharder, Sts Nist) and the results were compared. An analogical set of experiments was performed on
18 SHA-3 candidate hash functions. EACirc results for Salsa20 were thoroughly analysed, demonstrating
the usage of information provided by EACirc.
Based on our experience and the experimental results obtained, we can draw several conclusions concern-
ing the proposed method of automatic randomness test generation:
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• Success rate
From the point of success rate, the proposed method is generally comparable to the standard sets of
statistical batteries. Results sometimes differ in border cases, in favour of statistical batteries. These
border cases should be the goal of further research as the differences may be caused by improper
settings and/or insufficient computation time. The difference may also lie in unequal input sample
lengths (see below).

• Amount of data used
In general, smaller data samples were provided to EACirc (at most, we used about 2.5MB) than to
statistical batteries (about 12MB in case of Sts Nist and more than 200MB in case of Dieharder).
Note that some test may provide indication of failure even when less data is available.

• Atypical approach
The proposed method uses a significantly different approach to detect non-randomness compared to
statistical batteries. It does not require prior knowledge of specific data properties – instead, it tries
to deduce these properties by itself. Therefore, possibilities of using yet unknown data properties
arises. This, however, was not conclusively proven, since we have done a wide analysis instead of
concentrating on the best possible performance for a particular function.

• Limited input scope
Since the distinguisher circuits only process small parts of the input at a time, this approach may by
unable to detect non-randomness present in the global scale. Enabling the circuit to process longer
inputs would alleviate this drawback.

• Speed and complexity
The proposed evolution-based approach has a very slow (and computation-intensive) learning phase
compared to the use of statistical batteries. Nevertheless, when a working distinguisher is found,
assessing further data is very fast.

• Dynamically adapting distinguishers
While tests from standard statistical batteries look for a predefined evidence of non-randomness,
distinguishers evolved by EACirc dynamically adapt to the data stream. Thus, if a data stream
changes its properties, the test will evolve accordingly (predefined statistical tests never change).

• Results interpretation
On one hand, dynamically adapting tests present a huge disadvantage when interpreting their results
– it may be very difficult for humans to analyse, on what data properties is the distinguisher basing
its verdict. On the other hand, statistical tests only inform of the data’s global characteristics (e. g.
there are much more ones than zeroes), while the distinguisher circuits may be a little more specific
(e. g. every 4th byte has a higher Hamming weight than it should).



7.1 Proposed future work

As could be seen in section 5, EACirc still falls behind standard statistical batteries in some cases. In
the future work we will concentrate on those border cases were EACirc is outperformed.

Another primary goal for us will be enabling the circuit to process longer inputs and thus detect more
global interdependencies. We consider enabling the circuit to read further input byte by using special
in-node READ function. Other method would be to implement a kind of memory for the circuit, which
would enable the transfer of information when processing longer inputs.

Another interesting idea is to explore the range of functions allowed in the circuit nodes. On one hand,
we may allow more complex data processing in a single node – sequences extracted from the byte-code
of the analysed stream cipher/hash function may be used. On the other hand, we may limit the range
of allowed functions to but a few, e. g. only and, or and not, as such a small set is sufficient to express
arbitrarily complex function if given enough space.

Furthermore, we plan to perform deeper analysis of the obtained results with respect to the tested stream
ciphers and hash functions. For this, new tools for interpreting the results will have to be developed (e. g.
statistical analyser of the node outputs in evolved circuits).
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