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Abstract

We discovered an algorithmic flaw in the construction of pri-
mes for RSA key generation in a widely-used library of a
major manufacturer of cryptographic hardware. The primes
suffer from a significant loss of entropy. We proposed a prac-
tical factorization method that only requires the value of the
public modulus and does not depend on a weak or a faulty
random number generator. We devised an extension of Cop-
persmith’s factorization attack utilizing an alternative form

of the primes in question. The library is found in NIST FIPS
140-2 and CC EAL 5+ certified devices used for a wide range
of real-world applications, including identity cards, Trusted
Platform Modules, PGP, and tokens for authentication or
software signing. The impacted devices are widespread. We
responsibly disclosed our findings to the manufacturer of the
flawed library. Our work was published at ACM CCS 2017 [1]
and received the Real-World Impact Award.

Background – surprising biases in RSA public keys

Švenda et al. [2] described how cryptographic libraries gene-
rate RSA primes in various ways, introducing subtle biases in

the public keys, sufficient to classify the keys based on their
origin. Infineon smartcards produced especially biased keys.
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The distribution of the most significant bytes of a pair of RSA primes varies for different cryptographic libraries.

The properties of vulnerable keys

The distribution of the Infineon RSA primes and keys mo-
dulo small primes is irregular, unlike randomly chosen primes
and keys that are distributed uniformly modulo small primes
(left). In fact, the primes belong to a small subgroup modulo

a product M of small consecutive primes, what lead us to the
discovery of the structure of the primes (right). The primes
and RSA moduli suffer from a significant loss of entropy and
can be uniquely fingerprinted using a fast discrete logarithm.
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The distribution of RSA keys modulo small primes

N = p ∗ q

pideal = random prime

pInfineon = (k ∗M + 65537a mod M); a, k ∈ Z
M = 2 ∗ 3 ∗ 5 ∗ 7 ∗ · · · ∗ Pn

Entropy in a prime

Random: random bits

Infineon: a k determined by the structure

Factorization attack complexity

The complexity of the factorization depends on the size of
the keys (horizontal axis). However, due to the different para-
meters used in their generation (different values of M at the
top of the figure), the time required to break a key (vertical

axis, blue dots) does not strictly increase. Therefore, some
key lengths are more affected, including the common sizes of
1024 bits and 2048 bits. The attack can be easily parallelized
with independent processors to achieve a linear speedup.
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Worst case factorization time
  512-bit: 2 CPU hours
1024-bit: 2 CPU months
2048-bit: 100 CPU years
3072-bit & 3584-bit: allowed by BSI for QES
3936-bit: attack not applicable
4096-bit: 109 CPU years
No practical attack

Impact on real-world applications of cryptographic chips

Electronic identity documents (eID) were significantly impac-
ted with Spain, Slovakia, Estonia, Austria, Bulgaria, Brazil,
Italy, Kosovo, Malaysia, Poland, and Taiwan affected. Trus-

ted Platform Modules (TPM) used for platform integrity and
data encryption (e.g., by Microsoft BitLocker) were vulne-
rable, as well as authentication tokens and other devices.
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Coppersmith’s factorization method

Coppersmith’s method uses a partial
knowledge of one of the primes to
compute the factorization of an RSA
modulus. At least half of the bits of
the prime must be known. However,
the method performs faster with more
known bits. We use the method as a
black-box tool.

Coppersmith’s method as a black-box tool roca.crocs.fi.muni.cz
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Making the attack practical

To attempt a factorization of a vulnerable RSA key, we guess the value of a
and compute the much larger “known” part of the prime as 65537a mod M .
We then try to compute k using Coppersmith’s method, what succeeds only
if the guess was correct. In the worst case, the attack will require trying half
of all the possible values of a.

Coppersmith’s attack applied on Infineon primes roca.crocs.fi.muni.cz

p = k ∗ M + 65537a mod M
Guess a and compute k using Coppersmith’s method
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For the majority of RSA key sizes, the bit length of M (and 65537a mod M)
is much larger than the required bound for the attack (one half of the prime’s
bit length). We find a smaller M ′ (a divisor of M), such that its size is still
sufficient, yet the size of a′ is significantly reduced when compared to a.

Coppersmith’s attack applied on Infineon primes roca.crocs.fi.muni.cz
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Entropy in primes

The figure shows the number and origin of random bits in relation to the size
of the prime (vertical axis) for keys of given length (horizontal axis). A large
portion of prime’s bits is determined by the structure (orange) and can be
computed from the knowledge of random bits (green). Coppersmith’s attack
further reduces the required number of known bits even lower (black dots).
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The attack optimization process

Smaller values of M ′ (fewer known bits) require fewer guesses on the value
of a′. However, the evaluation of each guess takes more time. We select the
parameters corresponding to the minimal overall time of the factorization.
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