
JCAlgTest: Robust identification metadata for certified smartcards

Petr Svenda, Rudolf Kvasnovsky, Imrich Nagy, Antonin Dufka
Masaryk Univesity, Brno, Czech Republic

svenda@fi.muni.cz

Keywords: Certification, Smartcard, JavaCard, Cryptography, Forensics

Abstract: The certification of cryptographic smartcards under the Common Criteria or NIST FIPS140-2 is a well-
established process, during which an evaluation facility validates the manufacturer’s claims and issues a prod-
uct certificate. The tested card is usually identified by its name, type, ATR, and Card Production Life Cycle
(CPLC) data. While sufficient to pair the purchased card to its original certificate when bought from a trust-
worthy seller, such static metadata stored on the card can easily be manipulated. We extend the currently used
card identification with a more descriptive set of metadata extracted from supported functionality, performance
profiling, and properties of generated cryptographic keys. All of this information can be obtained directly by
the evaluation facility, appended to the certificate, and later verified by the end-user with no need for any
special knowledge or equipment, resulting in a better assurance about the purchased product. We developed
a suite of open tools for the extraction of such characteristics and collected results for a set of more than 100
different smartcards. The database, openly available, demonstrates the significant variability in the measured
properties and allows us to estimate the trends in support of different cryptographic algorithms as provided by
the JavaCard platform.

1 Introduction

To facilitate the manufacturing of more trustwor-
thy products and to remove the burden of verify-
ing claims made from the product’s end-user, se-
curity certification schemes like Common Criteria
(Common Criteria, 2017) or NIST FIPS 140-2 (NIST,
2014) were introduced. A product is submitted for in-
dependent assessment by an accredited evaluation fa-
cility under a relevant scheme. The evaluation facil-
ity issues the security certificate after evaluating the
claims made about product security features and the
whole product lifecycle. The certificate is then pub-
licly available to potential customers and may be con-
sidered or required for their purchasing decision.

Multiple issues became evident over more than
two decades of operation of the certification schemes
like Common Criteria. It proved to be time-
consuming, costly, and not agile enough to keep pace
with the product evolution after the initial certifica-
tion was granted. Additionally, the crucial details of
the evaluation are often not publicly available due to
non-disclosure agreements protecting the intellectual
property of both manufacturers as well as the evalu-
ation facility and usage of closed tools. Finally, the
binding between the certificate product and its certifi-

cate is typically loose. The product usually somewhat
evolved due to natural development like the inclu-
sion of new functionality or the application of security
patches. The evaluation facility typically states not
only the name and type of the product but also other
identifying information like ROM mask versions or
source code tags in a version control system. How-
ever, buyers are severely limited in their options to
verify these identifiers as some reported by a device
can be easily changed (e.g., version of the product),
and some are not even available (e.g., source code for
referenced tags). As a result, the buyer has to trust the
seller that the device matches the claimed certificate.
Such a situation becomes a problem when third-party
resellers have to be considered – a typical situation
for cryptographic smartcards when bought in smaller
quantities or second-hand purchases.

We envision an improved certification procedure
where an evaluation facility uses well-defined pro-
cesses and open tools to analyze the claimed security
of the product. Together with the exact settings used
and artifacts obtained, the results are published along
with the standard security certificate. The buyers can
later repeat the relevant parts of the performed testing
themselves or contract a specialized laboratory.

A suite of open-source tools was developed and

described in this paper. The suite can be used for
the analysis of smartcards with the JavaCard plat-
form, including other usage scenarios like an audit
of the batch of cards purchased, forensic analysis of
unknown or malfunctioning cards, and supporting de-
velopers to select a card with desired supported al-
gorithms and performance. While the proposed ap-
proach might be possible to extend to some of the
other types of certified devices, the smartcard domain
itself already constitutes the most populous type cer-
tified under the Common Criteria scheme1.

Contributions
This paper makes the following contributions:

• Smartcard Audit Framework: We introduce
a systematic methodology for JavaCard bench-
marking, which comprehensively evaluates the
capabilities and the performance of the examined
card. The primary usage is to verify the similarity
of two or more cards. (Section 2)

• Ecosystem Study: We evaluate a wide variety
of cards from all major smartcard manufacturers
for the supported cryptographic algorithms, their
performance, and information included in the
Card Production Life Cycle, making this the first
such large-scale study of the JavaCard ecosystem.
(Section 3)

All presented tools and collected results are pub-
licly available, including their source code, allowing
for independent usage and verification by all involved
parties.

2 JCAlgTest testing suite

In this section, we outline the functional modules of
our testing suite called JCAlgTest, which provides a
means to comprehensively gather, evaluate, and com-
pare the capabilities of cards with the JavaCard plat-
form (JC). The suite is split into several modules
based on the type of gathered data. The modules con-
sist of a host application (written either in Java or
Python) and a small JavaCard applet uploaded on a
card. The collected data is stored as raw text files,
later processed by analysis and visualization scripts
into various formats like static HTML pages, inter-
active graphs, summary pdf documents, and images.
The on-card testing applet is compatible with cards
starting from JC 2.1.1.

1The category “ICs, Smart Cards and Smart Card-
Related Devices and Systems” contain around 35%
(568 out of 1606) of all currently active certificates
(Common Criteria, 2020).

Figure 1: A high-level overview of the components and pro-
cesses of our audit suite. The on-card applets measures the
specification compliance and benchmarks the performance.
Then, the client collects and processes the results to extract
a useful information.

The development of the JCAlgTest suite started in
2007, in parallel with the collection of results from
the cards available for testing. The initial imple-
mentation was done in C++ (host control application)
and for Windows OS. After the code was ported to
Java in 2012, we also started to obtain community-
provided scans of cards, reaching more than 100 cards
in the second half of 2021. The source code, releases,
and the results collected are all available openly via
GitHub and a dedicated webpage2.

2.1 How to identify a smartcard?

The hardware used in smartcards is, to a great extent,
defined by the ISO/IEC 7816 standard (ISO, 2013)
and can have an outer form of a payment card, SIM
card, or be embedded in a token. According to this
standard, a typical smartcard must be tamper-resistant
and should embed a general-purpose processor (8, 16,
or 32-bits). The typical internal clock is between 20 to
50 MHz. Cards also features three types of memory: a
Read-Only Memory (ROM) for the operating system,
a Random Access Memory (RAM, typically below
10KB), and a larger application memory for binaries
and data (20KB-1MB of EEPROM or FLASH). Typ-
ically, a true random number generator is available
as a source of randomness. Finally, many cards also
incorporate a cryptographic co-processor to provide
hardware acceleration for computationally intensive
cryptographic algorithms. The JavaCard platform es-
tablished itself as the major programming interface,
allowing to write applications (applets) in a restricted
version of Java language portable between cards of
different vendors.

2http://jcalgtest.org

If a user possesses a smartcard of (yet) unknown
origin, there are multiple options on how to identify
its manufacturer and type with a different level of ro-
bustness against the intentional manipulation of the
metadata used to estimate the card’s origin.

2.2 ATR and CPLC collection module

The main JCAlgTest host application lists all avail-
able readers and offers a connection to a specific
smartcard. The Answer To Reset (ATR) bytes are
automatically returned by card after the connection
is established. Additionally, two APDU commands
(0x80CA9F7F and 0x00CA9F7F as defined by Glob-
alPlatform and ISO7816, respectively) are issued af-
ter the selection of CardManager entity to retrieve
Card Production Life Cycle (CPLC) metadata. The
retrieval is very fast and finishes in less than 3 sec-
onds. The large majority of cards contain CPLC data,
though some with obviously invalid/unfilled values
like zeroes or invalid ICFabricationDate values.

2.3 Supported JavaCard algs module

The JavaCard API specification contains a multitude
of packages with security-related classes of cryp-
tographic algorithms (e.g., Cipher, Signature, Mes-
sageDigest, RandomData), further parameterized us-
ing different algorithm types (e.g., ALG AES or
ALG RSA), key lengths, and modes of operation.
In the JC API 3.0.5 (Oracle, 2015), the algorithm–
parameter combinations add up to more than 200.
However, a specific card product does not need to
support all the algorithms specified in the documen-
tation. Due to a large number of possible combina-
tions, manual compliance testing is tedious and error-
prone. Instead, JCAlgTest uses an on-card applet,
trying to instantiate all defined classes and their cor-
responding parameters, and reports the results to the
host application. Additionally, generic card informa-
tion like the size of persistent and transient memory,
reported JavaCard version, or maximum transaction
commit capacity is also collected. The testing itself
relies on the exceptions captured on-card, it is fully
automated, and it completes in a relatively short time
– usually within a few minutes. The results collected
from all cards in the database are processed together
to create a single large support matrix, listing all pos-
sible algorithms from specification and their support
by a particular card. Selected aggregated results are
provided in Table 1.

2.4 Performance collection module

Card performance varies greatly depending on the in-
ternal chip frequency, hardware-accelerated subset of
algorithms, the timings of the memory chips used, and
implementation choices (e.g., primality search algo-
rithm). Despite that, smartcard manufacturers rarely
provide extensive detailed reports on the performance
of their products, or only incomplete ones (e.g., the
raw speed of encryption engine without considering
overhead for transferring data in and out and schedul-
ing key for use).

In order to evaluate and compare cards for a spe-
cific use case, all individual algorithms are bench-
marked for all possible parameter combination (e.g.,
various key lengths or padding options). Additionally,
all methods of particular class (e.g., setKey(), getKey()
and eraseKey() for class AESKey) are measured, re-
sulting in more than 2300 possible combinations to
be tested.

Unlike Java, JavaCard provides no direct on-card
timer, and thus the time measurements must be per-
formed by the host application on PC. As a result, we
cannot measure only the targeted operation but are
also measuring the time required to transfer data to
and from the card and any other code executed before
and after the operation.

To account for such a situation, we first run a cal-
ibration phase, which measures the overhead associ-
ated with all the non-target operations. During that
phase, the target operation is not executed (the con-
trol flag is set to “false”), but all the surrounding code
is. This enables us to measure the overhead of the
functionality not related to the target function. Mul-
tiple calibration rounds are performed to account for
variations in the measurements. Subsequently, the tar-
get operation is enabled (control flag set to “true”),
and multiple experiment rounds are performed again.
The target operation runtime is then obtained by sim-
ply subtracting the average overhead time (calibration
phase) from the average runtime (experiment phase).

Even though this method provides accurate mea-
surements for the great majority of the algorithms and
methods, there are two cases that require special treat-
ment:

• Methods that are preceded by other calls with in-
consistent execution times (e.g., when RSA key-
pair generation is executed before signature oper-
ation).

• Operations with almost negligible overhead
(<1ms) that is below the measurement error.
To address these specific cases, we increase the

relative time of the target operation by wrapping it
into the loop with a predefined number of iterations

(if necessary, the cryptographic key values used are
alternated to prevent runtime optimizations by using
the same value; compiled bytecode is also checked for
unwanted compiler optimizations). All input buffers
are pre-allocated to the maximum allowed length, and
all objects to be used are pre-initialized to further re-
duce measurement variance. The resulting measure-
ment precision is accurate enough to measure the per-
formance of all the JavaCard methods, including util-
ity methods with very low overhead (e.g., copying
data between two RAM arrays). The whole set of per-
formance experiments typically takes several hours
to finish and depends not only on the card’s speed
but primarily on the number of supported algorithms,
which increases the number of measurement sessions
to be executed.

The performance testing runs in two modes, both
providing the execution time in milliseconds for the
specified length of the processed data. The first mode
operates with fixed length – where sensible, we use
256 bytes data length, which corresponds to the length
of the full APDU command. The second mode inves-
tigates the operation performed when applied to the
data of different lengths – we test lengths of 16, 32,
64, 128, 256, and 512 bytes.

The performance testing methodology introduces
non-trivial stress on a card and may result in a tempo-
rary freeze of the card (resolved by re-insertion of the
card into a reader) and, in rare cases, also in perma-
nent card blocking.

2.5 Supported JC packages module

Same as for cryptographic algorithms, no direct func-
tionality is present to retrieve supported JavaCard
packages. While support for a single algorithm can
be tested by its instantiation and handling an eventual
exception, support for the whole JavaCard package
(e.g., javacardx.crypto) must be tested differently –
testing applet will not even load to the card if it con-
tains unsupported packages.

We instead utilize the behavior of an on-card
verifier testing the bytes of the uploaded applet
(cap file) during the LOAD command of Glob-
alPlatform specification and developed jcAIDScan
tool3. A small, empty applet is first compiled
and converted to cap file, ready to be uploaded
to the card. Before the upload, cap file is un-
packed (zip file structure) and internal file named
Import.cap is (automatically) modified to reference
additional package we like to test (package AID
and its version, e.g., 0x020107A0000000620201 for
javacardx.crypto v1.2 as defined in JavaCard API

3https://github.com/petrs/jcAIDScan

16 32 64 128 256 512

0

50

100

150

200

250
Infineon CJTOP 80K INF SLJ 52GLA080AL M8.4
NXP CJ3A081
NXP JCOP41 v2.2.1 72K

Data length (bytes)

Ti
m

e
of

 o
pe

ra
tio

n
(m

s)

Figure 2: The example relationship between the input
length with the runtime of 3DES with ISO9797 M1 padding
in three different commercial JavaCards. The nonlinear in-
crease for NXP CJ3A081 card between data with 128 and
256 bytes can be explained by memory limits of internal
processing buffers, providing information about the hard-
ware used.

2.2.1). The modified cap file with applet is at-
tempted for upload – if no error is detected, the
specific package and version is supported; other-
wise, the support is missing. We test for all pack-
ages specified in JavaCard specification up to version
3.0.5 (javacard.*, javacardx.*, org.globalplatform.*,
visa.openplatform.* and all their sub-packages), test-
ing 120 different packages and versions in total. The
testing can be easily extended to scan also for other
packages if their AID is known. The whole process
usually finishes below 10 minutes, depending on the
card speed.

2.6 RSA/ECC keys collection module

While mostly random, the keys generated by a spe-
cific card may contain a small bias stemming from
the implementation of the key generation algorithm
(Svenda et al., 2016). The testing applet repeatedly
calls KeyPair.genKey() method for instances of RSA
and ECC asymmetric ciphers and export both public
and private parts to the host. The extracted keys are
later analyzed for the presence of yet unknown bias
(bias discovery phase) or already known specific one
(bias identification phase). The analysis is performed
by other tools outside the keys collection module. In
general, the discovery phase requires at least hundreds
of thousands of keys and may take days or even weeks
to complete, while the identification phase requires
only 100-1000 keys collected within minutes or hours
at most. The collection module supports parallel col-
lection from multiple cards of the same type.

2.7 Presentation module

The raw data collected from a range of cards by the
previously described modules are processed into a
form more suitable for public display. CPLC meta-

Athe
na

 ID
Prot

ect

Feit
ian

 Ja
va

COS 3.
0.4

 e2

Feit
ian

 Ja
va

SD

G+D Smart
caf

e 3
.2

72
K

G+D Smart
caf

e 6
.0

80
K

Gem
plu

s G
XP R

4 7
2K

Inf
ine

on
 C

JT
OP 80

K

Jav
aC

OS A
22

Jav
aC

OS A
22

 C
R-E

CC-SHA-2

Jav
aC

OS A
40

NXP J2
D08

1 8
0K

NXP JC
OP21

 v2
.4.

2R
3

NXP JC
OP3 J

3H
14

5g
 P60

NXP JC
OP4 J

3R
18

0 P
71

NXP JC
OP4 P

71
D32

1

Soft
loc

k S
LCOS In

fin
eo

nS
LE78

0

5k

10k

15k

20k

25k
512b
1024b
2048b

Ti
m

e
of

 g
en

er
at

io
n

(m
s)

Figure 3: The average time required to generate a single
RSA keypair of varying length on a selected subset of cards
supporting all of the lengths. The observed run-time differ-
ences are due to the prime search algorithms executed in the
cryptographic co-processor (Svenda et al., 2016)

data is parsed and converted into .dot format, later
visualized by GraphViz software to highlight sim-
ilar clusters. Supported algorithms are combined
into a large matrix, with rows corresponding to the
particular algorithm from JavaCard specification and
columns corresponding to tested cards, all embedded
in a static HTML page (Table 1 presents only aggre-
gated results). Performance results are visualized in
automatically generated HTML tables and graphs like
Figure 2, showing speed dependency on the length of
the data processed, or Figure 3, showing average time
required to generate RSA keypairs of varying lengths.

3 Ecosystem insights

Based on a large number of results collected since
2007, we present an insight into the ecosystem as a
whole. Approximately 50% of these cards were tested
directly by us, while the rest were provided by volun-
teers worldwide. The longer and more detailed per-
formance tests were performed only on cards avail-
able in our laboratory. Due to the nature of the study,
we were able to include only smartcards that are com-
mercially available in smaller quantities via third-
party resellers. The on-premise testing was performed
on an ordinary laptop and standard Gemalto IDBridge
CT30 smartcard reader. The testing is designed to be
independent of the host’s performance.

3.1 JavaCard API support

The open database contains results for supported al-
gorithms collected from more than 100 smartcards
with different basic identification (e.g., product mar-
keting title). Out of these, around ninety are different
cards, with the rest being likely duplicates only en-
rolled under a different name. Since 1999 (JC API
v2.1), the JavaCard API has defined DES and 3DES

algorithms and TRNG as a source of random data. As
seen in Table 1, almost all manufacturers provide sup-
port for these algorithms. On the other hand, while
the AES algorithm (standardized by NIST in the year
2000) was specified already in version JC API v2.2.0
(2002), it was not until 2006 that some cards started
to support it, while it became common only after
the year 2010 (based on ICFabricationDate from the
CPLC info). Almost all cards provide both ECB and
CBC modes of operation for block ciphers, as well as
for the padding schemes PKCS#1 and ISO9797. The
advanced padding methods like OAEP and PSS are
supported by less than 50% of the cards (but almost
all recent ones with JC API v3.0.5).

JC API v2.1 also specifies RSA cryptosystem (up
to 2048-bit keys), and although the majority of mod-
ern cards comply, very few products handle longer
keys (e.g., 4096-bit ones). This is due to both the time
requirements of longer keys generation and the uni-
versal shift towards elliptic curve cryptosystems that
provide the same level of security with fewer key bits.

In the case of DSA, we observe only a small
fraction of the cards with support. Newer cards
seem to abandon DSA for its modern elliptic curve
counterpart, ECDSA. Despite this, the overall pic-
ture is that EC algorithms are not yet fully sup-
ported in newer cards (⩾3.0.1), as, for instance, only
around 70% of these cards expose EC key lengths
of at least 256 bits. Moreover, only a hashed ver-
sion of the Diffie-Hellman Key Agreement protocol
(IEEE P1363) is frequently available, while imple-
mentations outputting both plain coordinates are only
sparsely available (except for the newest JC API 3.0.5
cards). No card with mode for authenticated encryp-
tion (CCS, GCM) was encountered. Finally, manu-
facturers implement all classic hashing functions such
as SHA-1, SHA-2 (256-bit), and RIPEMD-160, while
support for the insecure MD5 seems to be phased out
in the newer cards. The support for SHA-2 (512-bits)
is common in newer cards, but no tested card yet sup-
ports SHA-3.

Additionally, the full-text search performed
on all issued Common Criteria certificates
(Common Criteria, 2017) for JavaCard-relevant
keywords shows that the first card with JC API 2.1
was certified in 1999. A total of 29 certificates were
issued for cards with JC API 2.2.2, with the first one
certified in the year 2009. JC API 3.0.4 is now the
dominant version with 19 active certificates. The
first card with JC API 3.0.5 was certified in 2018,
with a total of 4 certificates. No card with JC API
3.1 was certified to date. Performance of operations
and support for higher JavaCard API is typically
correlated, as can be seen in Figure 4.

Table 1: The level of support for algorithms specified in JavaCard API. For a given feature, the version column specifies
the JavaCard specification that defined it first, while the subsequent columns show its availability in cards reporting particular
supported version via the JCSystem.getVersion() method and maximally supported version of the javacard.framework pack-
age. Results for smartcards with an unknown version were not included.

Feature First in JC ⩽ 2.2.1 JC 2.2.2 JC 3.0.1/2 JC 3.0.4 JC 3.0.5
version (21 cards) (26 cards) (12 cards) (29 cards) (11 cards)

Truly random number generator

TRNG (ALG SECURE RANDOM) ⩽ 2.1 100% 100% 100% 100% 100%

Block ciphers used for encryption or MAC

DES (ALG DES CBC NOPAD) ⩽ 2.1 100% 100% 100% 100% 100%

AES (ALG AES BLOCK 128 CBC NOPAD) 2.2.0 52% 96% 100% 100% 100%

KOREAN SEED (ALG KOREAN SEED CBC NOPAD) 2.2.2 5% 62% 75% 34% 0%

Public-key algorithms based on modular arithmetic

1024-bit RSA (ALG RSA(CRT) LENGTH RSA 1024) ⩽ 2.1 76% 96% 100% 93% 82%

2048-bit RSA (ALG RSA(CRT) LENGTH RSA 2048) ⩽ 2.1 67% 96% 100% 93% 82%

4096-bit RSA (ALG RSA(CRT) LENGTH RSA 4096) 3.0.1 0% 0% 0% 3% 0%

1024-bit DSA (ALG DSA LENGTH DSA 1024) ⩽ 2.1 5% 8% 8% 10% 0%

Public-key algorithms based on elliptic curves

192-bit ECC (ALG EC FP LENGTH EC FP 192) 2.2.1 5% 62% 83% 66% 82%

256-bit ECC (ALG EC FP LENGTH EC FP 256) 3.0.1 0% 50% 75% 66% 82%

384-bit ECC (ALG EC FP LENGTH EC FP 384) 3.0.1 0% 12% 17% 62% 82%

521-bit ECC (ALG EC FP LENGTH EC FP 521) 3.0.4 0% 4% 8% 45% 82%

ECDSA SHA-1 (ALG ECDSA SHA) 2.2.0 24% 84% 100% 69% 82%

ECDSA SHA-2 (ALG ECDSA SHA 256) 3.0.1 5% 12% 100% 69% 82%

ECDH IEEE P1363 (ALG EC SVDP DH) 2.2.1 29% 81% 100% 69% 82%

IEEE P1363 plain coord. X (ALG EC SVDP DH PLAIN) 3.0.1 5% 4% 67% 48% 82%

IEEE P1363 plain c. X,Y (ALG EC SVDP DH PLAIN XY) 3.0.5 0% 0% 0% 17% 82%

Modes of operation and padding modes

ECB, CBC modes ⩽ 2.1 100% 100% 100% 100% 100%

CCM, GCM modes (CIPHER AES CCM, CIPHER AES GCM) 3.0.5 0% 0% 0% 0% 0%

PKCS1, NOPAD padding ⩽ 2.1 95% 100% 100% 100% 100%

PKCS1 OAEP scheme (ALG RSA PKCS1 OAEP) ⩽ 2.1 14% 31% 8% 41% 82%

PKCS1 PSS sheme (ALG RSA SHA PKCS1 PSS) 3.0.1 14% 19% 83% 41% 100%

ISO14888 padding (ALG RSA ISO14888) ⩽ 2.1 14% 12% 8% 0% 0%

ISO9796 padding (ALG RSA SHA ISO9796) ⩽ 2.1 81% 100% 100% 86% 100%

ISO9797 padding (ALG DES MAC8 ISO9797 M1/M2) ⩽ 2.1 90% 100% 100% 100% 100%

Hash functions

MD5 (ALG MD5) ⩽ 2.1 90% 77% 92% 62% 0%

SHA-1 (ALG SHA) ⩽ 2.1 95% 100% 100% 100% 100%

SHA-256 (ALG SHA 256) 2.2.2 14% 88% 100% 97% 100%

SHA-512 (ALG SHA 512) 2.2.2 5% 23% 25% 90% 100%

SHA-3 (ALG SHA3 256) 3.0.5 0% 0% 0% 0% 0%

AES se
tK

ey
 (2

56
b)

AES25
6 e

nc
ryp

t (2
56

B)

RSA 10
24

 C
RT Enc

ryp
t

RSA 10
24

 Enc
ryp

t

RSA 20
48

 C
RT Enc

ryp
t

RSA 20
48

 Enc
ryp

t

RSA 51
2 C

RT Enc
ryp

t

SECURE_R
ANDOM (2

56
B)

SHA-1
ha

sh
(25

6B
)

SHA2-2
56

 ha
sh

(25
6B

)

0

20

40

60

80

JC API Version 2.2.1 2.2.2 3.0.1 3.0.2 3.0.4 3.0.5

Ti
m

e
of

 o
pe

ra
tio

n
(m

s)

Figure 4: Performance clusters of the most common cryp-
tographic operations that take less than 100 milliseconds to
execute. Every point corresponds to a single operation exe-
cuted on a particular card with a particular version of JavaC-
ard API. Only an example subset of all tested cards is shown
for clarity.

3.2 JavaCard packages support

In total, 40 cards were analyzed for the available
packages from JavaCard API up to JC API 3.0.5 us-
ing jcAIDScan module. While standard packages like
javacard.framework or javacardx.crypto are always
supported (in version corresponding to the card’s API
compliance), more specialized packages like javac-
ardx.biometry (11x), javacardx.framework.util.intx
(9x) javacardx.framework.math (4x) are supported
only in relatively small fraction of cards.

The jcAIDScan tool also test packages
from visa.openplatform and its successor
org.globalplatform. However, we have not yet
collected enough results to provide representative
statistics.

3.3 Card Production Life Cycle clusters

A total of 71 cards were recorded together with its
Card Production Life Cycle (CPLC) information. We
analyzed the available security certificates and other
public sources to obtain the mapping between the nu-
meric constants used and their human-readable titles
of manufacturers (ICFabricator), chip type (ICType),
and operating system (OperatingSystemID). In total,
we encountered:

• ICFabricator: Nine different chip fabricators:
Renesas (0003, 3060), Infineon (0005, 4090,
4830), Philips (2050), NXP (4070, 4790), At-
mel (4180), Samsung (4250), STMicro (5354),
Tongxin (008c) and one unidentified (4220).

• ICType: 45 different chip types with NXP and
Infineon responsible for the large majority of the

chips encountered. While NXP tends to manufac-
ture hardware chips together with the whole soft-
ware stack and market resulting cards under its
own brand, Infineon as a chip manufacturer pro-
vides not only complete cards sold under its brand
but more frequently provides chips to other ven-
dors.

• OperatingSystemID: 23 different codes for op-
erating systems with 52 sub-variants.

We also analyzed the current market situation with
respect to existing vendors after various company
mergers and visualized the resulting aggregate ac-
cordingly. For example, the Gemalto cluster is ag-
gregating not only cards produced under the Gemalto
brand, but also for Gemplus, Axalto and Schlumberger
(now inactive) brands. The full visualization and ad-
ditional artifacts are available4.

4 Related work

Many papers are investigating the JavaCard platform,
with the great majority of them examining its se-
curity from either the software perspective (Besson
et al., 2014; Farhadi and Lanet, 2017; Lancia and
Bouffard, 2016; Laugier and Razafindralambo, 2015;
Volokitin and Poll, 2016) or the hardware one (Barbu
et al., 2010; Kasmi et al., 2015; Kocher et al., 1999;
Vermoen et al., 2007). A smaller number of works
focus on performance and capabilities. The per-
formance of basic cryptographic primitives on three
programmable smartcard platforms (JavaCard, .NET,
and MultOS) is examined in (Hajny et al., 2014),
but focused only small subset of operations required
for computation of group signatures. (Bernabé and
Clarke, 2013) study RSA performance in JavaCards
with a focus on predicting the operation run-time of
RSA-4096 functions. The MESURE project (Bouze-
frane et al., 2008), founded by the French government
and started in 2006, produced a complex benchmark-
ing framework. Exact timing measurements were
not published, only an aggregate score for each card,
likely due to nuances of the performance compar-
ison. Faster computation may also result in less
secure implementations (Nemec et al., 2017; Jan-
car et al., 2020). The open-source GlobalPlatform-
Pro tool by M. Paljak (Martin Paljak, 2020) provides
human-readable output for CPLC data retrieved from
a connected smartcard. The open database of commu-
nity collected mappings between ATR and card name
is maintained (Ludovic Rousseau, 2009).

4https://crocs.fi.muni.cz/papers/jcalgtest secrypt22

5 Conclusions

We proposed an improved certification procedure
with additional artifacts collected by evaluation facili-
ties during the certification process using open-source
tools, later verifiable by end-users without need for
specialized knowledge or privileged access to smart-
card hardware specification or software source code
(black-box testing). To support this vision, we devel-
oped a suite of open tools for the collection of meta-
data, functionality, and performance parameters, and
specific properties of generated cryptographic keys by
the tested cards.

We also continuously maintained the largest open
database with the respective results using a combi-
nation of cards from our laboratory and provided by
community effort, totaling more than 100 cards. Such
a database not only provides insight into the ecosys-
tem of cryptographic smartcards spanning over al-
most two decades but also makes the results for com-
mon smartcards accessible – providing data for end-
user verification may be included in the certification
process.

Acknowledgement: P. Svenda and A. Dufka were
supported by Ai-SecTools (VJ02010010) project.
Earlier support for JCAlgTest project was provided by
the European cybersecurity pilot CyberSec4Europe.

REFERENCES

Barbu, G., Thiebeauld, H., and Guerin, V. (2010). At-
tacks on java card 3.0 combining fault and logical at-
tacks. Smart Card Research and Advanced Applica-
tion, pages 148–163.

Bernabé, G. and Clarke, N. (2013). Study of RSA per-
formance in Java Cards. Advances in Communica-
tions, Computing, Networks and Security Volume 10,
page 45.

Besson, F., Jensen, T., and Vittet, P. (2014). Sawjacard:
a static analysis tool for certifying Java Card appli-
cations. In International Static Analysis Symposium,
pages 51–67. Springer.

Bouzefrane, S., Cordry, J., and Paradinas, P. (2008).
A methodology for testing Java Card performance.
In CFSE’08 Conférence Française en Systèmes
d’Exploitation, Suisse.

Farhadi, M. and Lanet, J.-L. (2017). Chronicle of a Java
Card death. Journal of Computer Virology and Hack-
ing Techniques, 13(2):109–123.

Hajny, J., Malina, L., Martinasek, Z., and Tethal, O.
(2014). Performance evaluation of primitives for
privacy-enhancing cryptography on current smart-
cards and smart-phones. In Data Privacy Manage-
ment and Autonomous Spontaneous Security, pages
17–33. Springer.

ISO (2013). ISO/IEC 7816-4:2013 - identification cards –
integrated circuit cards – part 4: Organization, secu-
rity and commands for interchange. International Or-
ganization for Standardization.

Jancar, J., Sedlacek, V., Svenda, P., and Sys, M. (2020).
Minerva: The curse of ECDSA nonces. IACR Trans-
actions on Cryptographic Hardware and Embedded
Systems, 2020(4):281–308.

Kasmi, M. A., Azizi, M., and Lanet, J.-L. (2015). Side
channel analysis techniques towards a methodology
for reverse engineering of Java Card byte-code. In
Information Assurance and Security (IAS), 2015 11th
International Conference on, pages 104–110. IEEE.

Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power
analysis. In Advances in Cryptology—CRYPTO’99,
pages 388–397. Springer.

Lancia, J. and Bouffard, G. (2016). Fuzzing and over-
flows in Java Card smart cards. In SSTIC Conference,
Rennes, France.

Laugier, B. and Razafindralambo, T. (2015). Misuse of
frame creation to exploit stack underflow attacks on
java card. In International Conference on Smart Card
Research and Advanced Applications, pages 89–104.
Springer.

Common Criteria (2017). Common Criteria for
information technology security evaluation,
version 3.1, revision 5, ccmb-2017-04-001.
https://www.commoncriteriaportal.org/files/ccfiles/
CCPART1V3.1R5.pdf.

Common Criteria (2020). Certified products list -
statistics (retrieved 2022-04-11). https://www.
commoncriteriaportal.org/products/stats/.

Ludovic Rousseau (2009). Smart card ATR parsing (re-
trieved 2022-04-11). https://smartcard-atr.apdu.fr/.

Martin Paljak (2020). GlobalPlatformPro v20.01.23. https:
//github.com/martinpaljak/GlobalPlatformPro.

Oracle (2015). Java Card 3.0.5 platform specification. https:
//docs.oracle.com/javacard/3.0.5/index.html.

Nemec, M., Sys, M., Svenda, P., Klinec, D., and Matyas, V.
(2017). The return of Coppersmith’s attack: Practical
factorization of widely used RSA moduli. In ACM
CCS 2017, CCS ’17, pages 1631–1648, New York,
NY, USA. ACM.

Svenda, P., Nemec, M., Sekan, P., Kvasnovsky, R., For-
manek, D., Komarek, D., and Matyas, V. (2016).
The million-key question – investigating the origins of
RSA public keys. In The 25th USENIX Security Sym-
posium (UsenixSec’2016), pages 893–910. USENIX.

NIST (2014). Validated FIPS 140-1 and FIPS 140-2 cryp-
tographic modules. http://csrc.nist.gov/groups/STM/
cmvp/documents/140-1/140val-all.htm.

Vermoen, D., Witteman, M., and Gaydadjiev, G. (2007).
Reverse engineering java card applets using power
analysis. Information Security Theory and Practices.
Smart Cards, Mobile and Ubiquitous Computing Sys-
tems, pages 138–149.

Volokitin, S. and Poll, E. (2016). Logical attacks on secured
containers of the java card platform. In International
Conference on Smart Card Research and Advanced
Applications, pages 122–136. Springer.

https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/products/stats/
https://www.commoncriteriaportal.org/products/stats/
https://smartcard-atr.apdu.fr/
https://github.com/martinpaljak/GlobalPlatformPro
https://github.com/martinpaljak/GlobalPlatformPro
https://docs.oracle.com/javacard/3.0.5/index.html
https://docs.oracle.com/javacard/3.0.5/index.html
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm

