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Abstract. Research on denial of service (DoS) attack detection is com-
plicated due to scarcity of reliable, widely available and representative
contemporary input data. Efficiency of newly proposed DoS detection
methods is continually verified with obsolete attack samples and tools.
To address this issue, we provide a comparative analysis of traffic fea-
tures of DoS attacks that were generated by state-of-the-art standalone
DoS attack tools. We provide a classification of different attack traffic
features, including utilized evasion techniques and encountered anoma-
lies. We also propose a new research direction for the detection of DoS
attacks at the source end, based on repeated attack patterns recognition.
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1 Introduction

Even though denial of service (DoS) attacks are steadily gaining on popularity
among both cyber criminals and security researchers, there are only few studies
collecting thorough and truly representative characteristics of DoS attack traffic.
We observe a serious discrepancy between tools that are used by attack per-
pertrators and the tools that are used for testing DoS detection and mitigation
solutions proposed by academia. The list of tools and techniques actively used
in real environment contains advanced tools such as LOIC, HOIC or Slowloris.

Understanding how attacks evolve is a necessary step towards the design
of appropriate DoS attack detection and mitigation systems. Conversely, aca-
demic concepts are notoriously evaluated with obsolete and in practice already
forgotten tools, most notably TFN, TFN2k, Shaft, Trinoo, Knight, mstream
and Stacheldraht that all date back to year 2000. We still encounter numerous
research works that present these tools as representatives of modern DoS at-
tacks, even in respectable periodics (e.g., [2,7,26]). These tools no longer reflect
contemporary real DoS attacks. DoS attacks went through an incredible devel-
opment not only in terms of overall performance, but also in terms of attack
properties. A brand new class of slow application DoS attacks has emerged and
gained on popularity.



Simultaneously, contemporary labeled DoS attack datasets are sparse. Both
DARPA and KDD99 datasets are still being used, despite being 15 years old
and not representing current state in networks. For example, DoS category in
KDD99 contains back, land, neptune, pod, smurf and teardrop attacks, none of
which are seen in the wild any more. Other available datasets are produced by
projects such as CAIDA, MAWI or ONTIC. However, these datasets either do
not provide attack labeling or suffer from little DoS attack variability.

Our research focused on state-of-the art DoS tools, their DoS traffic prop-
erties, employed evasion techniques and further tools characteristics. Network
traffic profiles of standalone DoS tools will help design detection methods that
are based on valid assumptions. Also, by creating a database of attack tools, it
will be possible to estimate what classes of DoS attacks can be detected by each
proposed method.

Our traffic traces contain only attack traffic. Each trace file is labeled with
the name of DoS tool that was used to generate the traffic, attack type and any
attack configuration options. Therefore, our traces are suitable for evaluation
of DoS detection and mitigation systems through attractive overlay methodol-
ogy. Overlay methodology combines the separate attack traffic traces with the
background traces from an arbitrary environment. This widespread methodology
allows to recognize the ground truth and precisely determine the false positives
rate and false negative rate of the evaluated detection system [5].

Our analysis will assist best to researchers focusing on source-end DoS de-
tection solutions, such as D-WARD [17]. Mirkovic et al. argue that detecting
DoS attacks directly at the source computers or first-mile routers brings bene-
fits such as congestion avoidance, small collateral damage, easy traceback and
the possibility to use sophisticated detection strategies due to more available re-
sources [16]. Source-end solutions also bring significant advantages when applied
in cloud environments, software-defined networking or untrustworthy networks.
We believe the importance of source-end detection is proven by the development
direction of host-based antimalware products. Security companies are gradu-
ally introducing more and more network analysis modules to their products,
including DDoS detection modules, such as in the Symantec Endpoint Protec-
tion. Capability to detect outbound DoS attacks coupled with originator system
process identification is a viable behavioral malware detection

This paper is supported by more technical details available in our technical
report [8]. Our dataset of all PCAP traces and used DoS tools is freely available
at [1]. Our paper presents the following contributions:

1. This is the first comparative study aimed exclusively at traffic properties
of DoS attack tools. We overview existing state-of-the-art standalone DoS
attack tools, their attack traffic properties and used evasion techniques. We
provide conclusive evidence that no two DoS tools (of those we examined)
generate DoS attack traffic with the same properties.

2. Identification of network traffic features that are suitable for the source-end
DoS attack detection. We evaluated the importance of selected features for
various classes of DoS attacks. We reject traffic randomization as an universal



answer to the DoS detection evasion. We propose a new area for detection
of DoS attacks based on recognition of unique repeating patterns.

3. Support for the use of these traffic traces for evaluation of DoS intrusion
detection systems in academic research thorough overlay methodology.

The remainder of this paper is organized as follows. Section 2 reviews relevant
work in the traffic analysis of DoS tools. Section 3 describes our experiment and
the selection of tools for analysis. Section 4 supplies our raw observations of the
selected DoS traffic properties. Section 5 summarizes our results and highlights
the impact of our analysis on DoS attacks detection. Section 6 concludes the

paper.

2 Related work

Exploration of detailed properties of DoS attacks in the wild received limited
to none interest from academia. This may be because of an assumption that
DoS attacks cannot notably alter their properties, otherwise they would have
to sacrifice performance or increase visibility. On the other hand, some of the
most prominent state-of-the-art DoS tools are occasionally examined by freelance
security specialists or companies dealing with DDoS protection solutions. Such
analyses are often thorough and descriptive, but lack a mutual comparison and
frequently skip deriving general concepts.

The tools listed in this paper are extensively and routinely used by hacktivists
to manifest their political opinions and by technically unsavvy users to harass
other users. Bartolacci et al. describe the practice of “kicking”, when online
gamers use simple DoS tools to degrade their oponent’s network connection or
even force them out of the game [6].

Onut and Ghorbani argue there is a general lack of research on input features
[19]. They investigated the effectiveness ranking of 673 network features for the
detection of network attacks. Their evaluation concludes that for the detection
of DoS attacks the best features are related to ICMP protocol. For TCP-based
attacks, they emphasize the importance of SYN packet statistics and flow statis-
tics. Another DARPA dataset traffic features analyzing paper was presented by
Kabiri and Zargar [15]. They note the SYN flag presence, classification fields and
protocol fields as most influential. Slightly enhanced DARPA 2000 dataset was
analyzed by Zi et al. [27]. Their list of top 5 preferable features (in decreasing
order) is TCP SYN occurrence, destination port entropy, entropy of source port,
UDP protocol occurrence and packet volume. Unfortunately, the results based
on DARPA and KDD datasets has been repeatedly criticized for not being a
good representative sample of actual traffic in a network (e.g., [13,21]).

Thing et al. [23] performed a detailed source code analysis of selected then
popular bots for distributed DoS (DDoS) attacks, namely Agobot, SDBot, RBot
and Sybot. Authors emphasize the importance of randomization in creating a
packet, which is a view we share. Given the source code availability, this analysis
is very descriptive with a deep understanding of inner works of each tool, but the



analysis does not provide a high-level overview of the traffic in real environments,
study is not comparative and the scope is limited.

Traffic features that are significant for old TFN2k DoS tool traffic are exam-
ined by Dimitris et al. [11]. They put emphasis on the presence of SYN and URG
flags, while simultaneously noticing that TTL and Window sizes provide almost
no information. Conversely, our results indicate that the URG flag is not used by
contemporary DoS tools anymore, probably because of its relative rarity, which
would make the attack traffic easily identifiable [8].

Another study aimed at properties of DDoS bots has been performed by Ed-
wards and Nazario [12]. The study focuses on families of DDoS botnet malware
controlled predominantly from the Chinese IP space. An exhaustive summary
of bot communication protocols is provided. Attacks supported by each bot are
listed along with a high-level attack type taxonomy. However, from the perspec-
tive of attack traffic characteristics, only few unique properties of chosen bots
are discussed and description of the traffic is overly general, without sufficient
details to be used as an input in design of DDoS detection systems.

Slow DoS attacks form a class of stealthy attacks where attack hosts aim to
allocate all available resources of the server for themselves, effectively denying the
service for other hosts. Slow attacks require small bandwidth, are very stealthy
and consist of fully established TCP connections. Cambiaso et al. classify slow
attacks into four groups: pending requests DoS, long responses DoS, multi-layer
DoS and mixed attacks [9]. Several representatives of slow DoS attacks have been
discovered already, most notable being Slowloris [14] and Slow HTTP POST [10].

Basic properties of DDoS traffic are frequently listed with DDoS botnet anal-
yses, such as the analysis of Dirt Jumper botnet [3] or Miner botnet [20]. Due
to their primary focus on botnet properties, these studies only rarely provide
sufficient technical details about the generated DDoS traffic. Although an over-
all description helps to understand the basic idea of an attack, missing technical
details make it impossible to use this data as an input source for creation of
new DDoS detection methods. Simultaneously, any estimate of effectiveness of
existing DDoS detection methods against these attacks is difficult and unreliable.

3 Experiment

3.1 DoS tools selection

The full list of analyzed tools, versions, respective sources, supported attack
types and tool identifiers used in later text is provided in Table 1. We are con-
vinced that this list accurately represents the types of standalone DoS tools that
can be currently encountered during real attacks.

Firstly, we selected a subset of existing standalone DoS tools based on their
popularity and capabilities of attacking generic web servers. Arbor Networks
Worldwide Infrastructure survey of 2014 notes that 78% of respondents have
been targeted with various types of the HTTP GET flood, 55% with the HTTP
POST flood, 43% with Slowloris attack, 38% with the LOIC DoS tool or its



variants, 27% with the Apache Killer tool, 23% with the HOIC DoS tool or its
variants and 19% with the SIP Call-control flood. Among trailing attack types
and tools are SlowPost, THC, nkiller, Hulk, RUDY and Recoil [4]. Secondly, we
focused on tools that were used or allegedly used during publicized DDoS cam-
paigns (OpUSA, Oplsrael, OpMyanmar). Thirdly, respected security companies
often publish lists of DoS tools that are either popular or present a new step in
development of DoS tools such as a by Curt Wilson of Arbor Networks [25].

We excluded any tools that are exclusive for a specific target application
(e.g., Apache Killer) and tools that do not directly communicate with the target
(e.g., DNS amplification attack tools). Lastly, we included several tools that are
a popular choice on hacker forums (e.g., GoodBye, Janidos) or are created as
open source in public software repositories (e.g., HTTP DoS Tool) or that take
an extraordinary approach in causing a DoS effect (e.g., AnonymousDoS). Tools
were selected in order to represent a full spectrum of existing types of TCP and
HTTP DoS attacks.

Table 1. Selected tools and supported attacks.

lName Version Source Tool ID Attacks

Anonymous DoSer 2.0 OpUSA, OpMyanmar AD HTTP

AnonymousDOS Representative ADR HTTP

BanglaDOS Representative BAD HTTP

ByteDOS 3.2 Oplsrael, OpUSA BD SYN, ICMP

DoS 5.5 Representative DS TCP

FireFlood 1.2 OpMyanmar FF HTTP

Goodbye 3.0 OpUSA, ArborNetworks GB3 HTTP

Goodbye 5.2 OpUSA, ArborNetworks GB5 HTTP

HOIC 2.1.003 OpUSA, OpMyanmar HO HTTP

HULK 1.0 OpUSA, InfoSec HU HTTP

HTTP DoS Tool 3.6 Representative HDT slow headers, slow POST

HTTPFlooder OpUSA HF HTTP

Janidos -Weak ed.- ArborNetworks JA  HTTP

JavaLOIC 0.0.3.7 OpUSA, OpMyanmar JL  TCP, UDP, HTTP

LOIC 1.0.4.0 OpUSA, OpMyanmar LO1 TCP, UDP, HTTP

LOIC 1.0.7.42 OpUSA, OpMyanmar _ LO2 TCP, UDP, HTTP

LOIC 1.1.1.25 OpUSA, OpMyanmar LO3 TCP, UDP, HTTP

LOIC 1.1.2.0b OpUSA, OpMyanmar LO4 TCP, UDP, HTTP, Re-
Coil, slowLOIC

Longcat 2.3 Hacker forums LC TCP, UDP, HTTP

SimpleDoSTool Representative SD TCP

Slowloris 0.7 Oplsrael, OpUSA SL HTTP

Syn Flood DOS OpUSA SF  SYN

TORSHAMMER 1.0b Oplsrael, InfoSec TH HTTP

UnknownDoser 1.1.0.2 Hacker forums UD HTTP

XOIC 1.3 InfoSec XO TCP, UDP, ICMP




Standalone tools are common inspirations for botnets. Even though most bot-
nets rely on common volume-based attacks, such as generic HTTP GET flood,
HTTP POST attack or TCP SYN attack, succesful new attacks are occasionally
incorporated as well. For example, since the first release of the Slowloris HTTP
client in June 2009, the Slowloris attack code has been included in advanced
DDoS bots such as Mariposa, Skunkx or SpyEye. Similarly, a slow POST attack
known from the Torshammer tool has been added to the Solar botnet and the
R-U-D-Y attack to the Cyclone botnet. Although we usually observe a delay
between the creation of a new proof-of-concept tool and full weaponization, sup-
port for new attacks is indeed added to botnets. Also, while standalone DoS tools
are mostly free and public, bot binaries may be cracked and therefore unreliable,
may be missing crucial components or may not be available at all. Obtaining
reasonable botnet DoS traffic samples under pre-defined conditions and with
non-interfering background traffic might be extremely difficult. Therefore, we
believe this paper will also be beneficial for research on contemporary botnet
capabilities.

3.2 Environment

The virtual environment was used in order to minimize the influence of real
intermediate network on measurements. Also, virtual machine snapshots allow
returning to a conjoint initial stable state. Therefore, any measurements on a
restored snapshot are not affected by artifacts from previous measurements (e.g.,
keep-alive packets sent by either side). Our virtual environment was built on a
single physical server with Core i7 CPU and 16 GB RAM.

We created a simple point-to-point virtual network between two virtual ma-
chines. The attacker VM had the Windows 7 operating system and the victim
was the IIS 7.0 webserver on the Windows Server 2008 R2. Firewalls on both
machines were configured to allow all incoming traffic from the shared network.
Default settings for other subnets were kept. Except for DoS attack tools and
the operating system itself, no other legitimate network traffic was knowingly
produced. Tools were executed through the Administrator account with UAC
enabled.

Our analysis was performed in a controlled virtual environment with no back-
ground traffic. Background traffic was omitted in order to gain as clear view of
ideal attack conditions as possible. Applying legitimate background traffic would
invalidate our results for scenarios with background traffic differing from the one
we generated. Also, from the perspective of source end DoS attack detection, the
impact of background traffic is diminishing. A reasonable assumption is that the
source host is sending the attack traffic towards only one victim. Therefore, any
source end DoS detection system can be considering traffic of each source IP and
destination IP pair separately.

Background traffic can only alter time distribution of traffic (sections 4.1,
4.2 and 4.3) and only for highly susceptible, usually low-volume, tools. Internal
properties of flows (e.g., HTTP request URI, flow packet count) cannot be altered
by background traffic at all (sections 4.4, 4.5 and 4.6). Given the placement



of source end detectors directly on sending hosts or on first-mile routers, the
complexity of intermediate networks or the number of attacking hosts is similarly
irrelevant.

We used the CNN.com webpage from 11/19/2012 19:39 UTC, renamed to
index.htm, as a testing target page. A popular existing webpage was selected
in order to mimic real conditions under which DoS tools are launched. Saved
webpage has 109 files and the total size is 3.3 MB including images.

3.3 Measurement

We review DoS attack tools from the viewpoint of source-end detection. While
DoS mitigation systems are usually deployed on the victim side, the source-end
side is more sound for the purpose of understanding the attack. Focusing on the
source end enables deep and very precise understanding of inner works of tested
tools without disturbances caused by an intermediate network.

Each tool has been tested with various configurations. The first configuration
of each tool has been set with default tool settings if such exist. Configurations
were chosen in order to test primarily settings that can alter the form of produced
network traffic. We did not distinguish between successful and unsuccessful at-
tacks. 60 and 300 second traffic samples were obtained for every tool configura-
tion. The 300 second limit was chosen in order to track at least several iterations
of even the most stealthy slow attacks. Oppositely, most DoS tools demonstrated
their full traffic properties within first 15 seconds. Due to difficulties with packet
recording at high packet transmission speeds, the measurement was focused on
tool capabilities and traffic features, not performance comparison. Even though
attack volume/performance is one of the cornerstones of victim end DDoS de-
fense, its use in source end detection is problematic, mostly due to limited client
bandwidth that is commonly saturated with legitimate network traffic.

DoS tools ran from a common initial state. Both outgoing and incoming
network traffic was recorded with the dumpcap tool from the Wireshark suite
directly at the attacker VM. We then performed our analyses offline on the col-
lected PCAP files. Analyses consisted of two parts. First, the traffic was divided
to 1-second intervals. Network features statistics (e.g., byterate, packetrate, TCP
flag ratios) were then computed for each interval. Second, the PCAP file was
processed packet by packet, network flows were reconstructed and flow statistics
were computed (e.g., simultaneous flow count, packets per flow). We define flow
as 5-tuple: source IP address, destination IP address, source TCP/UDP port,
destination TCP/UDP port, protocol.

Graphs on the following pages represent values of respective metrics each
second of the first minute of the attack. Tables contain tool IDs of tools repre-
senting each category. When an ID is found in multiple categories, the actual
behavior is dependent on chosen tool settings. Identifiers GB and LO represent
all versions of the respective tool.



4 DosS traffic properties

4.1 Traffic burst behavior

Traditionally, DoS attacks were believed to produce an excessively high volume
of attack traffic in order to overwhelm the target. However, even though the peak
volumes of observed DoS attacks are steadily increasing, the ratio of low-rate
attacks is increasing as well [4].

Division of tools into classes by the packet rate shows that we can encounter
both volume-rich tools and tools that produce hardly any traffic. Byte rate and
packet rate values are especially interesting for tools that do not enable the attack
intensity to be specified. For the vast majority of configurations the changes of
byte rate value in time correspond to the changes of packet rate value. Note that
the tool IDs are provided in Table 1 above.

In our set, a clear majority of tools employs an immediate full attack strength
approach. Exceptions are LO and JL that may have an initiation period up to
10 seconds long (Fig. 4). We consider this revelation important, because it is a
strong indicator that detection methods based on change detection can be widely
adopted in real environments. Packet rates of many DoS tools in our set exhibit
a burst behavior. We divide observed burst types into four types. Attribution of
tools to each burstiness type is provided in Table 2.

Full burstiness: The attack traffic is delivered only in bursts. Minimal or no
traffic is exchanged between bursts (Fig. 3). Full burstiness is also very popular
with slow attacks, often probably due to guidance by an internal clock.
Regular peaks: Produced network traffic is very stable except for regular re-
peating anomalies (Fig. 1).

One-time extreme: At one point of the tool run, often at the beginning of the
attack, the traffic characteristics are significantly different from the rest (Fig. 2).
None: The tool does not produce traffic that has observable bursts in packet
rate.

Although according to our knowledge the burst behavior has not yet been
used in the source end DoS attack detection, it could become a valid alternative
to existing detection methods. A new method could be based on the detection of
a burst behavior, recognition of repeated occurrences of bursts and on similarity
comparisons of these bursts.

Table 2. Traffic burstiness.

Full burstiness HDT, HU, LO4, SL, SF

Regular peaks BD, HO, LO, LC, UD

One-time extreme AD, BAD, DS, GB, HDT, TH

None ADR, FF, HF, JA, JL, LO, L.C, SD, UD, XO
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4.2 Flow count

Attacker establishing many connections towards a victim is one of the most
common assumptions about DoS attacks. Reasoning behind this assumption
states that multiple connections imply higher (attack) performance. Also, some
attacks are based on the number of connections or on the rate of their generation
and therefore high number of flows is a desirable property. JL, SD and XO can
generate more than 1000 flows per second without IP spoofing on a standard
laptop. Depending on the configuration and the performance of the source host,
several more tools can be used to reach such limit (e.g., HU, FF), especially when
executed several times in parallel. Oppositely, without regards to tool versions,
following tools can be configured to launch an attack with 100 or less flows:
AD, BAD, HDT, LO (TCP, Recoil, SlowLOIC), LC (HTTP), SL, TH. Low flow
counts make these tools stealthy for source-end intrusion detection systems that
are based on flow count analysis.

Another important aspect of DoS traffic is the change in the number of flows
in time. We classify configurations by the number of flows that were observed
during initial 60 seconds of the attack. Four flow count patterns have been rec-
ognized. Attribution of tools to each flow count type is provided in Table 3.

Stability: Most tools exhibit only minor changes while the long term trend
remains steady, e.g., FF or JA. While minor fluctuations can be expected (Fig.
6), the flow rate is extremely stable for most tools in an ideal closed environment
(Fig. 7). This fact is emphasized in case of tools that require the operator to
specify the flow rate prior to attack, be it directly as request per second ratio
(e.g., BAD) or inderectly by the number of attack threads (e.g., LC, LO).

Pulsing: Intentionally pulsing attack is generally viewed as an attempt to stay
undetected while maintaining a reasonable per host attack strength. Our analysis
shows that pulsing can also be an integral part of the attack. Representatives
are LO, which achieves pulsing by batch flow closures (Fig. 8) or HDT, which
alternates between calm no-traffic periods and periods of batch packet sendings.

Decreasing count: Several tools such as DS (Fig. 5), GB and HDT tend to
decrease the number of observable flows, even if the victim has not been made
unavailable. The reason may be a poor design of the tool or inherent attack
characteristics, especially in the case of slow attacks.

Increasing count: Although an attacker is expected to attempt using all avail-
able resources as soon as possible to overwhelm the victim, increasing strength
could be used to circumvent reputation-based and some anomaly-based intrusion
detection systems. A subtle attack start phase could lead to the attack being
undetected for a prolonged time. Naturally, subtle attacks are not tempting for
hacktivists, who want the publicity of the attack. None of the tools in our set
has shown an increasing strength trend, except for a short initialization period
at the beginning of the attack.



Table 3. Flow count change.

Stability AD, ADR, BAD, BD, FF, HF, HO, HDT, JA, JL, LC, LO,
SD, XO

Pulsing HDT, HU, JL, LO, SF, SL, UD

Decreasing count DS, GB, HDT

4.3 Flow parallelity

Results of flow parallelity measurements support our observations from the flow
count measurement. The level of flow parallelity generally decreases with the de-
creasing flow count. Our observations show that a true parallelity is not common.
Many tools actually produce flows in succession or in small batches of simulta-
neous flows. The outer effect of massive flow parallelity is caused by the length
of the flow sampling interval. With a decreasing interval, thresholds for DoS
detection via simultaneous flows count should be lowered in order to maintain
detection accuracy, as the count of seemingly simultaneous flows will decrease.
In contrast, the count of truly simultaneous flows would remain constant. Attri-
bution of tools to each flow parallelity type is provided in Table 4.

All simultaneous: Flows that are initiated in a short succession and are never
closed under normal circumstances. Attacker keeps these flows open for the du-
ration of the attack and sends attack packets over them. Attacks with spoofed
source IP address has been inserted into this group (e.g., SF).

Mostly simultaneous: Flows are closed after a prolonged time, usually by the
victim after the connection timeout runs out. Many flows are open at the same
time. Flow duration usually exceeds 60 seconds.

Long-term consecutive, many simultaneous: Generation and existence of
flows themselves is one of the means of attack. Flows are generated rapidly,
often by several process threads simulaneously. Flow duration varies with the
performance of the attack tool, usually between several hundred milliseconds
and several seconds.

Mostly consecutive: Flows are established and closed in succession, eventu-
ally only a few flows overlaps. Attacks aim to overwhelm the victim with flow
generation rate. Flows have a very short duration.

Table 4. Flow parallelity.

All simultaneous AD, BAD, LC, SF, SL

Mostly simultaneous |DS, GB, HDT, HU, LO4, TH, UD
Long-term consecutive |LO

Mostly consecutive ADR, BD, FF, HF, HO, JA, JL, UD, XO




4.4 HTTP requests per flow

Number of outgoing HTTP requests per flow for a single destination IP address
can also be considered a decent detection metric. Normal non-DoS traffic con-
sists both of TCP flows with only one HTTP request and of TCP flows that
carry multiple HTTP requests along with respective responses. Therefore on
average, the number of HTTP requests exchanged over destination port 80 is
higher than the number of TCP flows with this destination port. This important
characteristic is only rarely emulated by DoS tools. Volume-based HTTP attack
tools produce many HTTP requests and their distribution between flows is often
very straightforward, as can be seen in Table 5.

One per flow: Each established TCP flow is closed after at most one HT'TP
request is sent from the attacker to the victim. The ratio between the number of
HTTP requests and the number of TCP flows carrying HT'TP protocol messages
converges to 1 (Fig. 9). Special case are slow attacks based on slow sending of
HTTP header. Although these attacks take a long time, each flow contains only
one HTTP request message that is slowly constructed.

Multiple per flow: Established TCP flows can carry one or more separate
HTTP requests and respective responses. Of the tested tools, none has exhibited
such behavior with chosen configurations.

Infinite per flow: TCP flows carrying attack HT'TP requests are never closed
under normal circumstances and the request sending has not been observed to be
stopping during our analysis. The ratio between the number of HT'TP requests
and the number of TCP flows carrying HTTP protocol messages during each
interval is much higher than 1. The ratio usually copies the packet rate curve
(Fig. 10).

Table 5. HT'TP requests per flow.

One per flow ADR, FF, GB, HDT, HF, HO, HU, JA, JL, LO, SL, TH, UD
Infinite per flow AD, BAD, L.C

4.5 HTTP request URIs

We are convinced that the HTTP uniform resource identifier (URI) monitoring
can be used as one of the most important metrics to verify the presence of
an outgoing DoS attack in a given traffic sample. Observing repeated similar
URIs either within one HTTP flow or within multiple flows with very similar
characteristics is a strong indication of internal relationship and possible evidence
of an outgoing DoS attack. Even though simply storing of all observed URIs
is inefficient, performance problems can be solved, for example, with counting
Bloom filters. Our analysis shows that from the perspective of source end DoS
detection, most DoS tools target only a very limited number of URIs. Observing
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such HTTP requests exceeding predefined threshold is a sufficient signal of an
outgoing DoS attack in progress.

There are four basic techniques how DoS tools may process URIs. Attribution
of tools to each of these techniques is provided in Table 6.

URI string set: The tool targets not just one URI on a selected victim server,
but a predefined set of URIs. Using a set may slightly downgrade the attack
efficiency, as not only the most resource demanding page is chosen to be the
target, but also several others. If only one URI is accessed by the tool, the count
of unique HTTP requests in time is equal to 1 (Fig. 11). It is also not uncommon
for tools to not allow the change of the target URI at all (i.e., a basic value such
as index.htm is employed).

Page crawling: The tool starts with an initial URI and gets more URIs by pars-
ing the links in the HTTP response. None of the tools in our analysis employed
the page crawling.

Parameter change: The base domain and file path remain constant, but full
URI is made unique by adding unique parameter values. Unique parameter values
render webpage caching servers between the attacker and the victim useless,
therefore make the attack mitigation more difficult. Figures 12 and 13 show the
difference between capturing full URIs and without parameters.

Random URI: URI may be fully randomly generated. That presents a challenge
for attack detection and mitigation, but attack effectiveness is severely degraded.
A huge majority of responses is Error 400, therefore the web server does not
saturate its outgoing bandwidth and also do not devote so much computational
power to retrieve the response.

It should be noted that URI frequency monitoring is unreliable metric when
the webpage in question is limited to only a few pages. Therefore a combination
with other metrics, such as suspicious User-Agent string monitoring, is necessary.

Oppositely, an overly large number of hard-coded URIs negatively impacts
the attack power. Although accessing a large number or URIs makes intermediate
caching less effective, the attacker also partially sacrifices his attack potential.
Different URI requests require different volume of resources to process. With the
suggested approach not only resource-demanding requests (e.g., DB searches,
form submits), but also generic requests are sent towards the victim, lowering
the attack effectiveness.

Table 6. HTTP request URIs.

URI string set ADR, FF, GB, HDT, HF, HO, JA, JL, LO, LC, SL, TH, UD
Parameter change AD, BAD, HU
Random URI JL, UD




4.6 Flow packet count

Packet count is one of the most important properties of every flow. We believe
that it can be used to detect spoofed attacks, some classes of non-spoofed DoS
attacks and, most importantly, it can serve as an indicator of similarity between
seemingly unrelated flows. TCP attack tools produce traffic where all closed flows
have exactly the same packet count (disregarding possible TCP retransmissions).
We believe that when applied to high flow (count) tools (e.g., SD, XO, JL),
this metric can be both very precise and computationally efficient. Configurable
precision can be devised from how many flow counts must be correctly predicted
in order to consider those flows being part of a DoS attack.

The purpose of normal traffic is to transmit data between communication
participants. In terms of TCP, three packets are required to establish the con-
nection and one or more packets to terminate the connection. Of those, two
or more packets must be sent by connection initiator. Therefore, any closed
connection with only two or less packets sent by the flow initiator could have
not transmitted any data. Oppositely, TCP-based attacks usually transfer few
packets per flow, aiming to exploit TCP rather than transmit data.

As is shown in Table 7, majority of tools can produce homogenous traffic from
the point of flow packet count. For example, HTTP POST flooding attack by
UD generates flows with vast majority having 7 packets after closure (Fig. 15).
Oppositely, HO is one of the tools whose traffic does not provide any recognizable
flow packet count (Fig. 16). Excluded were tools whose connections were never
closed during the first minute of the attack (AD, BAD, HF).

Table 7. Flow packet count distribution.

All flows the same|ADR, BD, DS, FF, GB, HDT, JA, JL, L.C, LO1, SD, SF,
packet count SL, UD, XO

Minimal differences LO, SD, UD

Significant differences |HDT, HO, HU, JL, LO, SD, TH, UD

5 Discussion

Most standalone DoS tools are single-purpose programs that are capable of only
one type of attack. Moreover, even tools that support multiple attack types can
rarely launch several attacks simultaneously. Majority of tools does not require
root privileges and therefore can be executed on computers at work, school or
internet cafe. Basic operations with DoS tools do not require advanced knowledge
about the victim or the type of attack. Most tools allow for targeting only one
victim at a time. This is an important observation for source-end detection,
because statistics of multiple flows aimed at a single target can be included in
detection.



5.1 Traffic features and aggregation

Network traffic generated by tools in our set presents a variety of DoS attacks.
Even though it was possible to classify attacks by the basic concept, every attack
was unique in some regard.

Although almost every traffic feature that we measured yielded some results,
none proved to be sufficient on its own for the detection of DoS attacks in
the source-end network. Every feature can detect only a subset of existing DoS
attacks. Standalone features suffer from false positives, but more importantly,
have an inherent limit of false negatives rate. Different classes of DoS attacks
have different properties and none of the traffic features could be applied to
all. Employing just one input feature for DoS detection results in an inability
to detect many classes of attacks. Still prevalent assumptions about DoS traffic
regarding traffic volume, flow composition or protocol compliance are obsolete
and cannot be applied to DoS attacks in general, rather only to small DoS attack
subclasses.

Therefore we believe that an aggregation of multiple features is necessary to
be used for a general detection. We support the approach taken, for example,
by [18,22] that collect multiple feature values and subsequently compute their
aggregate importance.

Serious consideration must be given not only to the computational efficiency
of the detection, but also to an efficient collection of input values. Features
included in the NetFlow standard are therefore preferred. However, as our results
show, this limited set of flow-based statistics and network layer features may not
be sufficient for the reliable confirmation of some classes of DoS attacks (e.g.,
slow attacks cannot be detected with volume-based detection metrics). In order
to balance the complexity of collection and processing of some features and
potentially huge amounts of packets/flows for analysis, sampling and filtering
of suspicious flows may be employed prior to the analysis. We believe that the
analysis process separated into several stages as proposed, for example, by Wang
et al. [24] is promising.

Traditional metrics such as a high bitrate and a high packetrate are by them-
selves not reliable options for the source-end detection. By definition, slow at-
tacks are hardly detectable via metrics focused on high volumes. Also, many tools
enable to specify the attack performance so it is possible to find a configuration
which cannot be detected through volume-based metrics.

5.2 Repeating patterns

Most important observation of this work is that standalone DoS attack tool traf-
fic comprises of repeating operations. Every attack has a basic construction unit
that is iterated in time, creating a series of similar operations. Although some
characteristics of operations may change with each iteration, most defining prop-
erties are constant. Construction units may have a form of flows with distinct
characteristics in case of TCP-based attacks or HT'TP requests and according
responses in case of HT'TP-based attacks.



Noise traffic can be filtered out once DoS operations are identified. Subse-
quently, traffic can be analyzed on high scale. Patterns such as packet rate burst
behavior, flow count in time or flow paralellity are recognizable. Existing DoS
detection methods can be applied to the filtered traffic with increased accuracy.

Recognition of repeating patterns opens a new area of detecting outgoing
DoS attacks at the source end. This novel approach presents challenges how
to identify construction units in a traffic that contains both benign traffic and
malicious traffic, how to determine which unit properties are constant and how
to apply chosen pattern matching in time efficiently. Benefits are: high precision
growing with each next correctly identified operation and possibility to detect
yet unknown attacks. Since repeating patterns have been identified across all
classes of attacks, it can become a basis of a very broad detection method. For
illustration, we provide example scenarios of this new approach to DoS detection.
Example 1 — BD. The traffic comprises of separate attack flows. Each flow is
to be considered an operation. Each flow has the same packet count, packet size
distribution and is carrying TCP segments. Each flow has the same TCP flag
composition. The flow is always established via a correct TCP 3-way handshake
(3WH) and terminated by the attacker with the TCP FIN segment, which is
followed by the TCP RST segment from the victim. TCP segments don’t carry
any payload. All of the TCP header option fields of packets in one flow have the
same values as the equivalent packets in other flows. All flows have a very short
duration, 99% of them take between 0.1 and 0.12 seconds. None of the packets
has the time to live (TTL) value altered or is using a spoofed IP address.
Example 2 — AD. The attacker opens a fixed number of simultaneous flows
towards the victim. Repeated HTTP requests are sent over each flow. Each
HTTP request is an operation. All packets with HTTP requests have the same
length, TTL field value and packets are not fragmented. Header of every HT' TP
request contains the same fields with the same values. The referer field is always
missing. The full URI comprises of a basic path and parameters. The path is
similar across all flows. The parameter is numeric and is gradually rising, while
the second parameter is a static string.

5.3 Evasion techniques

Most standalone DoS tools do not support any type of detection evasion tech-
niques. Even if supported, they are not enabled by default. Most frequent are
various kinds of traffic properties randomization. Randomization is usually con-
figurable only for the packet fields chosen by a tool creator. Therefore, the effect
of randomization can frequently be negated if multiple input features/header
fields are analyzed in conjunction.

A similar technique can be observed at URI randomization. Adding random
parameters such as timestamps in Unix format (e.g., AD, BAD), random pa-
rameter values (e.g., LO) or even random parameters (e.g., HU) can be used
both to evade simple DoS detection systems and to circumvent content caching
between the attacker and the victim.



Randomization is a powerful weapon for attacker, but it is not almighty.
Excessive or impromper randomization can be detrimental for the attacker by
making his traffic more visible. For example, as noted above, attack tools com-
monly randomize User-Agent string of HTTP request header [8]. While this is
reasonable for victim end detection systems, because User-Agent string cannot
be used to classify attack traffic, it significantly raises suspicion of source end de-
tection systems. Even more importantly, many attack traffic features cannot be
randomized without severe degradation of attack performance (e.g., flow packet
count for TCP SYN attack).

Employing evasion techniques for the network or transport ISO/OSI layer
was rare. SF was the only tool in our set that employed IP spoofing. We assume
that IP spoofing is not popular with these tools, because it enforces the use of
only the most primitive attacks, such as SYN flood.

5.4 Future work

We perceive this work is a necessary prerequisite to our follow-up research on
DDoS attack detection. Creation of this work was compelled by the lack of up-
to-date traffic samples and sparse reliable information on traffic properties of
contemporary DoS attacks. We are convinced that the persistent trend when
DDoS detection methods are evaluated against well-understood, but ruefully
outdated attack descriptions/attack tools, is inherently flawed. Even though the
exact properties of each attack that we analyzed, varied, we have discovered a
set patterns recurring among DoS tools from different creators. We believe these
patterns will prevail for a longer time than simple attack signatures.

The key revelation is the presence of repeating operations in all analyzed
DoS attack traffic. Therefore, we propose a new research area for the detection
of DoS attacks at the source end that is based on repeated attack pattern recog-
nition. We discuss overall DoS tool properties and employed detection evasion
techniques. Since attack features are not mutually comparable due to inherent
detection efficiency limitations, it is crucial that researchers include their DoS
attack traffic assumptions and any possible evasion techniques in every research
output/publication that is dealing with DoS attack detection.

Further research will be required to analyze why these patterns are prevalent.
Possibly, this is because of focus of tools’ creators on victim end defense. Even
though thorough per-packet randomization is possible, it results in an increased
load of the source host, brings implementation issues and most notably, it de-
creases an overall performance of the tool. We frequently encountered per-flow
randomization or even randomization taking place only once when the tool was
run. From the victim end perspective, this level of traffic randomization is usu-
ally sufficient, due to distributed nature of attacks. However, this behavior can
be exploited by source end DDoS detection solutions, because it increases attack
visibility near the source host.

The impact of randomization on detection metrics depending on the place-
ment of detection sensors is another interesting area of further research.



Volumetric DoS attack traffic consists of repeated operations with minimal
differences. We intend to explore the possibility of creating a grammar that
would allow us to describe the attack traffic from the source host perspective in
an easily understandable, yet precise notion. The grammar will give researchers
a good understanding of what operations are common and how the attack traffic
changes between different versions of one tool.

6 Conclusions

This paper encourages and supports the evaluation of new source end DDoS
detection systems against contemporary DoS attacks. We have analyzed state-
of-the-art standalone DoS tools that have been observed in real DoS attacks.
We provided detailed properties of attack traffic and emphasized notable traffic
anomalies from the perspective of source end DoS detection. Attack traffic is
classified by each input feature and overall characteristics of each class are listed.
Attack traffic traces are suitable for evaluation of DoS detection and mitigation
systems through overlay methodology. More details about our experiments can
be found in our technical report [8]. The traces are available for download at [1].
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