
}w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

On Secrecy Amplification Protocols –
Extended Version

by

Radim Ošt’ádal
Petr Švenda

Václav Matyáš

FI MU Report Series FIMU-RS-2015-01

Copyright c© 2015, FI MU 06 2015

Copyright c© 2015, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

On Secrecy Amplification Protocols – Extended
Version

Radim Ošt’ádal

Masaryk University

ostadal@mail.muni.cz

Petr Švenda

Masaryk University

svenda@fi.muni.cz

Václav Matyáš

Masaryk University

matyas@fi.muni.cz

June 22, 2015

Abstract

We review most important secrecy amplification protocols that are suitable for ad-

hoc networks of devices with limited resources, providing additional resistance

against various attacks on used cryptographic keys without necessity for asymmet-

ric cryptography. We discuss and evaluate different designs as well as approaches

to create new protocols. A special focus is given to suitability of these protocols

with respect to different underlying key distribution schemes and also to open is-

sues. This technical report provides details of our research that will be presented at

the 9th WISTP International Conference on Information Security Theory and Prac-

tice (WISTP’2015), where a subset of this technical report will be published in this

conference proceedings.

1 Introduction

Ad-hoc networks of nodes with limited capabilities often handle sensitive information

and security of such networks is a typical baseline requirement. Such networks consist

of a high number of interacting devices, price of which should be as low as possible –

limiting computational and storage resources. On top of the limited capability of the

devices, there usually comes also the requirement of avoiding expensive tamper resis-

tance. As a detection of an attack with limited resources is quite difficult, systems secure

by design with a strong focus on autonomous self-defense are desired. Lightweight

security solutions are preferable, providing a low computational and communication

1

overhead. When considering key management in nodes of limited capabilities, sym-

metric cryptography is the preferred approach, yet with a low number of predistributed

keys. While all results we present can be applied to general ad-hoc networks, we present

them directly on wireless sensor networks (WSNs) as typical representatives. This tech-

nical report provides details of our research that will be presented at the 9th WISTP

International Conference on Information Security Theory and Practice (WISTP’2015),

where a subset of this technical report will be published in this conference proceedings.

Our work targets scenarios with ad-hoc networks where a link between particular

nodes can be compromised, yet the nodes themselves are not. A typical example comes

with some schemes based on symmetric cryptography, requiring suitable key distri-

bution schemes (KDSs). During the attack, an attacker learns a fraction of used keys,

resulting in a partially compromised network.

Substantial improvements in resilience against node capture or key exchange eaves-

dropping can be achieved when a group of neighbouring nodes cooperates in an addi-

tional secrecy amplification (SA) protocol after the initial key establishment protocol. A

strong majority of secure links (> 90%) can be obtained even when the initial network

compromise is at 50% [14]. This technique can be utilized in a broad range of scenarios,

even if the particular results depend on a particular key distribution scheme and attack

strategy.

The contributions of our work are: 1) a comparative review of all SA protocols (we

are aware of), together with unified notation and taxonomy; 2) extensive multicriterial

evaluation of all these protocols; and 3) identification of open research challenges in this

area.

The SA concept was originally introduced in [1] for the key infection plaintext key

exchange, but can be also used for a partially compromised network resulting from

node capture in probabilistic pre-distribution schemes of [6]. SA protocols were shown

to be very effective, yet for the price of a significant communication overhead. The

overall aim is to provide SA protocols that can secure a high number of links yet require

only a small number of messages and are easy to execute and synchronize in parallel

executions in the real network.

Let us briefly present the principles of SA protocols and their most important fea-

tures. Due to an attacker action, the communication link between nodes A and B se-

cured by a link key K can be compromised. When the group of neighbouring nodes of A

and B cooperates in an additional protocol, communication link(s) protected by the pre-

2

viously compromised key K can be secured again, if a new key K ′ can be securely trans-

ported to both nodes. If this is the case, there has to exist at least one non-compromised

path. The exact way the new key value K ′ is transported specifies a particular secrecy

amplification (SA) protocol.

The network owner usually does not know which concrete link key was compro-

mised by an attacker and which was not. SA can be executed as a response to a partial

compromise already happened or as a preventive measure for potential future compro-

mise. SA can be also executed as another layer of protection even if a particular link

key might not be compromised at all. Different key distribution schemes and related

attacks correspond to different compromise patterns as described in Section 1.1, influ-

encing how successful a SA protocol will be. SA protocols can try all possible paths, yet

for the price of a huge communication overhead. Proposed SA protocols therefore aim

to find a good tradeoff between the number of paths tried and the probability of finding

at least one secure path.

SA protocols consist of the following principal steps:

1. Selection of neighbouring nodes participating in a given SA protocol.

2. Generation of new key values (shares).

3. Transport of key values (shares) via transport path or multiple paths according to

the given SA protocol.

4. Combination of transported key values (shares) and existing old key into a new

link key with an appropriate one-way function. New key will be secure if either

old key or at least one of shares was previously secure.

The paper roadmap is as follows: the next subsection provides a short introduction

to networks where a partial compromise is inevitable and one has to deal with com-

promise patterns resulting from different key distribution schemes and corresponding

attack strategies. Section 2 provides a unified taxonomy of SA protocols and surveys

previous work. Section 3 evaluates properties of SA protocols based on performance,

memory and transmission overhead as well as ease of synchronization during mas-

sively parallel executions. Section 4 highlights open research problems and conclusions

are provided in Section 5.

3

1.1 Partial network compromise

A wide range of key distribution, establishment and management techniques was pro-

posed for sensor networks, see [3] for an overview. Distinct key distribution schemes

behave differently when a network is under an attack targeted to disturb link key secu-

rity. Although various schemes differ significantly in the way how keys are distributed

and managed, similar compromise patterns can be detected. A compromise pattern

provides us with a conditional probability that link Y is compromised when another

link X is compromised after a relevant attack. The characteristics of a particular com-

promise pattern may significantly influence the success rate of an SA executed later. We

will perform analysis of SA protocols according to the following two most prominent

compromise patterns, but our work can be as well extended to additional patterns.

1.2 Random compromise pattern

The random compromise pattern arises when a probabilistic key pre-distribution

scheme of [6] and many later variants of [2, 5, 8, 9] are used and an attacker extracts

keys from several randomly captured nodes. In case of a node capture, all links to

the captured node are compromised. If a probabilistic pre-distribution scheme is used,

then some additional links between non-compromised nodes become compromised as

well. Probabilistic key pre-distribution schemes exhibit an almost uncorrelated pattern

resulting from node capture and extraction of randomly selected keys.

1.3 Key infection compromise pattern

Compromised networks resulting from key distribution based on the idea of “key infec-

tion” [1] and later extended by [4, 7, 14] and others form the second inspected pattern.

Here, link keys are exchanged in plaintext (no keys are pre-distributed) and an attacker

can compromise them if the transmission can be eavesdropped by the attacker. The

weakened attacker model assumes that an attacker is not able to eavesdrop on all trans-

missions, yet has a limited number of restricted eavesdropping nodes in the field. The

closer the link transmission is to the listening attacker node and the longer the distance

between link peers, the higher the probability of a compromise. An eavesdropping of

the exchanged key in the key infection approach of [1] does not compromise nodes di-

rectly, but compromises links in the reach of eavesdropper’s radio instead.

4

2 Protocol survey

Different classes of SA protocols use different capabilities to improve security through-

out the network. Although all SA protocols aim to setup new (possibly more secure)

link key, three main distinct classes of SA protocols exist:

1. A node-oriented protocol sends key updates via every possible neighbour or

neighbours by a simple protocol. Note that node-oriented protocol is executed

for all possible k-tuples of neighbours in the network. A number of such k-tuples

can be high, especially for dense networks.

2. A group-oriented protocol shares new key values inside a bigger group of cooper-

ating nodes identified by their geographical areas in the form of relative distance

to selected nodes.

3. A hybrid-design protocol uses sub-protocols (similarly to node-oriented), relative

distances (similarly to group-oriented) and additionally utilize several repetitions

of the whole process to achieve required success rate.

A summary of published protocols follows.

2.1 Used notation

SA protocols can be described in the common form of message exchanges and opera-

tions executed on communicating nodes. Alternatively, each node in the protocol can be

modelled as a computing unit with a limited number of memory slots, where all local

information is stored. Each memory slot can contain either a random value, encryption

key or message. SA protocol is then a sequential series of primitive instructions, manip-

ulating values in memory slots and exchanging values between nodes. Some protocols

require only one memory slot, but protocols with more than five different memory slots

were also published. Latter case is more suitable to describe non-deterministic protocols

without a fixed set of communicating peers and with execution differing at actual net-

work layout and nodes positions (e.g., group-oriented protocols). Table 1 summarizes

the used notation.

Using this set of primitive instructions, a simple plaintext exchange of a new key

for node-oriented protocols can be written as {RNG N1 R1; SND N1 N2 R1 R1;}, a Push

protocol [1] as {RNG N1 R1; SND N1 N3 R1 R1; SND N3 N2 R1 R1;}, a Pull protocol [4] as

5

notation description

A, B identification of nodes for which the link key is strengthened during SA

Ci identification of intermediate node(s) used during SA

NC identification of the central node during group-oriented SA protocols

NP identification of the node with a special role during group-oriented SA

protocols

Nd1_d2 relative distance identification of a node with distance d1 from NC and

d2 from NP

Ri identification of a memory register

H cryptographic one-way hash function

protocol instruction description

NOP no operation

RNG Na Ri generate a random value on node Na into slot Ri

CMB Na Ri Rj Rk combine values from slots Ri and Rj on the node Na and store the result

to Rk; the combination function may vary on the application needs (e.g.,

a cryptographic hash function such as SHA-3)

SND Na Nb Ri Rj send a value from Ri on node Na to slot Rj on Nb

ENC Na Ri Rj Rk encrypt a value from Ri on node Na using the key from Rj and store the

result to Rk

DEC Na Ri Rj Rk decrypt a value from Ri on node Na using the key from Rj and store the

result to Rk

Table 1: Notation used for secrecy amplification (SA) protocols.

{RNG N3 R1; SND N3 N1 R1 R1; SND N3 N2 R1 R1;}, a multi-hop version of Pull [4] as

{RNG N3 R1; SND N3 N1 R1 R1; SND N3 N4 R1 R1; SND N4 N2 R1 R1;} and a multi-hop

version of Push [1] as {RNG N1 R1; SND N1 N3 R1 R1; SND N3 N4 R1 R1; SND N4 N2

R1 R1;}. Group-oriented and hybrid-design protocols consist from of the same type of

instructions, but are typically longer and more complex.

2.2 Node-oriented protocols

A node-oriented protocol sends key updates via every possible neighbour or neigh-

bours by a simple protocol and the protocol is executed for all possible k-tuples of neigh-

bours in the network. A number of such k-tuples can be high, especially for dense net-

works, and resulting communication overhead is significant1. Steps of a node-oriented

protocol are as follows:

1. Every node in the network is separately and independently processed once, in the

role of a node A for each SA iteration.
1E.g., (avg_neigh) * (avg_neigh - 1) * msg_per_protocol_execution for a three-party protocol, where

avg_neigh is the average number of neighbours.

6

2. In every iteration, every neighbour of A is taken once as a communicating neigh-

bour B. SA protocol will try to secure a link key between A and B in this iteration.

3. If a node-oriented protocol utilizes k intermediate nodes, all different k tuples are

selected from all radio neighbours of nodes A and B.

4. For every tuple, a SA protocol is executed, resulting in a separate key value Ki.

5. When all k tuples are processed, all key values are combined, using one-way hash

function H, into the new link key KNEW = H(KOLD|K1|...|Kn).

6. KNEW is used as a new link key between given nodes A and B.

The multi-hop (two-hop) and multi-path (number of neighbours reachable from

both A and B) SA protocol was described in [1]. Node A generates q different random

key values and sends each one along a different path over an intermediate node(s) Ci

to node B, encrypted with existing link key(s). Key infection compromise pattern was

assumed and simulations for attacker/legal nodes ratio up to 5% are presented, show-

ing that the plaintext key exchange followed by the Push protocol is suitable within this

attacker model. More detailed and precise simulations were later performed in [4]. The

Push protocol is used as a basis for an establishment of the intra-group link keys be-

tween multiple nodes belonging to different groups when more structured deployment

is assumed [10]. Multi-hop version of the Push protocol is analyzed in [11]. For the

comparison, we assume Push protocol with one (denoted2 as NO_3PUSH04) and two

(NO_4PUSH04) intermediate nodes.

A variant of the Push protocol called Pull protocol was presented in [4]. The initial

key exchange is same as for the Push protocol, but node Ci generates fresh key values

that are used to improve secrecy of the key shared between nodes A and B instead of

node A as in the Push protocol. The basic idea here is that the area where eavesdropping

nodes must be positioned to successfully compromise the link key is smaller than for

the Push protocol. The resulting fraction of compromised keys is then lower as an at-

tacker has a smaller chance to place eavesdropping nodes properly. For the comparison,

we assume Pull protocol with one (denoted as NO_3PULL05) and two (NO_4PULL05)

intermediate nodes.
2For the rest of the paper, we will name protocols consistently in the form protocol-

Class_protocolVariantYearOfPublication, with additional compromise pattern designation when protocol

was designed specifically for that pattern. E.g., NO_3PUSH04 means node-oriented protocol, Push vari-

ant with 3 participants, published in 2004.

7

N1	 N2	

PUSH	protocol	

RNG	N1	R1	
SND	N1	N3	R1	R1	
SND	N3	N2	R1	R1	

Multi-hop	PULL	protocol	

RNG	N5	R3	
SND	N5	N2	R3	R3	
SND	N5	N6	R3	R3	
SND	N6	N1	R3	R3	

PULL	protocol	

RNG	N4	R2	
SND	N4	N1	R2	R2	
SND	N4	N2	R2	R2	

N3

N4

N5

N6

N7

N8

NC NP

Multi-hop PULL protocol

RNG N0.80_0.50 R3
SND N0.80_0.50 NP R3 R3
SND N0.80_0.50 N0.30_0.70 R3 R3
SND N0.30_0.70NC R3 R3

PUSH	protocol

RNG NC R1
SND NC N0.70_0.70 R1 R1
SND N0.70_0.70 NP R1 R1

PULL protocol

RNG N0.20_0.20 R2
SND N0.20_0.20 NC R2 R2
SND N0.20_0.20 NP R2 R2

N0.70_0.70

N
0.20_0.20

N0
.80
_0.
50

N
0.30_0.70

N
0.60_0.10

N0.70_0.70

N
0.80_0.50

N
0.3
0_
0.7
0

Figure 1: Left: An example of instructions of a several node-oriented SA protocols. The Push,

Pull and multi-hop version of Pull are included. A distance between nodes NC and NP is 0.5 of

the maximal transmission range. Right: An example of instructions of a basic hybrid SA proto-

col. The Push, Pull and multi-hop version of Pull protocol are included. Selected node-relative

identification (distance from NC and NP) of involved parties are displayed as the geographic

most probable areas, where such nodes will be positioned. A probabilistic layout shown is for

the case where the distance between nodes NC and NP is 0.5 of the maximal transmission range.

Notation used is according to the Table 1.

A variant of initial key exchange mixed with the Push protocol (denoted as Com-

modity) without explicit SA is presented in [7] together with formal security proof. We

omit the Commodity protocol from the comparison as it is only a variant of the Push

protocol, does not provide SA as a separate operation and the fraction of secured links

is lower than for the Push protocol alone.

A linear genetic programming in combination with network simulator was used to

design a node-oriented protocol [14] for the key infection pattern. Due to the nature

of stochastic algorithms, a protocol was initially designed with up to 100 instructions

storing intermediate values into up to 12 memory registers. Then was processed to

omit all unused instructions and memory registers (based on performance provided by

a network simulator), resulting in the 10 instruction protocol for four nodes (denoted as

NO_EA09 for comparison).

As already mentioned, node-oriented protocols introduce a high communication

overhead – all k-tuples of neighbours must be involved in a single execution of such

a protocol. Another issue is an unknown number of direct neighbours and their exact

placement. All neighbours can theoretically participate in the protocol and help to im-

prove the fraction of secure links, but it is much harder to design an efficient protocol for

8

ten nodes without unnecessary message transmissions instead of three or four nodes.

Finally, due to the random placement of nodes in the sensor networks, the number of

direct neighbours may vary significantly; a protocol constructed for a fixed number of

parties can even fail due to an insufficient number of participants.

In short, the main advantage of node-oriented protocols is simple synchronization of

multiple protocol executions running in parallel and generally low memory overhead.

The main disadvantage is the high number of messages transmitted, especially for the

dense networks (see section Section 3.3 for details).

2.3 Group-oriented protocols

In group-oriented protocols, an identification of the parties in the protocol is no longer

“absolute” (e.g., node designation A, B, C), but it is given by the relative distance from

other parties (we are using the distance from two distinct nodes). It is assumed that

each node knows the approximate distance to its direct neighbours. This distance can

be approximated from the minimal transmission power needed to communicate with

a given neighbour. If the protocol has to express the fact that two nodes Ni and Nj are

exchanging a message over the intermediate node Nk, only relative distances of such a

node Nk from Ni and Nj are indicated in the protocol (e.g., N0.30_0.70 is a node positioned

0.3 of the maximum transmission range from Ni and 0.7 from Nj). Based on the actual

distribution of the neighbours, the node closest to the indicated distance(s) is chosen

as the node Nk for a particular protocol run. There is no need to re-execute the proto-

col for all k-tuples (as was the case for node-oriented protocols) as all neighbours can

be involved in a single execution, reducing the communication overhead significantly.

Detailed description of group-oriented protocols is provided in [14]. General steps of a

group-oriented protocol are as follows:

1. Every node in the network is separately and independently processed once, in the

role of a central node NC for each amplification iteration. Only direct neighbours

of NC can be involved in the protocol execution.

2. A separate protocol execution is performed once for each direct neighbour (node

in the radio transmission range), this neighbour will have a special role in this

execution and will be denoted as NP (e.g., if there are 10 direct neighbours around

NC, then there will be only 10 protocol executions with the same central node NC,

each with a different NP).

9

3. The memory slots of the neighbours involved (for the same NC) are not cleared

between the protocol executions. This enables a group-oriented protocol to prop-

agate values (keys) among a group of neighbours.

4. The node NP provides a list of distances from all its neighbours (as the minimal

transmission power needed to communicate with a given neighbour) to node NC.

Based on the actual deployment of nodes, parties of the protocol are replaced by

real identification of the nodes that are positioned as close as possible to the rela-

tive identification given by NC and NP in the protocol.

5. When the next node is executed as a central node NC, the memory slots of all di-

rect neighbours are cleared (memory values cannot propagate between executions

with a different central node NC) as such a process requires a non-trivial synchro-

nization in real network.

Note that inferring the relative distance from the received signal strength indication

(RSSI) is usually a burden with errors resulting from the generally unreliable propaga-

tion of wireless signal and also as the relation between distance and RSSI is not linear.

Relative distances used in group-oriented protocols are robust against moderate inac-

curacies as a precise node position is not required for a protocol to succeed.

The protocol described in [14] consists of twelve instructions (denoted as GO_EA09

for comparison), but protocols with a better success rate were also generated by [13]

(GO_EA12_KI and GO_EA12_RP). Group-oriented protocols consist of multiple times

more instructions when compared with node-oriented protocols.

Due to the stochastic nature of the linear genetic programming used to generate

group-oriented protocols, many different group-oriented protocols can be constructed

based on the defined evaluation metric (fitness function). Evaluation metric can guide

genetic programming towards protocols not only maximizing the fraction of secured

links, but also to lower the number of messages exchanged, see [13]. In principle, new

protocols can be generated for a particular usage scenario on demand, which is an in-

teresting option.

In summary, the main advantage of the group-oriented protocols is a significantly

lower (compared to node-oriented protocols) number of messages transmitted. The

main disadvantage is the complicated synchronization of the parallel executions and

also complicated security analysis due to the high number of nodes involved (e.g., the

best performing group-oriented protocol presented in [13] has 41 instructions and might

10

include cooperation of up to 34 nodes. Compare this to the Push protocol with 3 instruc-

tions and only 3 nodes involved.).

2.4 Hybrid-design protocols

Hybrid protocols [12] combine properties of both node- and group-oriented protocols.

A protocol consists of several primitive instructions as described in Table 1. They were

constructed with an application of knowledge from node-oriented and group-oriented

protocols (thus hybrid design) and statistical data about the most suitable placement of

the participating intermediate nodes.

A hybrid protocol is executed for every pair of neighbouring nodes instead of every

k-tuple – same approach as in case of group-oriented protocols. Other participating

intermediate nodes are used for transmission of n different values in the same fashion

as previously described basic node-oriented protocols. Participating intermediate nodes

are not required to store any forwarded values and can erase them as soon as a message

with the value is forwarded to the next node towards destination. This allows for a

simpler synchronization even within large and dense networks.

Steps of a hybrid protocol are similar to those of group-oriented protocols and also

exhibit only a linear increase in the number of messages sent with respect to the number

of neighbours. The main difference is independence of separate SA protocols executions

and the fact that the key is updated only between nodes NC and NP in the last step.

Relative distance from special nodes NC and NP is also used in the same way as for

group-oriented protocols. Hybrid protocols contain a lower number of instructions and

their construction, analysis and implementation are simpler than for group-oriented

protocols.

Hybrid-design protocols optimized separately for key infection (denoted as

HD_PULLPUSH14_KI) and random compromise (HD_PULLPUSH14_RP) patterns as

well as for better tradeoff between overall success rate and number of messages

(HD_PULLPUSHOPT14_KI and HD_PULLPUSHOPT14_RP) were proposed in [12].

As was observed early in [4], multiple repetitions of an SA protocol can additionally

improve the number of secured links, yet for the price of additional multiplication of

the total number of required messages. Hybrid-design protocols designed in [12] use

three repetitions with the total number of messages still lower then for node- and group-

oriented design.

11

In summary, the main advantage of the hybrid-design protocols is simple synchro-

nization of parallel executions and low number of messages. The main disadvantage is

the longer execution time due to multiple amplifications repetitions (but with possibil-

ity for parallel executions).

2.5 Comparison of general characteristics

Published SA protocols can be compared through several distinct characteristics:

Rules for selection of protocol participants – what neighbours and how they are in-

cluded in SA protocol has a profound effect on the total number of protocol execu-

tions, overall number of messages transmitted and paths tested. Early protocols

involved all neighbours indiscriminately (node-oriented) whereas later designs

involved only nodes selected based on their relative positions w.r.t. to nodes con-

trolling protocol execution (group-oriented and hybrid), resulting in probabilistic

selection of nodes.

Design approach – early protocols were designed manually [1, 4, 7]; later came de-

sign with simulator-aided search for protocol settings, with stochastic optimiza-

tion (genetic programming) [14] with semi-automatic postprocessing [12].

Number of involved intermediate nodes per single path – basic key exchange be-

tween A and B requires no intermediate node. If at least one intermediate node is

used then the protocol performs so-called multi-hop amplification. The path is com-

promised if an attacker is able to eavesdrop at least one link on the path. If more

then one intermediate node is involved, a suitable end-to-end routing protocol

must be available.

Communication overhead – significant metric influencing protocol practicality due to

energy-intensive radio transmissions necessary to transmit new key values during

an amplification protocol. Communication overhead can be proportional to the

network density (number of neighbours). The lower the number of messages, the

faster the amplification phase is and the lower are the energy requirements.

Number of required repetitions – an additional iteration of a SA protocol can provide

better results as links newly secured in a previous iteration can be used in the

current one. Some protocols are simpler, but expect multiple repetitions whereas

others expect only a single iteration.

12

Protocol #
in

te
rm

ed
ia

te
s

de
si

gn
ap

pr
oa

ch

#p
ri

m
it

iv
e

in
st

ru
ct

io
ns

#m
sg

/e
xe

cu
ti

on

#m
sg

/n
od

e(
4

ne
ig

h)

#m
sg

/n
od

e(
7.

5
ne

ig
h)

#m
sg

/n
od

e(
20

ne
ig

h)

#r
ep

et
it

io
ns

sy
nc

hr
on

iz
at

io
n

(1
-3

)

NO_3PUSH04 [1] 1 M 3 2 24 98 784 1-2 2

NO_3PULL05 [4] 1 M 3 2 24 98 784 1-2 2

NO_4PUSH04 [1] 2 M 4 3 72 804 21509 1-2 2

NO_4PULL05 [4] 2 M 4 3 72 804 21509 1-2 2

NO_EA09 [14] 2 A 10 6 144 1609 43019 1 2

GO_EA09 [14] 1-8 A 12 9 36 68 183 1 3

GO_EA12_KI [13] 1-31 A 35 23 92 173 467 1 3

GO_EA12_RP [13] 1-33 A 41 24 96 180 487 1 3

HD_PULLPUSH14_KI [12] 1-4 A 14 9 108 203 548 3 1-2

HD_PULLPUSHOPT14_KI [12] 1-2 A/M 6 4 48 90 244 3 1

HD_PULLPUSH14_RP [12] 1-5 A 15 10 120 225 609 3 1-2

HD_PULLPUSHOPT14_RP [12] 1-2 A/M 6 4 48 90 244 3 1

Table 2: Basic characteristics of SA protocols. M/A means manual/automatic design approach

respectively. Synchronization 1/3 means easy/difficult.

Synchronization requirements – a SA protocol is usually not executed only between

two nodes in the whole network, but between many different nodes in parallel.

Degree of required synchronization is therefore an important characteristic, influ-

encing speed of the SA phase as well as memory requirements on every node.

Number of distinct paths used to send new key values – if more than one path is used

then the protocol performs so-called multi-path amplification. An attacker must

eavesdrop all paths to compromise the new link key. If two nodes A and B ex-

change a new key directly in one piece, then only one path is used. Basically all

SA protocols can be classified as multi-path to some extent if different intermedi-

ates or multiple repetitions are assumed.

13

2.6 Practical implementation

Practical implementation on the real nodes in existing work is provided only for hybrid-

design protocols on the TelosB hardware platform with the TinyOS 2.1.2 OS and tested

with 30 nodes positioned atop of nine interconnected offices [12] .

Every node acts in three different roles according to a currently received message:

master (being node NC from the hybrid protocol), slave (being node NP) and forwarder

(being intermediate node). The implementation contains six phases executed mostly in

parallel on all nodes in a network with a partial synchronization required only during

the radio distance discovery:

1. A discovery of radio distance to neighbours – every node Ni periodically broad-

casts AM_MEASURE message that is received together with the corresponding

RSSI by its neighbours during the defined time-frame. Once broadcasting is fin-

ished, neighbours of Ni can compute the average RSSI value from the received

packets, forming radio distance to Ni. Radio distance can be also computed from

the RSSI of regular packets sent during ordinary network traffic, saving necessity

to transmit special AM_MEASURE messages. This phase can be executed in par-

allel for all nodes with utilization of random back-offs between AM_MEASURE

messages on different nodes to limit packet collisions.

2. A broadcast of measured distances to node’s neighbours – once radio distances

to other nodes are established, neighbours are notified about values measured

by node Ni by the message AM_DISTANCES containing pairs of node’s identifi-

cation and its measured RSSI together with identification of measuring node. If

node Ni receives the AM_DISTANCES message from a node that is its neighbour,

measured values are stored locally. When node Ni receive measurements from

all neighbours, next phase can be executed. Synchronization of remaining phases

with other nodes is not required.

3. A computation of mapping to real nodes – mapping between nodes denoted in

the hybrid protocol description and real nodes according to radio distances is per-

formed locally. E.g., instead of node with N0.69_0.98 identification, a particular node

Ni is selected. Note that mapping from the RSSI values distributed according to

the logarithmic log-normal shadowing model of wireless signal propagation to

the linear distance from a sending node is required. A different mapping model

can be used where appropriate.

14

4. An execution of the hybrid protocol – node NC executes the protocol as master to

a selected neighbouring slave node NP via intermediate forwarder nodes. Node NC

prepares its message with the sub-key as well as the routing path towards node NP

and sends it by the message AM_SECAMPLIF. Intermediate nodes act as simple

forwarders with link transmission protected by already existing link keys. This

phase can be executed in parallel for all nodes.

5. A verification phase – node NC asks node NP whether all sub-keys transmitted

during the hybrid protocol execution or some were lost (e.g., due to packet loss)

using message AM_VERIFY. If any sub-key is missing, a relevant sub-protocol for

this sub-key is executed again.

6. A combination phase – all sub-keys, together with the existing link key between

nodes NC and NP, are combined together using cryptographic hash function,

forming the new shared link key. Optionally, a key confirmation can be executed

before the old key is replaced by the new key value.

The hybrid protocol implementation has a small memory footprint – additional

(N∗41) bytes of RAM are required (where N is the number of neighbours) and less then

3KB of additional code in EEPROM. Less then (N∗4∗23+N∗2∗5+28) bytes of payload

divided into about (N ∗ 6) messages are transmitted on average during hybrid protocol

execution by every single node (including verification messages, but excluding mes-

sages send during radio distance discovery phase and retransmission of lost messages).

When 10 neighbours on average are assumed, around 1 KB of payload is transmitted by

every node during secrecy amplification by the proposed hybrid protocol. Master node

stores the current state of the hybrid protocol executed with the selected slave node, the

slave node stores only received sub-keys and forwarder node stores no additional value.

Due to the parallelization possibility, execution of hybrid protocols from the same mas-

ter to different slave nodes can be interleaved without having long message buffers on a

single node.

Times required to finish different phases are highly dependent on the network den-

sity and the signal propagation characteristics of the surrounding environment resulting

in a different packet loss ratio. The prototype implementation performed was intended

to verify memory, computational, transmission and synchronization requirements, not

to provide detailed performance results for different environments and settings. Still,

15

reasonable estimates about time required to finish separate phases can be inferred from

experiments performed with our laboratory test-bed.

The radio discovery (phase one) took most of the time to complete as multiple

AM_MEASURE messages had to be sent from every node in the network to obtain a

reliable averaged RSSI value. Required time is roughly minutes or tens of minutes to

finish, depending on the required precision and network density (influencing the length

of necessary random back-off to limit packet collisions). A broadcast of measured RSSI

(phase two) is fast and requires only one or two messages, unless a high number of

neighbours is present (more than 20). A mapping computation (phase three) is a fast

local computation taking less than 1 second for a node with 10 neighbours. An execu-

tion of the optimized hybrid protocol (step four) takes 1-2 seconds, extending to tens of

seconds when the packet loss is high and the verification phase (phase five) has to be

executed repeatedly. Combination of received values by a hash function (phase six) is

local and negligible.

3 Comparison of protocol performance

SA protocols are able to provide a significant increase in secure links, e.g., from 50% of

originally secured links to more than 90% [14]. To achieve such an improvement, there is

a considerable overhead in communication and on-node processing. In the subsequent

section, we compare and evaluate all SA protocols we are aware of – w.r.t. to various

metrics, including fraction of secure links newly secured by a protocol, communication

and memory overhead, synchronization requirements. All comparisons are done on

different compromise patterns.

Different initial settings can be used as a basis for the comparison, resulting in high

number of combinations where SA protocols can be evaluated. First axis is formed by

the selected initial compromise pattern – either random compromise or key infection

pattern. Second axis is formed by the network characteristics, most importantly by the

network density.

3.1 Reference network and simulator

The following reference setting of simulator was used: network has 1000 deployed le-

gal nodes and each node has 0.5 unit maximum transmission range. Target plane is a

13.8x13.8, 10.0x10.0 and 6.0x6.0 unit large that result in 4.0, 7.5 and 20.3 legal neighbours

16

network density low medium high

average number of neighbours 4.0 7.5 20.3

number of random networks 50 50 50

target plane 13.8x13.8 10.0x10.0 6.0x6.0

transmission range 0.5 0.5 0.5

random seed 1 1 1

Table 3: Reference setting of simulator for presented experiments.

on average for networks with low, normal and high density respectively. The overview

of used setting is in Table 3. Both random compromise and key infection patterns (see

Section 1.1) were examined.

The evaluation of presented protocols is done using the same simulator that was

developed specifically for security analysis of key distribution protocols and message

routing by the authors of [14]. Commonly used simulators like ns2 or OMNeT++ work

with an unnecessary level of details for our purposes (e.g., radio signal propagation or

MAC layer collisions), significantly slowing evaluation of given network scenarios. The

simulator is able to simulate a SA protocol on fifty networks with 1000 nodes each in

about 5 seconds when executed on one core CPU @ 2.7 GHz. Compare this to several

minutes necessary to process only one network on OMNeT++ simulator.

Protocols evaluated in the simulator are described in a metalanguage of proposed

primitive instructions, see the second part of Table 1 for more details.

3.2 Upper bound for amplification success

A modified Floyd-Warshall algorithm can be used to establish an upper bound for a

given network, no matter what type of SA protocol is used. A single execution of the

algorithm will find the shortest path between all pairs of vertices. When a graph is

formed only from secure links, existence of the path between two nodes also implies

possibility to transport and establish secure new key. As the precise compromise pattern

for a given network is not known in advance (depends on an attacker, particular SA

protocol, exact placement of nodes, etc.), we perform multiple evaluations for different

networks to obtain an average result. As a side effect, we will also obtain lowest number

of intermediate nodes necessary to transport new secure key.

17

30	
35	
40	
45	
50	
55	
60	
65	
70	
75	
80	
85	
90	
95	
100	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 >	 9	

Fr
ac
ti
on
	 o
f	 s
ec
ur
ab
le
	 li
nk
s	
(%

)	

Number	 of	 intermediate	 nodes	

KI	 pattern	 (originally	 30%	 secure	 links)	

KI	 pattern	 (originally	 50%	 secure	 links)	

KI	 pattern	 (originally	 70%	 secure	 links)	

RC	 pattern	 (originally	 30%	 secure	 links)	

RC	 pattern	 (originally	 50%	 secure	 links)	

RC	 pattern	 (originally	 70%	 secure	 links)	

Figure 2: Maximal possible increase in the number of secured links with dependency on the

number of intermediate nodes (7.5 neighbours on average). Results are displayed for both random

compromise (RC) pattern and key infection (KI) compromise pattern. As can be seen, strong

majority of secure links (> 90%) can be obtained even when the initial network compromise is

50% (for RC pattern) or 30% (for the KI pattern).

As can be seen in Figure 2, there is a significant difference between two inspected

compromise patterns. In the random compromise pattern, significantly more link keys

can be secured than in the key infection compromise pattern. We can explain this situa-

tion by the fact that in the key infection compromise pattern, the compromised links are

concentrated in particular areas around eavesdropping nodes and it is more probable

that such links cannot be secured. It can be also seen that most benefit can be gained

using two intermediate nodes. With more nodes, the increase in secure links fraction is

very small. SA protocols with more than two intermediate nodes thus generally exhibit

unnecessary transmission overhead.

3.3 Number of messages

The number of messages sent during the protocol execution mainly depends on the pro-

tocol type. Nonetheless, it also depends on the number of participating parties and the

average number of neighbours. Node-oriented protocols exhibit a polynomial increase

of messages with respect to the number of neighbours in the network and an exponen-

tial increase of messages with respect to the number of communicating parties in the

protocol execution. Group-oriented protocols exhibit only a linear increase of messages

18

10	

100	

1000	

10000	

100000	

1000000	

4	 8	 12	 16	 20	 24	 28	

To
ta
l	 m

es
sa
ge
s	
pe
r	
si
ng
le
	 n
od
e	

Average	 number	 of	 neighbours	

NO_3PUSH04	 [1]	 /	 NO_3PULL05	 [4]	

NO_4PUSH04	 [1]	 /	 NO_4PULL05	 [4]	

NO_EA09	 [14]	

GO_EA09	 [14]	 	

GO_EA12_RP	 [13]	

GO_EA12_KI	 [13]	

HD_PULLPUSH14_RP	 [12]	

HD_PULLPUSH14_KI	 [12]	

HD_PULLPUSHOPT14_RP	 [12]	 /	
HD_PULLPUSHOPT14_KI	 [12]	

Figure 3: Total number of messages per single node required by a particular SA protocol. Even

when group-oriented protocols utilise more messages per single execution and hybrid protocols

utilise several protocol repetitions, the total number of messages is smaller than in case of node-

oriented protocols for networks with higher density. Number of messages grows polynomially

with the number of neighbouring nodes for node-oriented protocols compared to linear increase

in case of group-oriented and hybrid protocols. Note the logarithmic scale of the y-axis.

and the same dynamics holds for hybrid protocols. The growth in the number of mes-

sages depends on the count of SEND instructions within a particular protocol.

Figure 3 shows the number of messages sent by every node in the protocol execution

on networks with different average number of legitimate neighbours. It can be seen

that node-oriented protocols have advantage for networks with low density about 4

neighbours in average. The group-oriented and hybrid protocols are more suitable for

dense networks.

3.4 Success rate

We compare and evaluate all published SA protocols we are aware of w.r.t. to the frac-

tion of secure links secured by particular protocol and also we compare the protocol

effectiveness, which means the number of newly secured links for one message sent.

All SA protocols perform better with a rising density of network. The improvement

is bigger for the random compromise pattern than for key infection (where the compro-

mised links are concentrated in particular areas around eavesdropping nodes).

The impact of tested protocols for the random compromise pattern is compared in

Figures 4, 5 and 6. The results for the key infection compromise pattern are in Fig-

19

Fraction	 of	 initially	 secure	 links

Fraction	 of	 secured	 links	 (%)

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Fr
ac
ti
on
	 o
f	 s
ec
ur
ed
	 li
nk
s	
(%

)	

Fraction	 of	 initially	 secure	 links	

NO_3PUSH04	 [1]	 /	 NO_3PULL05	 [4]	

NO_4PUSH04	 [1]	 /	 NO_4PULL05	 [4]	

NO_EA09	 [14]	

GO_EA09	 [14]	 	

GO_EA12_RP	 [13]	

HD_PULLPUSH14_RP	 [12]	

HD_PULLPUSHOPT14_RP	 [12]	

No	 security	 ampliKication	

Figure 4: Increase in the number of secured links after SA protocols in the random compromise

pattern on network with 4 legal neighbours on average. All protocols perform very likewise com-

pared to normal and high density. The best performing protocols are HD_PULLPUSH14_RP,

HD_PULLPUSHOPT14_RP and NO_EA09. The HD_PULLPUSHOPT14_RP sends less

than half of messages compared to the other two. The least successful protocol is GO_EA09

because it was optimized for key infection pattern. This holds also for the experiments on ran-

dom compromise pattern and networks with normal and high density.

ures 7, 8 and 9. The HD_PULLPUSH14 protocols give us the best results regarding the

overall success rate for both random compromise and key infection patterns regard-

less of the network density. NO_EA09 and HD_PULLPUSHOPT14 perform similarly,

but there is a big advantage for the HD_PULLPUSHOPT14 considering the communi-

cation overhead of both protocols. There is no difference between NO_3PUSH04 and

NO_3PULL05 protocol in case of random compromise pattern. NO_3PULL05 performs

slightly better than NO_3PUSH04 on key infection. Both protocols are constantly in the

lower half of success rate rating for both random compromise and key infection com-

promise patterns, however we can take advantage of their effectiveness for networks

with low density where they present the best improvement compared to number of

messages sent.

An increase in the number of secured links for one message sent during the pro-

tocol execution for random compromise pattern is showed in Figures 10, 11 and 12.

The results for the key infection compromise pattern are in Figures 13, 14 and 15. Ef-

ficiency of node-oriented protocols with respect to improvement per message rate de-

creases with rising network density and remain more constant for group-oriented and

hybrid protocols. The NO_3PUSH04 and NO_3PULL05 protocols are the most effi-

20

Improvement	 per	 message

Fraction	 of	 initially	 secure	 links

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Fr
ac
ti
on
	 o
f	 s
ec
ur
ed
	 li
nk
s	
(%

)	

Fraction	 of	 initially	 secure	 links	

NO_3PUSH04	 [1]	 /	 NO_3PULL05	 [4]	

NO_4PUSH04	 [1]	 /	 NO_4PULL05	 [4]	

NO_EA09	 [14]	

GO_EA09	 [14]	 	

GO_EA12_RP	 [13]	

HD_PULLPUSH14_RP	 [12]	

HD_PULLPUSHOPT14_RP	 [12]	

No	 security	 ampliKication	

Figure 5: Increase in the number of secured links after SA protocols in the random compromise

pattern on network with 7.5 legal neighbours on average. The differences in performance of

secrecy amplification protocols are more notable than in case of network with low density. The

order of the protocols according to their success rate is the same like in the previous case, with

the only one exception – improved performance of NO_4PUSH04 / NO_4PULL05 protocols

that probably suffered from insufficient number of neighbours that are necessary for the 4-party

protocol.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Fr
ac
ti
on
	 o
f	 s
ec
ur
ed
	 li
nk
s	
(%

)	

Fraction	 of	 initially	 secure	 links	

NO_3PUSH04	 [1]	 /	 NO_3PULL05	 [4]	

NO_4PUSH04	 [1]	 /	 NO_4PULL05	 [4]	

NO_EA09	 [14]	

GO_EA09	 [14]	 	

GO_EA12_RP	 [13]	

HD_PULLPUSH14_RP	 [12]	

HD_PULLPUSHOPT14_RP	 [12]	

No	 security	 ampliKication	

Figure 6: Increase in the number of secured links after SA protocols in the random compromise

pattern on network with 20.3 legal neighbours on average. With increasing number of neigh-

bouring nodes the general effectiveness of protocol grows. As can be seen, a strong majority of

secure links (> 90%) can be obtained even when the initial network had 80% of compromised

links. The best performing protocol is HD_PULLPUSH14_RP and it sends only little bit more

messages than GO_EA12_RP. As can be observed, the 4-party node-oriented protocols show very

good results on networks with high density.

21

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Fr
ac
ti
on
	 o
f	 s
ec
ur
ed
	 li
nk
s	
(%

)	

Fraction	 of	 initially	 secure	 links	

NO_3PUSH04	 [1]	

NO_3PULL05	 [4]	

NO_4PUSH04	 [1]	

NO_4PULL05	 [4]	

NO_EA09	 [14]	

GO_EA09	 [14]	 	

GO_EA12_KI	 [13]	

HD_PULLPUSH14_KI	 [12]	

HD_PULLPUSHOPT14_KI	 [12]	

No	 security	 ampliKication	

Figure 7: An increase in the number of secured links after SA protocols in the key infection

pattern on network with 4 legal neighbours on average. We can observe the worst results pro-

vided by NO_4PUSH04 probably due to insufficient number of neighbours that are necessary

for the 4-party node-oriented protocols. Both group-oriented protocols give satisfactory results

compared to the performance on random compromise pattern, where they present one of the worst

outcomes. Better performing protocols are NO_EA09, GO_EA09, GO_EA12_KI and both hy-

brid protocols.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Fr
ac
ti
on
	 o
f	 s
ec
ur
ed
	 li
nk
s	
(%

)	

Fraction	 of	 initially	 secure	 links	

NO_3PUSH04	 [1]	

NO_3PULL05	 [4]	

NO_4PUSH04	 [1]	

NO_4PULL05	 [4]	

NO_EA09	 [14]	

GO_EA09	 [14]	 	

GO_EA12_KI	 [13]	

HD_PULLPUSH14_KI	 [12]	

HD_PULLPUSHOPT14_KI	 [12]	

No	 security	 ampliKication	

Figure 8: An increase in the number of secured links after SA protocols in the key infection

pattern on network with 7.5 legal neighbours on average. The NO_3PULL05 protocol performs

better than NO_3PUSH04 and it stands also for the multi-hop version of them. The same

pattern could be observed on experiments on key infection compromise pattern and networks

with low and high density. Both protocols NO_BEST and GO_BEST are in the middle spectrum.

However, the node-oriented protocol sends significantly more messages.

22

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Fr
ac
ti
on
	 o
f	 s
ec
ur
ed
	 li
nk
s	
(%

)	

Fraction	 of	 initially	 secure	 links	

NO_3PUSH04	 [1]	

NO_3PULL05	 [4]	

NO_4PUSH04	 [1]	

NO_4PULL05	 [4]	

NO_EA09	 [14]	

GO_EA09	 [14]	 	

GO_EA12_KI	 [13]	

HD_PULLPUSH14_KI	 [12]	

HD_PULLPUSHOPT14_KI	 [12]	

No	 security	 ampliKication	

Figure 9: An increase in the number of secured links after SA protocols in the key infection pat-

tern on network with 20.3 legal neighbours on average. The NO_4PUSH04 and NO_4PULL05

protocols show much better results than in case of network with low or normal density. How-

ever, this is weighted by the high communication burden. The best performing protocols stays

the same –HD_PULLPUSH14_KI.

cient for network with low density regardless the compromise pattern. They perform

worse for a higher network density, but they are still better than 4-party node-oriented

protocols. For networks with normal and high density, the most efficient protocol is

HD_PULLPUSHOPT14. HD_PULLPUSH14 and GO_EA12 present very similar results

regardless the network density or compromise pattern. They are in the middle spec-

trum compared to the rest of protocols. 4-party node-oriented protocols NO_EA09,

NO_4PUSH04 and NO_4PULL05 give the worst results regarding the efficiency per

message. It drops very quickly with rising network density.

4 Open research questions

So far, we inspected two compromise patterns in detail – the highly correlated key infec-

tion pattern for which the term secrecy amplification was originally coined, and the ran-

dom compromise pattern without a significant correlation. As we have demonstrated,

differences in the patterns have a significant impact on the success rate of SA protocol,

rendering some parts of protocol vital for one pattern ineffective in another one. Is there

a better approach than testing all possible SA protocols to obtain well performing and

message efficient protocol? Can we analyze the compromise pattern and directly select

an appropriate SA protocol?

23

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Im
pr
ov
em

en
t	 p
er
	 m
es
sa
ge
	

Fraction	 of	 initially	 secure	 links	

NO_3PUSH04	 [1]	 /	 NO_3PULL05	 [4]	

NO_4PUSH04	 [1]	 /	 NO_4PULL05	 [4]	

NO_EA09	 [14]	

GO_EA09	 [14]	 	

GO_EA12_RP	 [13]	

HD_PULLPUSH14_RP	 [12]	

HD_PULLPUSHOPT14_RP	 [12]	

Figure 10: Increase in the number of secured links divided by the number of exchanged messages

during the protocol execution (random compromise pattern, 4 legal neighbours on average). The

best results are achieved by the NO_3PUSH04 and NO_3PULL05 protocols. They are providing

satisfactory results in form of success rate even with the smallest communication overhead.

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0.45	

0.5	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Im
pr
ov
em

en
t	 p
er
	 m
es
sa
ge
	

Fraction	 of	 initially	 secure	 links	

NO_3PUSH04	 [1]	 /	 NO_3PULL05	 [4]	

NO_4PUSH04	 [1]	 /	 NO_4PULL05	 [4]	

NO_EA09	 [14]	

GO_EA09	 [14]	 	

GO_EA12_RP	 [13]	

HD_PULLPUSH14_RP	 [12]	

HD_PULLPUSHOPT14_RP	 [12]	

Figure 11: Increase in the number of secured links divided by the number of exchanged

messages during the protocol execution (random compromise pattern, 7.5 legal neighbours

on average). Node-oriented protocols still provides competitive results compared to group-

oriented and hybrid protocols despite the higher network density. The most efficient protocol

is HD_PULLPUSHOPT14.

24

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Im
pr
ov
em

en
t	 p
er
	 m
es
sa
ge
	

Fraction	 of	 initially	 secure	 links	

NO_3PUSH04	 [1]	 /	 NO_3PULL05	 [4]	

NO_4PUSH04	 [1]	 /	 NO_4PULL05	 [4]	

NO_EA09	 [14]	

GO_EA09	 [14]	 	

GO_EA12_RP	 [13]	

HD_PULLPUSH14_RP	 [12]	

HD_PULLPUSHOPT14_RP	 [12]	

Figure 12: Increase in the number of secured links divided by the number of exchanged messages

during the protocol execution (random compromise pattern, 20.3 legal neighbours on average).

Node-oriented protocols send significantly more messages with rising network density. This

stands especially for 4-party node-oriented protocols, which are the least effective. The best trade-

off shows group-oriented and hybrid protocols, while HD_PULLPUSH14_RP also outperforms

the rest of protocols with regards to success rate.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Im
pr
ov
em

en
t	 p
er
	 m
es
sa
ge
	

Fraction	 of	 initially	 secure	 links	

NO_3PUSH04	 [1]	

NO_3PULL05	 [4]	

NO_4PUSH04	 [1]	

NO_4PULL05	 [4]	

NO_EA09	 [14]	

GO_EA09	 [14]	 	

GO_EA12_KI	 [13]	

HD_PULLPUSH14_KI	 [12]	

HD_PULLPUSHOPT14_KI	 [12]	

Figure 13: Increase in the number of secured links divided by the number of exchanged mes-

sages during the protocol execution (key infection pattern, 4 legal neighbours on average). The

NO_3PUSH04 and NO_3PULL05 protocols present the best improvement of success rate com-

pared to number of messages sent on networks with low density. A very good tradeoff is

showed by GO_EA09 and HD_PULLPUSHOPT14_KI protocols, which are slightly worse than

NO_3PUSH04 and NO_3PULL05, but gives significantly better results regarding the overall

success rate.

25

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Im
pr
ov
em

en
t	 p
er
	 m
es
sa
ge
	

Fraction	 of	 initially	 secure	 links	

NO_3PUSH04	 [1]	

NO_3PULL05	 [4]	

NO_4PUSH04	 [1]	

NO_4PULL05	 [4]	

NO_EA09	 [14]	

GO_EA09	 [14]	 	

GO_EA12_KI	 [13]	

HD_PULLPUSH14_KI	 [12]	

HD_PULLPUSHOPT14_KI	 [12]	

Figure 14: Increase in the number of secured links divided by the number of exchanged messages

during the protocol execution (key infection pattern, 7.5 legal neighbours on average). The

most efficient protocols are the GO_EA12_KI and HD_PULLPUSHOPT14_KI. Node-oriented

protocols NO_3PUSH04 and NO_3PULL05 stands in the middle spectrum, where we can take

advantage of their very simple parallel execution and synchronisation properties. This advantage

does not hold for dense network where the NO_3PUSH04 and NO_3PULL05 protocols comprise

significant communication overhead.

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Im
pr
ov
em

en
t	 p
er
	 m
es
sa
ge
	

Fraction	 of	 initially	 secure	 links	

NO_3PUSH04	 [1]	

NO_3PULL05	 [4]	

NO_4PUSH04	 [1]	

NO_4PULL05	 [4]	

NO_EA09	 [14]	

GO_EA09	 [14]	 	

GO_EA12_KI	 [13]	

HD_PULLPUSH14_KI	 [12]	

HD_PULLPUSHOPT14_KI	 [12]	

Figure 15: Increase in the number of secured links divided by the number of exchanged messages

during the protocol execution (key infection pattern, 20.3 legal neighbours on average). The best

tradeoff shows group-oriented and hybrid protocols, similarly to the case of network with high

density and random compromise pattern.

26

We examined compromise patterns relating directly to the link keys randomly ex-

tracted from a nodes or eavesdropped by an attacker. Other attacker models have to be

considered, based on attacker’s interaction with a node. We considered that all keying

material could be exfiltrated and the the node may continue working in an unchanged

manner. Yet what if the attacker installs some malware and the node is under her con-

trol? How can that malware affect the behaviour of the node and what will be resulting

compromise pattern?

The SA protocols were evaluated mostly for a flat network topology, where no node

has a special status (e.g., cluster head) and initial keys were established in the same

way for all nodes (e.g., same number of predistributed keys). More optimal protocols

might be designed when these differences are taken into account. For example, if some

nodes are equipped with a tamper resistant hardware (smartcards), but others are not,

routing more messages via more resistant nodes during the SA can secure more links

per messages transmitted. The different communication paths can be selected once a

SA protocol is used inside cluster-based networks.

The SA phase usually takes a predefined time interval, provides fresh session keys

and then finishes. But what if SA is performed in a continuous manner, producing

fresh keys during the whole network lifetime? As a network in the production phase

is usually exchanging many messages, the continuous SA may “piggyback” on these

transmissions using already transmitted values without an additional message over-

head. Some directions were already proposed in [11], but new problems need to be

solved – how to maintain consistency of the current key on communicating nodes with-

out an additional overhead, especially when the wireless transmission medium with

a high packet loss is used? Can an attacker adapt his strategies like a selective node

capture during the longer time-frame?

In the principle, the more paths are used to distribute key shares, the better is the

chance to find a non-compromised one. But as the new key is constructed from all

key shares, a missing or corrupted key share will render the resulting key incorrect.

Therefore, the tradeoff between the resulting confidentiality (probability of establishing

the non-compromised key) and integrity (probability of establishing a same value of

shared key) exists. Yet, this perspective was not yet inspected in detail, with existing

publications focusing mainly on the confidentiality part of the schemes. Protocols for

threshold cryptography could be used to limit the impact of the corrupted key share,

but these have to be executable with significant performance limitations.

27

5 Conclusions

Secrecy amplification protocols can significantly improve the fraction of secure links in

partially compromised networks. These protocols were originally introduced for the

key infection plaintext key exchange, but can be used also for a partially compromised

network resulting from a node capture for the probabilistic pre-distribution and other

partially compromised networks.

Node-oriented protocols are simple to execute in synchronized parallel executions

and able to secure a high number of previously compromised links, but require a signif-

icant transmission overhead. Group-oriented protocols significantly decrease the trans-

mission overhead and still provide a high number of secured links, but synchroniza-

tion of multiple runs of secrecy amplification protocols executed in parallel between

multiple nodes is their critical issue. Hybrid-design protocols share similar internal de-

sign with group-oriented protocols, but exhibit a significantly simpler synchronization

of parallel executions. Multiple repetitions are generally required to obtain the same

success rate as for other designs, but a lower number of messages in a single iteration

provides a lower transmission overhead in total.

Even though every SA protocol class has its advantages and disadvantages, we

identified several patterns that hold for both key infection and random compromise

patterns. The HD_PULLPUSH14 protocols showed us the best results regarding the

overall success rate. Its optimised version HD_PULLPUSHOPT14 is the most efficient

protocol for networks with normal and high density. For networks with low density,

the NO_3PUSH04 and NO_3PULL05 protocols are the most efficient.

SA protocols can make a network almost completely secure (more than 95% of se-

cure links) when 60% of links are initially secure (probabilistic pre-distribution) or less

than 10% ratio of eavesdropping nodes are present (key infection). When appropriate,

SA should be executed as an additional strengthening mechanism after a basic key es-

tablishment.

28

References

[1] Ross Anderson, Haowen Chan, and Adrian Perrig. Key infection: Smart trust for

smart dust. In 12th IEEE International Conference on Network Protocols, pages 206–

215. IEEE, 2004.

[2] Haowen Chan, Adrian Perrig, and Dawn Song. Random key predistribution

schemes for sensor networks. In IEEE Symposium on Security and Privacy, pages

197–213, 2003.

[3] Haowen Chan, Adrian Perrig, and Dawn Song. Key Distribution Techniques for Sen-

sor Networks, Wireless Sensor Networks, ISBN 1-4020-7883-8, Kluwer Academic Pub-

lishers. 2004.

[4] Daniel Cvrček and Petr Švenda. Smart dust security-key infection revisited. In

Electronic Notes in Theoretical Computer Science, volume 157, pages 11–25. Elsevier,

2006.

[5] Roberto Di Pietro, Luigi V. Mancini, and Alessandro Mei. Random key-assignment

for secure wireless sensor networks. In 1st ACM Workshop on Security of Ad Hoc and

Sensor Networks, pages 62–71, 2003.

[6] Laurent Eschenauer and Virgil D. Gligor. A key-management scheme for dis-

tributed sensor networks. In 9th ACM Conference on Computer and Communications

Security, Washington, DC, USA, pages 41–47. ACM, 2002.

[7] Yong Ho Kim, Mu Hyun Kim, Dong Hoon Lee, and Changwook Kim. A key man-

agement scheme for commodity sensor networks. 4th International Conference on Ad

Hoc and Wireless networks, LNCS 3738, pages 113–126, 2005.

[8] Donggang Liu and Peng Ning. Establishing pairwise keys in distributed sensor

networks. In 10th ACM Conference on Computer and communications security, pages

52–61. ACM Press, 2003.

[9] Donggang Liu, Peng Ning, and Rongfang Li. Establishing pairwise keys in dis-

tributed sensor networks. ACM Trans. Inf. Syst. Secur., 8(1):41–77, February 2005.

[10] Zhihong Liu, Jianfeng Ma, Qiping Huang, and SangJae Moon. Storage require-

ments for key distribution in sensor networks. In Second International Conference on

Sensor Technologies and Applications, pages 631–638, 2008.

29

[11] Zhihong Liu, Jianfeng Ma, Qingqi Pei, Liaojun Pang, and YoungHo Park. Key

infection, secrecy transfer, and key evolution for sensor networks. IEEE Transactions

on Wireless Communications, 9(8):2643–2653, 2010.

[12] Radim Ošt’ádal, Petr Švenda, and Václav Matyáš. A new approach to secrecy am-

plification in partially compromised networks. In Security, Privacy, and Applied

Cryptography Engineering – 4th International Conference, SPACE 2014, LNCS 8804,

pages 92–109, 2014.

[13] Tobiáš Smolka, Petr Švenda, Lukáš Sekanina, and Vashek Matyáš. Evolutionary

design of message efficient secrecy amplification protocols. In 12th European Con-

ference on Genetic Programming, pages 194–205, 2012.

[14] Petr Švenda, Lukáš Sekanina, and Václav Matyáš. Evolutionary design of secrecy

amplification protocols for wireless sensor networks. In Second ACM Conference on

Wireless Network Security, pages 225–236, 2009.

30

A Complete specification of tested protocols

instructions

0 RNG N1 R1

1 SND N1 N3 R1 R1

2 SND N3 N2 R1 R1

instructions

0 RNG N3 R1

1 SND N3 N1 R1 R1

2 SND N3 N2 R1 R1

instructions

0 RNG N1 R1

1 SND N1 N3 R1 R1

2 SND N3 N4 R1 R1

3 SND N4 N2 R1 R1

Table 4: NO_3PUSH04 [1], NO_3PULL05 [4], NO_4PUSH04 [1].

instructions

0 RNG N3 R1

1 SND N3 N4 R1 R1

2 SND N4 N2 R1 R1

3 SND N3 N1 R1 R1

instructions

0 RNG N3 R1

1 RNG N1 R1

2 SND N1 N4 R1 R1

3 SND N4 N2 R1 R2

4 RNG N1 R2

5 RNG N4 R3

6 SND N3 N4 R1 R3

7 SND N4 N2 R3 R3

8 SND N1 N2 R2 R1

9 SND N3 N1 R1 R3

instructions

0 SND N0.33_0.68 NP R6 R8

1 SND N0.35_0.67 NC R6 R2

2 RNG NP R11

3 SND N0.59_0.11 NP R7 R3

4 SND NP N0.75_0.70 R6 R1

5 SND NP N0.01_0.00 R11 R12

6 SND N0.01_0.00 NC R1 R5

7 SND N0.01_0.00 NC R12 R6

8 RNG N0.03_0.00 R1

9 SND N0.48_0.33 NP R1 R7

10 RNG N0.01_0.00 R6

11 SND N0.69_0.68 NC R1 R7

Table 5: NO_4PULL05 [4], NO_EA09 [14], GO_EA09 [14].

31

instructions

0 RNG NP R3

1 RNG N0.50_0.04 R11

2 SND NP N0.75_0.38 R3 R12

3 SND N0.41_0.26 NP R11 R8

4 RNG NP R1

5 RNG N0.08_0.85 R4

6 SND N0.38_0.93 N0.61_0.40 R4 R9

7 CMB NC R11 R10 R5

8 SND N0.19_0.77 NP R10 R6

9 RNG NP R10

10 SND N0.54_0.29 N0.11_0.00 R3 R7

11 SND N0.18_0.74 NC R10 R4

12 SND N0.24_0.91 NC R1 R6

13 RCB NC N0.75_0.03 R5 R3

14 SND N0.63_0.50 NC R7 R7

15 RNG N0.65_0.68 R11

16 SND NP N0.19_0.56 R11 R1

17 RCB NC N0.12_0.18 R5 R9

instructions

18 SND N0.04_0.35 NC R7 R9

19 SND N0.41_0.89 NC R4 R8

20 SND N0.36_0.26 NP R3 R9

21 RCB NP NC R9 R2

22 SND NP NC R10 R3

23 RNG N0.16_0.96 R10

24 SND NP N0.13_0.08 R3 R7

25 RNG N0.22_0.78 R4

26 SND N0.84_0.55 NP R3 R4

27 SND N0.36_0.70 NC R7 R1

28 SND N0.62_0.70 NC R11 R11

29 SND N0.61_0.71 NP R11 R2

30 SND NP N0.11_0.26 R1 R10

31 SND NP N0.12_0.00 R3 R1

32 SND N0.13_0.28 NC R10 R10

33 SND N0.36_0.19 NC R11 R12

34 SND N0.63_0.42 NP R9 R5

Table 6: GO_EA12_KI [13].

32

instructions

0 SND N0.66_0.93 N0.53_0.09 R5 R6

1 SND N0.28_0.06 NP R10 R11

2 SND N0.63_0.93 NP R5 R7

3 RNG NP R6

4 RNG N0.92_0.80 R5

5 RNG NP R9

6 SND N0.48_0.94 NC R8 R1

7 SND N0.94_0.79 NP R5 R1

8 RNG N0.09_0.90 R5

9 SND NP N0.44_0.96 R6 R5

10 RNG N0.25_0.59 R5

11 SND N0.31_0.58 NP R5 R3

12 RNG NP R5

13 RNG NP R10

14 RNG NC R5

15 ENC NC R11 R7 R8

16 ENC NC R8 R7 R12

17 SND NP N0.14_0.90 R9 R5

18 DEC NC R12 R8 R2

19 RNG NC R12

20 SND N0.72_0.06 NP R10 R8

instructions

21 RNG N0.43_0.36 R5

22 SND NC N0.26_0.34 R12 R5

23 SND NP N0.52_0.74 R10 R8

24 SND N0.51_0.74 NC R8 R8

25 SND N0.21_0.39 NP R5 R2

26 SND N0.37_0.63 NC R5 R3

27 SND N0.08_0.73 N0.45_0.37 R9 R8

28 SND N0.28_0.44 NC R5 R10

29 SND NC N0.12_0.56 R5 R11

30 SND N0.08_0.57 NP R11 R12

31 SND N0.40_0.95 NC R5 R9

32 SND N0.92_0.80 NC R5 R6

33 SND N0.18_0.93 NC R5 R4

34 SND N0.60_0.14 NC R6 R11

35 SND N0.42_0.68 NP R5 R4

36 RNG N0.52_0.92 R5

37 RNG N0.53_0.71 R5

38 RNG N0.51_0.46 R5

39 RNG N0.88_0.90 R5

40 SND N0.50_0.73 NC R8 R7

Table 7: GO_EA12_RP [13].

33

instructions

0 RNG NC R1

1 SND NC NP R1 R1

2 RNG N0.32_0.56 R2

3 SND N0.32_0.56 NC R2 R2

4 SND N0.32_0.56 NP R2 R2

5 RNG N0.66_0.84 R3

6 SND N0.66_0.84 NC R3 R3

7 SND N0.66_0.84 NP R3 R3

8 RNG NC R4

9 SND NC N0.15_0.20 R4 R4

10 SND N0.15_0.20 NP R4 R4

11 RNG NC R5

12 SND NC N0.52_0.79 R5 R5

13 SND N0.52_0.79 NP R5 R5

instructions

0 RNG N0.32_0.85 R1

1 SND N0.32_0.85 NC R1 R1

2 SND N0.32_0.85 NP R1 R1

3 RNG N0.69_0.98 R2

4 SND N0.69_0.98 NC R2 R2

5 SND N0.69_0.98 NP R2 R2

6 RNG N0.01_0.39 R3

7 SND N0.01_0.39 NC R3 R3

8 SND N0.01_0.39 NP R3 R3

9 RNG N0.56_0.70 R4

10 SND N0.56_0.70 NC R4 R4

11 SND N0.56_0.70 NP R4 R4

12 RNG N0.89_0.01 R5

13 SND N0.89_0.01 NC R5 R5

14 SND N0.89_0.01 NP R5 R5

Table 8: HD_PULLPUSH14_KI [12], HD_PULLPUSH14_RP [12].

instructions

0 RNG N0.66_0.84 R1

1 SND N0.66_0.84 NC R1 R1

2 SND N0.66_0.84 NP R1 R1

3 RNG NC R2

4 SND NC N0.15_0.20 R2 R2

5 SND N0.15_0.20 NP R2 R2

instructions

0 RNG NC R1

1 SND NC N0.69_0.98 R1 R1

2 SND N0.69_0.98 NP R1 R1

3 RNG NC R2

4 SND NC N0.01_0.39 R2 R2

5 SND N0.01_0.39 NP R2 R2

Table 9: HD_PULLPUSHOPT14_KI [12], HD_PULLPUSHOPT14_RP [12].

34

