
https://crocs.fi.muni.cz @CRoCS_MUNI

Fooling primality tests on smartcards

Vladimir Sedlacek12, Jan Jancar1, and Petr Svenda1

1 Centre for Research on Cryptography and Security, Masaryk University
2 Ca’ Foscari University of Venice

Testing blackbox devices for insecure (EC)DH/(EC)DSA

domain parameters validation

https://crocs.fi.muni.cz @CRoCS_MUNI

1995

Some motivation

• Some parameters in (EC)DH/(EC)DSA need to be prime
– If not, private key can often be recovered via Pohlig-Hellman attack [1]

• Classical primality tests (Miller-Rabin, [2]) are probabilistic
– There exist false negatives (“pseudoprimes”)

– The construction method of pseudoprimes is already known (Arnault, F. [3])

• Weak implementations of Miller-Rabin test can be fooled
– Such attacks have already been demonstrated in the white-box setting [4][5]

2 Fooling primality tests on smartcards, ESORICS'20, 14.9.2020

1978

2008 2018

https://crocs.fi.muni.cz @CRoCS_MUNI

Fooling Miller-Rabin randomness test

1. Analyze code for the parameters used in Miller-Rabin

• Witnesses / bases used in every round

2. Construct pseudoprime(s) using Arnault’s method

3. Submit composite number for primality verification

• (If accepted, compute factorization / discrete log due to composite parameter)

3

public static boolean passEulerCriterion(BigInteger w) {
// ... GNU Crypto 1.1.0

for (int i = j; i < 13; i++) { // try only the first 13 primes

A = SMALL_PRIME[i];
A = A.modPow(e, w);
if (A.bitCount() == 1) {
continue; // Passed this test

}
// ...

3 Fooling primality tests on smartcards, ESORICS'20, 14.9.2020

2008

Witnesses
Pseudoprime

P-H attack

Defenses:

• Miller-Rabin with random bases

• Baillie-PSW primality test

https://crocs.fi.muni.cz @CRoCS_MUNI

So we can now assess “all” primality

testing implementations to be

correctly implemented, right?

for whitebox implementations

4

for blackbox ones

https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard-based crypto smartcards

• Small attack surface – more likely secure

– Frequently certified - 38% of all active CC certificates

– Frequently to high levels (EAL5+, EAL6+)

• JavaCard is currently the dominant “open” platform for crypto smartcards

– On-card applications (applets) are compiled into JavaCard bytecode and executed by JavaCard VM

• Public API defined by Java Card Forum

– Applets are (somewhat) portable between cards of different vendors

– E.g., ECC requires setting curve params before calling KeyPair.genKeyPair()

– ECKey.setA(),.setB(),.setFieldFP(),.setG(),.setR(),.setK()…

• API methods are implemented by specific card vendor (Infineon, G&D…)

– Source code of implementation is not available (=> blackbox scenario)

– Primality testing is implemented here

5 Fooling primality tests on smartcards, ESORICS'20, 14.9.2020

E
x
tr

a
c
te

d
 f
ro

m

h
tt

p
s
:/

/w
w

w
.c

o
m

m
o

n
c
ri
te

ri
a

p
o
rt

a
l.
o
rg2020-07-17

Smartcard hardware

Vendor-specific OS

Java Card Virtual Machine

Java Card API

Applet 1 Applet 2 …

https://www.commoncriteriaportal.org/

https://crocs.fi.muni.cz @CRoCS_MUNI

Is primality testing correctly implemented and used?

1. Is primality testing correctly implemented?

– We know it must be implemented (at least for RSA keypair generation)

– There is no isPrime() method in public JavaCard API!

2. Is primality testing used where it should be?

– Recall: missing test for primality may lead to private key recovery [1]

• Idea: We must trigger primality testing somehow indirectly

– public:some_method() → private:isPrime_method() → result

– call ECKey.setFieldFP(pseudoprime) and expect error

• Problem: card can reject the parameters for other reasons

– Not recognizable from the error returned (false negatives)

6 Fooling primality tests on smartcards, ESORICS'20, 14.9.2020

https://crocs.fi.muni.cz @CRoCS_MUNI

Our contributions

• Systematic methodology for primality tests analysis of black-box device or lib

• New methods for generation of (EC)DH/(EC)DSA-compliant composite

numbers and pseudoprimes (based on Arnault’s method)

– p in DH/DSA (cardinality of multiplicative group)

– q in DH/DSA (order of generator)

– n in ECDH/ECDSA (order of generator)

– p in ECDH/ECDSA (cardinality of base field)

• New mathematical attack against ECDSA with composite p field

– Reduce DLP over a big „curve“ to easier DLPs over smaller curves, via EC-version of CRT

• Practical verification on smartcards from major vendors

• Open-source testing toolkit, generated composites and detailed results

released https://crocs.fi.muni.cz/papers/primality_esorics20
7 Fooling primality tests on smartcards, ESORICS'20, 14.9.2020

Various number of factors and smoothness level

Bit-sizes: 160,192,224,256,384,512,521,1024

https://crocs.fi.muni.cz @CRoCS_MUNI

Basic testing setup

1. Construct pseudoprimes and other composites (relatively easy)

2. Generate (EC)DH/(EC)DSA parameters utilizing the above

– seconds to minutes, but some time-expensive (weeks of precomputation)

3. Try to trigger primality test indirectly with composite parameters

– E.g., ECKey.setFieldFP() then KeyPair.genKeyPair()

4. Observe resulting behavior (error, response time, muted card…)

5. Repeat experiment 100x with different inputs, each input 10x

– To capture rarer or non-deterministic behaviour

6. (Verify that attack works where composites were accepted)

8 Fooling primality tests on smartcards, ESORICS'20, 14.9.2020

https://crocs.fi.muni.cz @CRoCS_MUNI

ECKey.setFieldFP()

10 Fooling primality tests on smartcards, ESORICS'20, 14.9.2020

ILLEGAL_VALUE is desired

error when composite

number is provided

OK means completed operation

with no error

Vulnerable if composite is used

ECDSA results

CYC/EXC/MUT means cycling,

execution error or muted card –

insufficient check but no

vulnerable signature output

ECKey.setR()

Note: Complete table with all results for all combinations available at https://crocs.fi.muni.cz/papers/primality_esorics20

https://crocs.fi.muni.cz @CRoCS_MUNI

Results discussion

• (Issues were responsibly disclosed to affected vendors during Summer 2019)

• Most of the cards do not test primality at all

– Likely exception is Athena IDProtect

• Some composite parameters cause other errors than ILLEGAL_VALUE,

runtime exception, cycling or muted card

– Likely due to later failure during broken assumption in computation

• Issue cannot be patched for already deployed cards (code is in ROM)

• Applet itself cannot perform on-card primality check

– no “isPrime()” method in API, custom implementation of primality testing costly

– Must trust supplier of parameters (fault attacks, MitM, no defense in depth)

• Lack of proper domain testing is removing one layer of defense

11 Fooling primality tests on smartcards, ESORICS'20, 14.9.2020

https://crocs.fi.muni.cz @CRoCS_MUNI

Impact – where is it relevant?

• An attacker needs to “trick” applet to call method settings with

composite domain parameters

• Domain parameters are sometimes sent and set dynamically

– TLS, up to version 1.2 and prior to RFC8422, allowed explicit (EC)DH

parameters to be sent from the server to the client

– The X.509 certificate format allows public keys to hold full domain parameters

for (EC)DH or (EC)DSA

– ICAO document 9303 (ePassport) allows transmitting the (EC)DH domain

parameters in the Chip Authentication and PACE protocols

• Fault induction attack on buffer holding domain parameters

12 Fooling primality tests on smartcards, ESORICS'20, 14.9.2020

https://crocs.fi.muni.cz @CRoCS_MUNI

Recommendations

1. Require full domain parameter validation including primality tests of

prime parameters

– For example as specified in ANSI X9.62 and IEEE P1363

2. Use strong primality tests with no known accepted pseudoprimes

– Miller-Rabin with random bases or Baillie-PSW primality tests

3. Add/speedup adoption of API that initializes via set of named curves

– Is already part of JavaCard 3.1 specs (javacard.security.NamedParameterSpec)

– But will take long before supported by majority of cards

4. Add a primality test to the public API (isPrime())

– PrimalityTestParamSpec is already part of JavaCard 3.1, but not direct test

14 Fooling primality tests on smartcards, ESORICS'20, 14.9.2020

https://crocs.fi.muni.cz @CRoCS_MUNI

Conclusions

• Primality testing based on Miller-Rabin algorithm can be fooled (known)

• New method for (EC)DH/(EC)DSA-compliant pseudoprimes proposed

– Extensive testing of cards by major vendors

– Result: primality of ECC parameters mostly not tested by current smartcards => vulnerable

• Hard to fix for already deployed smartcards (library code in ROM)

– Applet itself cannot perform primality check on-card (no “isPrime()” method in public

API), custom implementation of primality testing costly

– Must trust supplier of parameters (MitM, fault attacks, no defense in depths)

• Perform proper domain params validation, utilize strong primality testing

algorithms, use named curves

15 Fooling primality tests on smartcards, ESORICS'20, 14.9.2020

Questions

https://crocs.fi.muni.cz @CRoCS_MUNI

References

[1] Pohlig, S., and Hellman, M.: An Improved Algorithm for Computing Logarithms over GF(p) and Its

Cryptographic Significance. IEEE Transactions on Information Theory 24(1), 106–110 (1978). doi:

10.1109/TIT.1978.1055817

[2] Miller, G.L.: Riemann’s Hypothesis and Tests for Primality. In: Proceedings of the Seventh Annual ACM

Symposium on Theory of Computing. STOC ’75, pp. 234–239. ACM, Albuquerque, New Mexico, USA

(1975). doi: 10.1145/800116.803773

[3] Arnault, F.: Rabin-Miller primality test: composite numbers which pass it. Mathematics of Computation

64(209), 355–361 (1995). doi: 10.1090/S0025-5718-1995-1260124-2

[4] Bleichenbacher, D.: Breaking a Cryptographic Protocol with Pseudoprimes. In: Public Key Cryptography -

PKC 2005, 8th International Workshop on Theory and Practice in Public Key Cryptography, Les Diablerets,

Switzerland, January 23-26, 2005, Proceedings, pp. 9–15 (2005). doi: 10.1007/978-3-540-30580-4_2

[5] Albrecht, M.R., Massimo, J., Paterson, K.G., and Somorovsky, J.: Prime and Prejudice: Primality Testing

Under Adversarial Conditions. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, pp. 281–298. ACM, New York, NY, USA (2018). doi: 10.1145/3243734.3243787

1616
Fooling primality tests on smartcards, ESORICS'20, 14.9.2020

https://crocs.fi.muni.cz @CRoCS_MUNI17 Fooling primality tests on smartcards, ESORICS'20,

14.9.2020

