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Abstract

This thesis is focused on secure symmetric cipher encryption in an
untrusted environment. It studies the white-box version of Advanced
Encryption Standard designed by Chow et al. in [1] and proposes
several modifications of this algorithm to make it resistant against
known white-box attacks on WBAES. The implementation of this
modified cipher within the Java Cryptography Architecture is in-
cluded.
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Chapter 1

Introduction

For a long time, it was supposed, that the encryption and decryption
operation is performed in the secure, trusted environment. We could
imagine it as a machine, or a real black box, that takes some inputs
(e.g. plaintext and the key) and gives us some results (ciphertext).
And this is the only thing the attacker can see, the output of such
a machine. Or, he can try several own plaintexts and see the corre-
sponding ciphertexts, what leads to the chosen-plaintext attack. But
he is not able to see inside the machine or change something there.
This context is called the black-box context and for a long time it was
enough to count with this.

However, nowadays more and more computations are being out-
sourced, performed on insecure devices like smartphones or the In-
ternet (cloud), and we need to consider it. In the white-box context
we expect the attacker is able to see the memory during computation,
change it, change the application itself or pause the computation in
any time and resume it later. For example, the AES algorithm con-
sists of several rounds, so an attacker can run only one exact round
and see the memory, where the encryption key and round keys are
stored, because in some steps of computation the key needs to be
loaded into the memory. The key data is more random than other
data in the memory and there exist algorithms able to find such a
randomness, and this way the attacker is able to obtain the encryp-
tion key.

When an attacker is so powerful, there is need to hide all the im-
portant stuff. Basic idea is to split the computation into two parts.
One, that is critical and needs to be run in secure environment, but is
small enough to run not very long and is performed only once, be-
cause the secure devices are usually slow. And the second part con-
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1. INTRODUCTION

sists of the very encryption, that is secure in white-box context.
In last years, several white-box ciphers were designed as white-

box versions of known black-box ciphers. The most researched one is
white-box AES [1, 2, 3, 4]. In some steps of the AES algorithm, the key
is loaded into the memory. In key expansion step it is the encryption
key and in all AES rounds the round key needed for AddRoundKey
operation is stored in memory. In white-box context these need to be
hidden. The most secure way is to create one look-up table, assigning
one output to each possible input, and so behaving the same way as
in black-box context. However, such table would be very large and
thus not practical. That is why there is an effort to create a series
of smaller tables. These would be created only once in the secure
environment and the encryption operation can use them in untrusted
environment.

However, white-box AES has some weaknesses.The key sched-
ule is relatively easily reversible, what means, that an attacker needs
only two consecutive round keys to obtain the encryption key. Some
primitives, like S-box or MixColumn matrix are constant, publicly
known. And MixColumn operation splits its input into four inde-
pendent parts.

These vulnerabilities are used by the BGE attack against white-
box AES [5]. There were several unsuccessful attempts to make WBAES
resistant against this attack. The aim of this thesis is to suggest some
improvements of white-box AES to make a cipher resistant against
BGE attack, but in comparison to other trials, it is not required to stay
compatible with AES or any other known cipher. Then to provide its
implementation under the Java Cryptography Architecture.

Chapter two gives an overview of AES and white-box AES build-
ing blocks, along with the weaknesses of these algorithms. The third
chapter outlines suggested improvements and describes basics needed
for these changes. In the next chapter the scheme of our new cipher is
explained in detail and in the next one, the details of our implementa-
tion are provided. The sixth chapter evaluates the designed cipher in
both, the black-box and the white-box context, provides test vectors,
memory usage and performance comparison. In the last chapter an
alternative white-box scheme of this cipher, which requires smaller
amount of memory, is introduced.
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Chapter 2

AES, WBAES overview

Our new cipher, WBAES+, is based on WBAES, what is the most
researched cipher for white-box context. This cipher is compatible
with classical Advanced Encryption Standard, just several changes
were made to make it secure in the white-box context.

This chapter describes operations in the AES algorithm and white-
box AES building blocks.

2.1 Confusion, diffusion

Before we can proceed to explanation of the AES algorithm and its
weaknesses, we first need the definitions of these two terms.

Claude Shannon in [7] defined confusion and diffusion as two
properties, that are required for the design of a good cryptosystem
in order to hinder the statistical analysis.

Confusion is a property, that refers to making the relation between
ciphertext and the encryption key as complex and involved as
possible. In other words, the key does not relate to the cipher-
text in a simple way, each character of the ciphertext should
depend on several parts of the key. Confusion is usually imple-
mented via substitution.

Diffusion refers to a property that makes the relation between ci-
phertext and plaintext complex, dissipating the statistical struc-
ture of plaintext which leads to its redundancy into long range
statistics of ciphertext. This means that the change of one bit in
the plaintext results in change of several bits in the ciphertext
and vice versa. As a mechanism for primarily diffusion, trans-
position techniques have been identified.
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2. AES, WBAES OVERVIEW

2.2 Advanced Encryption Standard

AES is the symmetric (same key for encryption and decryption oper-
ation) block cipher with input/output length 128 bits and 3 possible
key lengths: 128, 192 and 256 bits. The authors of [8] have shown,
that the key schedule is not secure enough for longer keys, and the
complexity of their attack is not bigger for AES-256 than for AES-128.
Also White-box AES counts only with 128bit keys, so only this case
is explained in this thesis. For information about longer keys, please
refer to [9].

Algorithm 1 AES-128

1: function AES(plaintext, key)
2: state← plaintext
3: AddRoundKey(state, key0)
4: for r ← 1 to 9 do
5: SubBytes(state)
6: ShiftRows(state)
7: MixColumns(state)
8: AddRoundKey(state, keyr)
9: end for

10: SubBytes(state)
11: ShiftRows(state)
12: AddRoundKey(state, key10)
13: return state
14: end function

As many other block ciphers, AES is based on States, where the
State is a two-dimensional array and the input is written to it by
columns.

The algorithm consists of 5 basic operations:

Key expansion
– the round keys are derived from the given encryption key.

For this purpose the Rijndael key schedule [2] is used. In
this algorithm the special function, rcon is performed. It
represents exponentiation of 2 to a user-specified value in
Rijndael’s finite field GF (28).
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2. AES, WBAES OVERVIEW

Algorithm 2 Rijndael key schedule for AES-128

1: First 16 bytes are the encryption key
2: Set rcon iteration value i to 1
3: Repeat 10 times:
4: To create 4 bytes:
5: Create variable temp, assign the previous 4 bytes to it
6: Rotate temp 8 bits to the left
7: Apply Rijndael’s S-box on all bytes in temp
8: Perform rcon[i] and XOR result with the first byte of

temp
9: Increment i by one

10: XOR temp with the block 16 bytes before the new key
11: To create 12 bytes repeat 3 times:
12: Assign the value of previous 4 bytes to temp
13: XOR temp with the block 16 bytes before the new key

AddRoundKey
– bitwise XOR of the State and the round key

SubBytes
– application of the Rijndael S-box [C.1] on each byte of the

state. This is the non-linear substitution step, that should
make the cipher non-reversible.

– confusion element

ShiftRows
– rows of the state are cyclically shifted, the second of one

byte, third of two bytes and fourth one of three bytes to
the left.

– transposition step

MixColumns
– mixing operation on the columns of the State. Each col-

umn is multiplicated by the constant 4 × 4 matrix. This
operation works with columns independently, each byte
of the output then depends on 4 input bytes.

– diffusion element
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2. AES, WBAES OVERVIEW

2.3 White-box AES

In white-box context we expect, that the attacker is very powerful. He
has the absolute access to the algorithm, application and the environ-
ment the application is running in. In case this application performs
encryption, there is an easy way for him to obtain the encryption key
if some actions to hide it are not taken.

To secure the AES cipher so that the key is not loaded into the
memory during the encryption process, a set of look-up tables is cre-
ated before the very encryption.

This section describes the table types and the procedures used to
make the key extraction unfeasible.

2.3.1 AES algorithm suitable for white-box implementation

According to [1], some of the operations in AES algorithm are slightly
regrouped to make the SubByte operation follow right after the Ad-
dRoundKey operation from previous round. We can say, that the rounds
are moved up of one operation and the first one is the same as the
next ones, starting with AddRoundKey and ending with MixColumns.
Algorithm including these changes is described in 3.

Algorithm 3 AES-128 suitable for white-box implementation

1: function AES(plaintext, key)
2: state← plaintext
3: for r ← 0 to 8 do
4: AddRoundKey(state, keyr)
5: SubBytes(state)
6: ShiftRows(state)
7: MixColumns(state)
8: end for
9: AddRoundKey(state, key9)

10: SubBytes(state)
11: ShiftRows(state)
12: AddRoundKey(state, key10)
13: return state
14: end function
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2. AES, WBAES OVERVIEW

These two consecutive operations (AddRoundKey, SubByte) are then
merged together into one look-up table, called T-box. The operations
stay unchanged and are just precomputed into the look-up tables as
shown in the following equation (2.1).

T r
i,j(x) = S(x⊕ kr

i,j) if r < 9
T 9
i,j(x) = S(x⊕ k9

i,j)⊕ k10
i,j

(2.1)

where i,j are the coordinates in the AES state, r is the round number,
kr
i,j is the corresponding byte of the round key and S(x) stands for

SubByte operation.
There are no special look-up tables for ShiftRows in white-box im-

plementation of AES. This operation is performed as the connection
between the consecutive tables.

For a naive look-up table of MixColumn operation we would need
about 16 GB of memory. If we want to have record for every 4-byte
vector, for storing such a table we have 232 possible inputs. The out-
put length is 4 bytes, what gives us these 16GB tables.

However, we can use the linearity of the transformation matrix
here and divide it into smaller tables connected by XOR tables. After
this decomposition we have four tables with 28 = 256 possible inputs
and with one-byte outputs it gives us only one kilobyte of memory
needed (plus XOR tables).

2.3.2 Tables protecting techniques

The look-up tables created are needed to be protected, otherwise an
attacker can see the AES state in its plain form.

IO bijections Input/output bijection is a concatenation of several
4 → 4 bijections applied on the look-up tables in such a way,
that the composition of two consecutive tables cancels the ef-
fect of IO bijections. IO bijections realize confusion to make an
analysis of a single table harder.

Mixing bijections Mixing bijection is a linear transformation realiz-
ing the diffusion. It is represented as a multiplication by a non-
singular mixing bijection matrix and used in combination with
IO bijections in order to increase the security of concatenated
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2. AES, WBAES OVERVIEW

bijections. A small change in one sub-bijection results in many
changes in the concatenated bijection.

External encodings External input/output encodings are designed
to protect an input and an output of the algorithm. In case the
AES encryption is part of a larger system, external encodings
can be applied in a similar way than IO bijections.

2.3.3 Table types

There are four types of look-up tables created in the white-box ver-
sion of AES algorithm.

Type I External input/output encodings are performed as multipli-
cation with a 128 × 128 matrix. The matrix decomposition us-
ing its linearity is applied here and results in tables of type I
(8 → 128 mapping), which are applied in the first and the last
round of the cipher.

Type II Type II tables, 8→ 32 mapping, are used to perform the very
encryption, consisting of composition of T-boxes, MixColumns
operation (excluded in the last round) and 32×32 mixing bijec-
tions.

Type III The effect of the mixing bijections added in type II tables
need to be canceled. For this purpose, 8 → 32 tables of type III
are generated.

Type IV The decomposition of matrix multiplication (external en-
codings, MixColumns) requires an addition operation. This is
performed by a cascade of XOR tables, working with 4-bit in-
puts (8→ 4 mapping).

2.4 WBAES weaknesses

The white-box AES scheme, as described in the previous section, has
several weaknesses, that can be used by a white-box attack:

• Simple, reversible key schedule
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2. AES, WBAES OVERVIEW

• Usage of constant, publicly known primitives (Rijndael S-box,
MixColumn matrix)

• Round function with simple algebraic description

• ShiftRows operation is easily removable in white-box context

• Usage of diffusion element with low diffusion power in one
round (MixColumns operation), each byte of the output of one
round depends on 4 input bytes

In 2005, an algebraic attack using these weaknesses was created. It is
called BGE attack [5], and is able to recover the encryption key from
the white-box AES implementation in 230 computational steps.

There were several attempts to improve the WBAES scheme to
make it resistant against this attack, but it turned out that AES is not
particularly well suitable for white-box cryptography implementa-
tion due to its algebraic structure. That is why we decided to break
the compatibility with this standard and change it to a new cipher
with its white-box form in mind.
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Chapter 3

WBAES+ foundations

In order to prevent the scheme against algebraic attacks, especially
against the BGE attack, several improvements are suggested in [10]:

• New, non-reversible key schedule based on a hash chain of
slow key derivation function

• Usage of key-dependent S-boxes instead of a public one

• Replacement of the MixColumns operation working indepen-
dently on columns of the state by multiplication of whole state
by a key-dependent MDS matrix

This chapter provides algebraic foundations needed for under-
standing these improvements and their modifications used in our
new cipher.

3.1 Key derivation function

Password-based key derivation function (KDF) is a function designed
to derive one or more secret keys from the given passphrase, usually
using a hash function.

Typical usage of KDFs is creation of secret keys from a common
secret value so that the attacker, who obtains one of the derived keys
is not able to find out any useful information about the input secret
value or other keys derived from it.

For this purpose several KDFs were designed to take a longer
time to perform their computation, and so make a brute-force attack

12



3. WBAES+ FOUNDATIONS

or dictionary attack unfeasible. Many of these algorithms (for exam-
ple Crypt(3) [11], FreeBSD MD5 crypt [12], PBKDF2 [13], Blowfish-
based bcrypt [14]) base its slowdown on large (user-defined or con-
stant) number of iterations of a sub-function combined with a non-
secret salt.

As the speed of computer systems increases, the legitimate user
can increase the number of iterations of KDF to make the time needed
for computation constant. This way the brute-force attack should be
still unfeasible, although the attacker’s computing power increases.
However, this assumption works only if attackers and legitimate users
are limited to the same software implementations. Nowadays, the
attackers are able to create their own hardware circuits which are
faster (than software) and have a large computational power, e.g. via
use of parallelism. To reduce the advantage of such attackers, scrypt
memory-hard function was designed.

3.1.1 Scrypt

Scrypt [15] is a password-based key derivation function created by
Colin Percival in 2009.

In comparison to its predecessors, this algorithm was designed
with custom hardware attacks in mind. It is based on the concept of
sequential memory-hard functions [15] defined below.

A sequential memory-hard function is a function which
(a) can be computed by a memory-hard algorithm on a Ran-
dom Access Machine in T (n) operations; and
(b) cannot be computed on a Parallel Random Access Machine
with S∗(n) processors and S∗(n) space in expected time T ∗(n)
where S ∗ (n)T ∗ (n) = O(T (n)2−x) for any x > 0.

That means, implementation of these attacks is artificially made
unfeasilble by requiring a large amount of memory and precluding
effective parallelization.

The scrypt algorithm is described in 4.

13



3. WBAES+ FOUNDATIONS

Algorithm 4 scrypt algorithm, taken from [15]

1: function SCRYPT(
Pass, . Passphrase
Salt,
N, . CPU/memory cost parameter
r, . Latency-bandwidth parameter
p, . Parallelization parameter
dkLen . Intended output length of the derived key
)

2: (B0 . . . Bp−1)← PBKDF2HMAC_SHA256(Pass, Salt, 1, p ·MFLen)
. MFLen . . . length of block mixed by SMix

3: for i← 0 to p− 1 do
4: Bi ← SMixr(Bi, N)
5: end for
6: return PBKDF2HMAC_SHA256(Pass,B0||B1|| . . . ||Bp−1, 1, dkLen)
7: end function

Algorithm 5 SMix algorithm, taken from [15]

1: function SMIX(B,N )
2: X ← B
3: for i← 0 to N − 1 do
4: Vi ← X
5: X ← BlockMix(X)
6: end for
7: for i← 0 to N − 1 do
8: j ← Integerify(X) mod N . A bijective function from

{0, 1}k to {0, . . . , 2k − 1}
9: X ← BlockMix(X ⊕ vj)

10: end for
11: return X
12: end function

14



3. WBAES+ FOUNDATIONS

Algorithm 6 BlockMix algorithm, taken from [15]

1: function BLOCKMIX(B)
2: X ← B2r−1
3: for i← 0 to 2r − 1 do
4: X ← Salsa20/8core(X ⊕Bi)
5: Yi ← X
6: end for
7: return (Y0, Y2, . . . , Y2r−2, Y1, Y3, . . . , Y2r−1)
8: end function

3.2 Twofish S-boxes

S-box (Substitution box) is a non-linear substitution operation used
in many symmetric-key algorithms. It is a basic component provid-
ing confusion of the cipher, usually implemented as a look-up table.
S-boxes can be both, constant (as in the case of AES) and generated
dynamically from the key (Twofish).

Twofish cipher [16] uses four different, bijective 8-by-8-bit S-boxes
created according to the following formula:


si,0
si,1
si,2
si,3

 =

· · · · ·... RS
...

· · · · ·

 ·



k8i+0

k8i+1

k8i+2

k8i+3

k8i+4

k8i+5

k8i+6

k8i+7


(3.1)

s0(x) = q1[q0[q0[x]⊕ s0,0]⊕ s1,0]
s1(x) = q0[q0[q1[x]⊕ s0,1]⊕ s1,1]
s2(x) = q1[q1[q0[x]⊕ s0,2]⊕ s1,2]
s3(x) = q0[q1[q1[x]⊕ s0,3]⊕ s1,3]

(3.2)

where kj is the j-th byte of the key, RS is a 4 × 8 matrix derived
from an RS code [priloha], q0,q1 are two fixed 8-by-8-bit permutations
[priloha] and s0,s1,s2,s3 are the resulting S-boxes.

In case of a 128-bit key, each S-box depends on 16 bits of the key.
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3. WBAES+ FOUNDATIONS

Authors of Twofish verified, that all 216 possible permutations for
each S-box are distinct. Usage of q0,q1 permutations provides differ-
ent S-boxes also in case of equal key bytes.

3.3 MDS matrix

A linear [n, k, d]-code over a finite filed GF (2p) is a subspace with
dimension k of the vector space (GF (2p))n, where the Hamming dis-
tance (the number of symbols in which the two codewords differ)
between any two n-element vectors is at least d and d is the largest
possible.

Such codes satisfy the Singleton bound [17]: d ≤ n−k+1. A linear
code, which achieves equality in this bound, is called a Maximum
Distance Separable (MDS) code.

The generator matrix of an MDS code has the form

G = [Ik×k|A], (3.3)

where Ik×k is the k× k identity matrix and A is a matrix consisting of
k × (n− k) elements, called an MDS matrix.

A necessary and sufficient condition for a matrix to be MDS is
that all possible square submatrices are non-singular [18].

MDS matrices have become a fundamental component in many
block ciphers to provide the diffusion property of the algorithm.

3.3.1 Cauchy matrix

A Cauchy matrix C is defined by two vectors x = (x1, x2, . . . , xm) and
y = (y1, y2, . . . , yn) having pairwise distinct elements of a given field
as an m× n matrix with elements cij in the form

cij =
1

xi − yj
; xi − yj 6= 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, . (3.4)

The determinant of a square Cauchy matrix can be written as

det(C) =
Πi<j(xj − xi)(yi − yj)

Πi,j(xi − yj)
(3.5)

That implies the non-singular property of square Cauchy matrices.
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3. WBAES+ FOUNDATIONS

Square Cauchy matrices are then unitary (C−1 = CT ) and sym-
metric (C = CT ), what implies that they are involutory (the matrix is
its own inverse).

Square Cauchy matrices can be used for generation of MDS ma-
trices, as shown in [19]. This involutory property gives us the possi-
bility of having the same matrix for encryption and decryption.
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Chapter 4

WBAES+ scheme and implementation

WBAES+ is implemented in java language, using Bouncy Castle li-
brary. It is an extension of whitebox AES implementation proposed
by D. Klinec [20].

This chapter talks about the changes needed to be done in this
code/algorithm to make it resistant in white-box context and easy to
integrate with existing applications.

4.1 Hash chain

As the Rijndael key schedule is relatively easily reversible (only two
consecutive round keys are needed to obtain full encryption key), a
more secure way for round keys creation needs to be found. A good
idea is to use a one-way function (hash) as a new key schedule mech-
anism.

As proposed in [10], we define key schedule for our new cipher
as a hash chain, where round keys are computed as follows:

kr =

{
hashsc_N,sc_r,sc_p,n_sha(key, salt) if r = 0
hashsc_N,sc_r,sc_p,n_sha(k

r−1||key, salt) otherwise (4.1)

Where

key is a 128-bit encryption key

kr is a round key for round r

|| is a symbol for concatenation of two binary arguments

salt is a 128-bit salt (publicly known value) used in hashing algo-
rithm to increase its resiliency against precomputation attacks.
In our implementation string "TheConstantSalt." is used
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4. WBAES+ SCHEME AND IMPLEMENTATION

sc_N, sc_r, sc_p are the parameters for a hash algorithm chosen for
our hash chain – scrypt. In our implementation we use values
sc_N = 214, sc_r = 8, sc_p = 1

n_sha is the number of nested applications of SHA256 algorithm on
the input

The one-way property of a hash algorithm implies that the at-
tacker is not able to derive the encryption key if he obtains several
round keys and also that he cannot derive previous round key from
obtained round key.

In order to ensure the inability of derivation of the following round
key from an obtained one, the concatenation with the encryption key
is used. Each round key then depends on the encryption key directly.

We decided to use scrypt as our hash algorithm. It is relatively
young algorithm, but as long as there is no short-cut allowing signif-
icantly faster computation than with the reference algorithm found,
it has advantages compared to older hash functions and KDFs [3.1].

In our implementation we use scrypt implemented in Bouncy Cas-
tle cryptography library, with the following parameters:

Scrypt.generate(P, S, N, r, p, dkLen)),

P = SHA25616(input)

S = ”TheConstantSalt.”

N = 214 = 16384

r = 8

p = 1

dkLen = 16

This hash chain is used not only as a key-schedule, but also for
generation of other building blocks dependent on the key. The input
of the hash function is slightly modified for each such primitive, so
obtaining some of them would not leak any information about round
keys and other primitives generated.
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4. WBAES+ SCHEME AND IMPLEMENTATION

4.2 Key-dependent S-boxes

In our cipher, we do not use Twofish S-boxes exactly as described in
3.2. In the original form, key-dependent S-boxes increase complex-
ity of an attack of 216, as each S-box depends on two bytes derived
from the encryption key. However, this is an instance of problem not
strong enough for an attacker with sufficient parallelization power.
That is why we decided to increase the complexity much more – of
213·8, what makes it larger than currently best known attack on AES
[21].

The idea is to extend each Twofish S-box by adding a dependency
on 13 bytes derived from the key. The generation of such S-box can be
described by the recursive function sboxgen defined in the following
equation.

sboxgen(j, l, x) =

{
q′j,0[x] if l = 0
q′j,l[sboxgen(j, l − 1, x)⊕ k4·(l−1)+j] otherwise

(4.2)
Where

j is the S-box index

l is level of nesting

k is one byte derived from the key

q′j,l is one of the fixed Twofish 8-bit permutations

Our implementation uses modified nested permutations suggested
in [10]:

q′0 = [q0, q0, q1, q0, q1, q0, q1, q0, q1, q0, q1, q0, q1, q1]
q′1 = [q1, q0, q0, q1, q1, q0, q0, q1, q1, q0, q0, q1, q1, q0]
q′2 = [q0, q1, q1, q0, q0, q1, q1, q0, q0, q1, q1, q0, q0, q1]
q′3 = [q1, q1, q0, q0, q0, q1, q1, q1, q0, q0, q0, q1, q1, q1]

(4.3)

4.2.1 Key bytes for S-boxes

As mentioned before, we decided to use different round keys for en-
cryption and building blocks generation in order to increase strength

20



4. WBAES+ SCHEME AND IMPLEMENTATION

of our cipher. For generation of key-dependent S-boxes we create
special roundKeys_for_S-boxes using the following formula:

kr
Sbox =

{
hashpar(key|| ”SBOXconstant”, salt) if r = 0
hashpar(k

r−1||key|| ”SBOXconstant”, salt) otherwise
(4.4)

This equation differs from 4.1 only in concatenation with a con-
stant string. Such a difference makes generated round keys for S-
boxes non-transformable to round keys for encryption and vice-versa.
So an attacker, succeeding in obtaining roundKeys_for_S-boxes
will not be able to extract round keys from them.

As we are generating four S-boxes in order to use different S-box
on each row of the State, we need 4 · 13 = 52 key bytes for one
round S-boxes. These are derived from the round key for S-boxes
using SHA-512 hash function.

4.3 Diffusion layer modification

In Advanced Encryption Standard and also in WBAES, each byte of
the output in one round depends on four input bytes of that round.
To increase the diffusion power of the cipher, we decided to make
each byte dependent on all sixteen bytes of the input.

The diffusion element in AES/WBAES is MixColumns operation.
As was said, it is performed as multiplication of each column of the
State by the given 4 × 4 matrix. In our new cipher MixColumn op-
eration is replaced by multiplication of the whole State by a 16 × 16
matrix, as illustrates the scheme 4.1.

Also the authors of [19] suggest AES diffusion layer modification
from 4 × 4 to 16 × 16 matrix to increase security within one round.
They use a precomputed involutory MDS matrix constructed using
Cauchy matrices. Their procedure is a base for our implementation.

As this multiplication is performed only in the table generation
part, we can sacrifice the performance in order to increase security,
in comparison to the black-box version, where the computation must
not consume much resources. Thanks to this, we can exclude the per-
formance restrictions mentioned in [19].
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4. WBAES+ SCHEME AND IMPLEMENTATION

Figure 4.1: Black-box scheme of the first round in WBAES+.

We decided to generate matrices that are involutory to guaran-
tee the same diffusion power in one round for both encryption and
decryption.

In order to prevent against several white-box attacks (BGE at-
tack [5], the Generic attack by Michiels [22]), our matrices are key-
dependent.

4.3.1 Key bytes for MDS matrices

Similarly to S-boxes, the key bytes used for MDS matrices generation
are not taken directly from the encryption key. Special roundKeys_
for_MDS are derived from the encryption key using modified ver-
sion of the hash-chain:

kr
MDS =

{
hashpar(key|| ”MDSconstant”, salt) if r = 0
hashpar(k

r−1||key|| ”MDSconstant”, salt) otherwise
(4.5)
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4. WBAES+ SCHEME AND IMPLEMENTATION

4.3.2 MDS matrices generation

Cauchy matrices depend on the first row only, other rows are permu-
tations of the bytes in the first one. These bytes are pairwise different
and XOR of them is always 1.

Our MDS matrix for each round is thus generated from the corre-
sponding roundKey_for_MDS as follows:

Algorithm 7 Generation of MDS matrix for one round.

1. All first 6-tuples and last 6-tuples from each byte of the
roundKey_for_MDS are stored in a set.

2. First 14 bytes of first row of the matrix are first 14 nonzero bytes
from the set.

3. The 15th byte is chosen from the other bytes in the set so that
XOR of all 15 bytes and 1 results in a byte different from all
these 15 bytes.

4. The 16th byte of first row is a result of XOR of previous 15 bytes
and 1.

5. Other 15 rows are computed as predefined permutations of the
first one.

The Set data structure in the first step ensures, that the bytes used
in firstRow are pairwise different.

First option for the set is a java implementation of ordered set
called TreeSet, which inherently sorts elements in increasing order.
This makes more difficult to the attacker to obtain the correspond-
ing roundKey_for_MDS, if he finds out the matrix. However, the
entropy of MDS matrix is lower.

Second option is to use LinkedHashSet, which preserves the or-
der of added elements. When the order of elements is taken into ac-
count, there is more possible combinations, and thus more possible
MDS matrices (approximately 16! times more). However, if the at-
tacker obtains one matrix, he knows exactly the corresponding round
key.
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4. WBAES+ SCHEME AND IMPLEMENTATION

Third option is a combination of previous two.
As long as scrypt and SHA-256 are uncracked, the matrices need

to be secured more than the round keys they are generated from.
That is why we decided to use LinkedHashSet as our set.

Usage of 6-tuples was chosen as a compromise between the en-
tropy (number of possible bytes) and number of distinct bytes stored
in the set. If there are too few different bytes (so the matrix cannot be
created), the constant, publicly known matrix constructed in [19] is
used in this round.

4.3.3 Non-suitable round keys

As was written above, not all round keys are suitable for MDS matrix
generation as described in algorithm 7. If the round key is periodical,
the six-tuples repeat and not enough distinct 6-tuples are derived to
create the first row of the MDS matrix.

However, if an attacker finds out that the constant matrix was
used for one round, he cannot derive the round key for MDS from
the matrix. This information makes the round key space smaller for
this round, but even if the attacker obtains the round key for MDS
for this round, this will provide him no information about next or
previous round keys for MDS, thanks to the concatenation with the
encryption key in the key schedule. Moreover, the other round keys
for this round (key for encryption, key for S-box) cannot be derived
from this key thanks to the concatenation with "MDSconstant" string.

4.4 White-box implementation

With our modifications (namely MDS matrices multiplication) of the
AES cipher, also the white-box scheme has changed, as illustrated
in figure 4.2. This section describes differences between white-box
versions of AES and our cipher.

4.4.1 Mixing bijections

MixColumns operation works with columns of the State indepen-
dently, so the computation is divided into four parts. In each part all
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4. WBAES+ SCHEME AND IMPLEMENTATION

Figure 4.2: White-box scheme of the first round in WBAES+.

four bytes are multiplied by a 4 × 4 MC matrix, what creates four
32-bit strings. These are then protected by a 32× 32 mixing bijection,
implemented as multiplication by a 32× 32 MB matrix.
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4. WBAES+ SCHEME AND IMPLEMENTATION

In our cipher there is no such division. All sixteen bytes of the
State are multiplied by a 16×16 MDS matrix and thus sixteen 128-bit
strings are created. This implies the change of Mixing bijections size
from 32× 32 to 128× 128.

4.4.2 Type II tables

By using a 16 × 16 MDS matrix multiplication the type II tables in-
creased from 8× 32 to 8× 128, as illustrates figure 4.3.

Figure 4.3: Table type II.

4.4.3 Type III tables

Tables of type III are used to cancel the effect of mixing bijections. As
mixing bijections are increased to 128× 128, also type III tables have
changed to 8× 128 4.4.

Figure 4.4: Table type III.

4.4.4 Type IV tables

Table type IV has the same structure and functionality as for WBAES,
just the number of these tables has increased because of the size of
type II tables and larger XOR cascade needed. Table 4.1 contains table
numbers and sizes used in our cipher.
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4. WBAES+ SCHEME AND IMPLEMENTATION

Type Number of tables Width Total size in bits
I 16 · 2 = 32 8→ 128 32 · 28 · 128 = 1048576
II 16 · 9 = 144 8→ 128 144 · 28 · 128 = 4718592
III 16 · 9 = 144 8→ 128 144 · 28 · 128 = 4718592

IV (T1) 32 · 15 · 2 = 960 8→ 4 960 · 28 · 4 = 983040
IV (MDS) 32 · 15 · 9 = 4320 8→ 4 4320 · 28 · 4 = 4423680
IV (MB−1) 32 · 15 · 9 = 4320 8→ 4 4320 · 28 · 4 = 4423680

Total size 20316160 b = 2840 kB

Table 4.1: White-box implementation size.
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Chapter 5

JCA implementation

Java cryptography architecture is an API (application program inter-
face) providing a framework for the implementation of security fea-
tures in java. It uses a provider-based architecture and contains a set
of APIs for several applications in digital security, such as symmet-
ric and asymmetric ciphers, key generation and management, digital
signatures, message authentication codes, etc. These APIs provide an
easy way to add security into developer’s applications.

Implementation of the JCE (Java Cryptography Extension) provider
to our cipher implementation is also part of this thesis.

The provider we have implemented is common for both, WBAES+
and java implementation of WBAES by Dušan Klinec [20], which
our WBAES+ implementation is based on. It supports four padding
mechanisms (NOPADDING, ISO9797M1PADDING, ISO9797M2PAD-
DING and PKCS5PADDING) and one mode of operation (ECB).

As was mentioned, in white-box context the encryption (decryp-
tion, respectively) operation is split into two parts.

Generation of the tables, which needs to be run in secure environ-
ment, because the key needs to be loaded into the main mem-
ory and

The very encryption, which uses these tables stored in the memory
and can run in an untrusted environment

This will also reflect into JCE, namely the methods of javax.crypto.
CipherSpi that we needed to extend.
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5. JCA IMPLEMENTATION

5.1 Tables generation

For tables generation we implemented the method engineInit used
by API method

Cipher.init(int opmode, Key key),

where opmode is one of Cipher.ENCRYPT_MODE, Cipher.DECRYPT
_MODE and key is the encryption key. If the encryption key is not
null, the tables are generated according to the scheme 4.2. These ta-
bles are then stored into the file extb_tables_true.ser when encrypting
or extb_tables_false.ser when decrypting using java serialization (con-
version of an object state to a byte stream that can be reverted back
into a copy of this object).

Calling of this method must be performed in a trusted environ-
ment, serialized tables can then be stored in an insecure place for
further usage.

5.2 White-box encryption

For deserialization of the tables, same Cipher.init() method is
called, just this time with null value of the encryption key. After the
tables are loaded, method Cipher.update() or Cipher.doFinal()
can be called to encrypt or decrypt an input buffer.

Usage of these methods is safe in an insecure environment. In-
stead of loaded into the memory, the key is hidden in the look-up
tables.
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Chapter 6

Evaluation

6.1 Test vectors

In order to test the implementation of our new cipher, we have com-
puted several test vectors, following the algorithm 8.

Algorithm 8 Test vectors generation
1: state← input
2: roundKeysForEncryption← hashChain(key)
3: roundKeysForSboxes← hashChain(key, ”SBOXconstant”)
4: roundKeysForMDS ← hashChain(key, ”MDSconstant”)
5: for r ← 0 to 9 do
6: state← state XOR roundKeysForEncryption[r]
7: roundKeyForSboxes← SHA-512(roundKeysForSboxes[r])
8: for i← 0 to 15 do
9: sboxgen(i MOD 4, 13, state[i], roundKeyForSboxes)

10: end for
11: shiftRowsPermutation(state)
12: if r 6= 9 then
13: matrix← generateMDS(roundKeysForMDS[r])
14: transposePermutation(state)
15: state← matrix · state
16: transposePermutation(state)
17: end if
18: end for
19: state← state XOR roundKeysForEncryption[r]
20: return state

These test vectors are based on test vectors for AES, and are com-
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puted for both possibilities: the encryption key, which enforces usage
of constant MDS matrix for some round and the key, which does not.

All test vectors are included in the appendix D.

6.2 Performance

The following table compares encryption speed of implementations
of three ciphers: AES (Bouncy Castle implementation), white-box AES
([20]) and our new cipher.

The measurements were performed on the same platform:

Processor Intel Pentium Dual-Core CPU, T4400, 2.20 GHz

Memory 4.00 GB

System Linux - Ubuntu 12.04 LTS x86_64

Java version Java SE 1.7

with only the fundamental system processes running.
Time of encryption is the average time it takes the implementa-

tion to encrypt a 1MB file. In case of white-box implementations also
time of tables loading is included, and thus time of cipher initializa-
tion is included also in case of AES implementation.

Cipher Tables generation (ms) Encryption (ms)
AES n/a 145.8
WBAES 1589.6 18145.6
WBAES+ 17206.8 37894.2

We can see, that white-box implementations are much slower than
black-box AES, because there is need to read from many tables. For
the same reason the encryption of our new cipher is slower than
WBAES – larger number of look-up tables were generated.

The generation of look-up tables takes more time in our new ci-
pher than in WBAES, especially because of usage of scrypt hash chain
as a key schedule with parameters chosen so that it needs more time
to derive all the round keys.
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6.3 Storage requirements

The generated look-up tables are stored in binary form using java Se-
rializable interface. In the following table are the amounts of mem-
ory computed (first column) and generated and stored using our JCA
implementation (second column).

Cipher Computed space (kB) Implementation (kB)
WBAES 752 1682.7
WBAES+ 2840 5677.2

The storage of the look-up tables of our new cipher requires more
space, because of multiplication by MDS matrix instead of MixColumns
operation, what implies bigger type II and type III tables and larger
number of type IV tables. However, the size of tables of type III can
be decreased, as described in 7.1.

The java implementation stores not only the tables, but also some
metadata needed for reconstruction of the objects. That is why the
memory taken by serialized tables is approximately twice as much
as the size of the tables themselves.

6.4 Security analysis

The cipher was designed with its white-box resistance in mind, its
security principles are explained in detail in chapter 4. This section
summarizes these mechanisms and analyses results of ciphertext ran-
domness testing.

6.4.1 Round keys

There are three different round keys used in each round of the ci-
pher, not convertible to each other. These are the round keys for en-
cryption, round keys for S-boxes generation and round keys for MDS
matrices generation.

Each round key is constructed as a hash of previous round key
concatenated with the encryption key (and S-box or MDS constant,
where needed), so each round key is dependent directly on the en-
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cryption key. This implies the infeasibility of derivation of previous
or next round keys.

As the hash function for round keys derivation, scrypt key deriva-
tion function is used. This memory-hard function is intentionally
slow to make the brute-force attack impractical and as long as no
short-cut in its scheme is found, there is no faster attack than brute
force.

6.4.2 Confusion layer

In order to ensure the confusion in the cipher, four different substi-
tution boxes are applied in each round. Constant S-boxes can be gen-
erated randomly (e.g. CMEA), which make the cipher using them
likely to be weak, or crafted carefully to be resistant against known
attacks (e.g. DES). However, in white-box context, these are not se-
cure enough.

That is why this cipher uses key-dependent S-boxes based on
Twofish S-boxes, that are proven to be strong and resistant against
many known attacks including differential cryptanalysis. Each of them
depends on 13 bytes derived from the round key using SHA256 func-
tion, what increases the complexity of part of the BGE attack of 2104,
to 2128.

The nested Twofish permutations have been chosen in such a way
that as many as possible permutations for each S-box are distinct and
the S-boxes resist linear cryptanalysis.

6.4.3 Diffusion layer

Diffusion of the cipher is accomplished by multiplication of the state
by a key-dependent MDS matrix in each round.

The design of their construction implies the size of the MDS ma-
trix space to be approximately 1

64
· 16! ·

(
64
16

)
= 1.6 · 1026 (number of

16-tuples of distinct non-zero elements in the field GF (26), which
XOR results in 1).
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6.4.4 Randomness testing

Typical cryptanalysis of a new cipher starts with application of sev-
eral statistical testing tools, like STS NIST and Dieharder, that can tell
us, if the output looks random enough or not.

We have put our cipher to the STS NIST tests, applied on several
types of bit-strings generated as:

• Whole cipher with

– the key that does not enforce constant MDS matrix and
random plaintext

– the key that does not enforce constant MDS matrix and
non-random plaintext (zeros, ones, periodical)

– the key that enforces constant MDS matrix and random
plaintext

– the key that enforces constant MDS matrix and non-random
plaintext (zeros, ones, periodical)

• One round of the cipher with

– derived round keys and random input
– derived round keys and non-random input
– zero round keys for encryption and MDS matrix genera-

tion, zero key bytes used to generate S-boxes and random
input

– zero round keys for encryption and MDS matrix gener-
ation, zero key bytes used to generate S-boxes and non-
random input

The randomness tests declared almost all the generated strings to
be perfectly random. Only one have failed a few tests – ciphertext
from one round of the cipher with S-boxes generated from all zero
bytes and non-random input.

This is caused by our design of the MDS matrices. Four distinct
S-boxes are constructed and applied to a periodical string. After mul-
tiplication by our matrix, equal bytes of the state on these exact po-
sitions result in equal bytes in the output, and thus the result stays
periodical.
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Chapter 7

Future work

As we can see in the table 4.1, the overall size of the tables has in-
creased in comparison to WBAES of 2088 kB, what is almost four
times more. To decrease this size, another approach was considered.

As a future work, man can implement and analyse these modi-
fications in white-box scheme of our cipher, from both, security and
performance point of view.

7.1 Alternative white-box scheme

Because of usage of 16 × 16 MDS matrices, table type II must stay
as described in section 4.4, what means 144 tables with the bit width
8 → 128. However, we can decrease the size of table type III and the
number of type IV tables.

The base idea is usage of only 8→ 32 mixing bijections. The 128-
bit string created after multiplication by an MDS matrix is divided
into four parts, 32-bit wide. Each of these parts is then multiplied by
another 32× 32 MB matrix and concatenated with other parts.

The elements of the 4-tuples of such results representing the state
columns are then XORed together. Notice that this approach is simi-
lar to the one in WBAES.

After application of type III tables on 32-bit parts of the results,
all four 128-bit strings are XORed together.

The overall scheme of this approach is illustrated in 7.1, and the
following table contains the numbers of tables and space needed in
this approach.
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Figure 7.1: Alternative WBAES+ scheme.

Type Number of tables Width Total size in bits
I 16 · 2 = 32 8→ 128 32 · 28 · 128 = 1048576
II 16 · 9 = 144 8→ 128 144 · 28 · 128 = 4718592
III 16 · 4 · 9 = 576 8→ 32 576 · 28 · 32 = 4718592

IV (T1) 32 · 15 · 2 = 960 8→ 4 960 · 28 · 4 = 983040
IV (MDS) 4 · 3 · 32 · 9 = 3456 8→ 4 3456 · 28 · 4 = 3538944
IV (MB−1) 12 · 8 · 4 · 9 = 3456 8→ 4 3456 · 28 · 4 = 3538944
IV (concat) 32 · 1 · 9 = 288 8→ 4 288 · 28 · 4 = 294912

Total size 18841600 b = 2300 kB
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Chapter 8

Conclusion

This thesis is focused on securing the symmetric encryption compu-
tation in an untrusted environment, the white-box context.

The most researched cipher for white-box cryptography, white-
box AES was explained, with its building blocks, tables protections
and weaknesses. The thesis then suggested three improvements of
this cipher making it stronger in the white-box context and provides
its implementation within Java Cryptography Architecture, along with
the sample usage.

The analysis of security in chapter 6 has shown, that the improve-
ments had no negative effects on the security of enciphered data and
thus can be used as a substitute to WBAES, if backward compatibility
can be sacrificed.

The encryption speed of the provided java implementation of
this cipher is only a bit lower than WBAES implementation, but the
memory requirements are higher. However, the thesis also suggests
an improvement to the implementation of look-up tables protections
in white-box version of this cipher to decrease the space needed for
storage of these tables.

This thesis and its results can be useful in case someone needs
to outsource his computation, but does not want anybody else to
find out his sensitive information. As the implementation provided
is written in java language, with the JCE Provider, it can be easily per-
formed on java cards and its integration into larger systems is very
simple.
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Appendix A

Contents of the attached CD

Part of the thesis is a CD with the following contents:

1. thesis – thesis in the pdf format

2. latex – source codes of the thesis

3. programs – java implementation of WBAES and WBAES+ with
JCE Provider, available also on github (https://github.com/
xbacinsk/White-box_cipher_java)
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Appendix B

List of affected files

This is the list of files affected by the implementation done within
this thesis.

The modifications of WBAES scheme are implemented in the fol-
lowing files:

AES.java
generator/AEShelper.java
generator/Generator.java
generator/GTBox8to128.java
generator/GXORCascade.java
generator/GXORCascadeState.java

The integration within Java Cryptography Architecture is imple-
mented in the following files:

AES_Cipher.java
AES_CipherTest.java
AES_Provider.java

Implementation of java.io.Serializable interface was added
to most of the other files.
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Appendix C

S-box constants

C.1 Rijndael S-box

The following table represents a fixed substitution box used in AES
algorithm, called Rijndael S-box.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf
0x 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1x ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2x b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3x 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4x 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5x 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6x d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7x 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8x cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9x 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
ax e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
bx e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
cx ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
dx 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
ex e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
fx 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
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C. S-BOX CONSTANTS

C.2 Fixed 8-by-8-bit permutations for Twofish S-boxes

q0

a9 67 b3 e8 04 fd a3 76 9a 92 80 78 e4 dd d1 38
0d c6 35 98 18 f7 ec 6c 43 75 37 26 fa 13 94 48
f2 d0 8b 30 84 54 df 23 19 5b 3d 59 f3 ae a2 82
63 01 83 2e d9 51 9b 7c a6 eb a5 be 16 0c e3 61
c0 8c 3a f5 73 2c 25 0b bb 4e 89 6b 53 6a b4 f1
e1 e6 bd 45 e2 f4 b6 66 cc 95 03 56 d4 1c 1e d7
fb c3 8e b5 e9 cf bf ba ea 77 39 af 33 c9 62 71
81 79 09 ad 24 cd f9 d8 e5 c5 b9 4d 44 08 86 e7
a1 1d aa ed 06 70 b2 d2 41 7b a0 11 31 c2 27 90
20 f6 60 ff 96 5c b1 ab 9e 9c 52 1b 5f 93 0a ef
91 85 49 ee 2d 4f 8f 3b 47 87 6d 46 d6 3e 69 64
2a ce cb 2f fc 97 05 7a ac 7f d5 1a 4b 0e a7 5a
28 14 3f 29 88 3c 4c 02 b8 da b0 17 55 1f 8a 7d
57 c7 8d 74 b7 c4 9f 72 7e 15 22 12 58 07 99 34
6e 50 de 68 65 bc db f8 c8 a8 2b 40 dc fe 32 a4
ca 10 21 f0 d3 5d 0f 00 6f 9d 36 42 4a 5e c1 e0

q1

75 f3 c6 f4 db 7b fb c8 4a d3 e6 6b 45 7d e8 4b
d6 32 d8 fd 37 71 f1 e1 30 0f f8 1b 87 fa 06 3f
5e ba ae 5b 8a 00 bc 9d 6d c1 b1 0e 80 5d d2 d5
a0 84 07 14 b5 90 2c a3 b2 73 4c 54 92 74 36 51
38 b0 bd 5a fc 60 62 96 6c 42 f7 10 7c 28 27 8c
13 95 9c c7 24 46 3b 70 ca e3 85 cb 11 d0 93 b8
a6 83 20 ff 9f 77 c3 cc 03 6f 08 bf 40 e7 2b e2
79 0c aa 82 41 3a ea b9 e4 9a a4 97 7e da 7a 17
66 94 a1 1d 3d f0 de b3 0b 72 a7 1c ef d1 53 3e
8f 33 26 5f ec 76 2a 49 81 88 ee 21 c4 1a eb d9
c5 39 99 cd ad 31 8b 01 18 23 dd 1f 4e 2d f9 48
4f f2 65 8e 78 5c 58 19 8d e5 98 57 67 7f 05 64
af 63 b6 fe f5 b7 3c a5 ce e9 68 44 e0 4d 43 69
29 2e ac 15 59 a8 0a 9e 6e 47 df 34 35 6a cf dc
22 c9 c0 9b 89 d4 ed ab 12 a2 0d 52 bb 02 2f a9
d7 61 1e b4 50 04 f6 c2 16 25 86 56 55 09 be 91
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C. S-BOX CONSTANTS

C.3 RS code for Twofish S-boxes

Following matrix is the Reed-Solomon code matrix used for deriva-
tion of the key bytes needed for generation of Twofish S-boxes.

RS =


01 a4 55 87 5a 58 db 9e
a4 56 82 f3 1e c6 68 e5
02 a1 fc c1 47 ae 3d 19
a4 55 87 5a 58 db 9e 03



46



Appendix D

Test vectors for WBAES+

These are the testing vectors for WBAES+ implementation:

key = 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

plaintext 32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34
ciphertext 8c 08 da 8e 43 fd 98 9e b3 a1 f2 85 e7 ae ef 39

plaintext 6b c1 be e2 2e 40 9f 96 e9 3d 7e 11 73 93 17 2a
ciphertext 18 b8 5e 45 1c 16 f8 d1 72 6d 93 d3 f1 f4 95 4f

plaintext ae 2d 8a 57 1e 03 ac 9c 9e b7 6f ac 45 af 8e 51
ciphertext 38 be 8b f9 b2 02 86 5f 6d 74 1f 40 61 a7 cc 36

plaintext 30 c8 1c 46 a3 5c e4 11 e5 fb c1 19 1a 0a 52 ef
ciphertext 22 5c 56 b4 e2 27 d5 58 f6 db f4 21 a6 55 d9 8d

plaintext f6 9f 24 45 df 4f 9b 17 ad 2b 41 7b e6 6c 37 10
ciphertext c8 f1 54 ed bc af ed e1 04 75 3e 06 68 ae e4 4c

key = 2b 7e 15 10 28 ae d2 a6 ab f7 18 88 09 cf 4f 3c

plaintext 32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34
ciphertext 1f ad 71 0c a1 1f 49 b2 0e 84 44 0c 62 80 bd cc

plaintext 6b c1 be e2 2e 40 9f 96 e9 3d 7e 11 73 93 17 2a
ciphertext 44 1d 12 c4 c3 89 00 b0 19 f5 8d 31 f2 06 ed 06

plaintext ae 2d 8a 57 1e 03 ac 9c 9e b7 6f ac 45 af 8e 51
ciphertext 2c 8d f3 1e 8f 5a 5f 02 2b 5b 3c 8d e6 d1 76 92

plaintext 30 c8 1c 46 a3 5c e4 11 e5 fb c1 19 1a 0a 52 ef
ciphertext 5b ca c9 c6 87 64 f9 46 69 7a fb 46 03 30 fa ef

plaintext f6 9f 24 45 df 4f 9b 17 ad 2b 41 7b e6 6c 37 10
ciphertext ee 9e d9 d1 ed 3c c3 2b e9 99 dc 56 9f ab 40 85
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Appendix E

Sample usage of our implementation

Secure environment – look-up tables generation

SecureRandom rnd = new SecureRandom();

byte[] keyData = new byte[]{
(byte)0x2b, (byte)0x7e, (byte)0x15, (byte)0x16,
(byte)0x28, (byte)0xae, (byte)0xd2, (byte)0xa6,
(byte)0xd2, (byte)0xa6, (byte)0x2b, (byte)0x7e,
(byte)0x15, (byte)0x16, (byte)0x28, (byte)0xae,

};

Key key = new SecretKeySpec(keyData, "WBAES");

AES_Cipher encryptor = new AES_Cipher();
try {

//generates look-up tables for encryption
encryptor.engineInit(Cipher.ENCRYPT_MODE, key, rnd);

} catch (InvalidKeyException e) {}

AES_Cipher decryptor = new AES_Cipher();
try {

//generates look-up tables for decryption
decryptor.engineInit(Cipher.DECRYPT_MODE, key, rnd);

} catch (InvalidKeyException e) {}
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E. SAMPLE USAGE OF OUR IMPLEMENTATION

Insecure environment – tables loading and
encryption/decryption

int iolength = 16; //sample input/output length
SecureRandom rnd = new SecureRandom();

AES_Cipher encryptor = new AES_Cipher();
try {

//loads look-up tables for encryption
encryptor.engineInit(Cipher.ENCRYPT_MODE, null, rnd);

} catch (InvalidKeyException e) {}

AES_Cipher decryptor = new AES_Cipher();
try {

//loads look-up tables for decryption
decryptor.engineInit(Cipher.DECRYPT_MODE, null, rnd);

} catch (InvalidKeyException e) {}

byte[] outputEnc = new byte[iolength];
try {

outputEnc = encryptor.engineDoFinal(input /*byte
array with length iolength*/, 0, iolength);

} catch (Exception e) {}

byte[] outputDec = new byte[iolength];
try {

outputDec = decryptor.engineDoFinal(outputEnc, 0,
iolength);

} catch (Exception e) {}
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