
Architecture Considerations for Massively
Parallel Hardware Security Platform

Building a Workhorse for Cryptography as a Service

Dan Cvrček1 and Petr Švenda2

dan@enigmabridge.com svenda@fi.muni.cz

1 Enigma Bridge, Cambridge, Great Britain
2 Masaryk University, Faculty of Informatics, Czech Republic

Abstract. Cryptography as a service (CaaS) provides means for exe-
cuting sensitive cryptographic operations when the primary computing
platform does not offer the required level of trust and security. Instead
of executing operations like document signing directly by an application
running in untrusted environment, the operation keys are only present in
trusted environment used by CaaS. Once the operation keys are put in
place, the applications use a CaaS interface to obtain results of sensitive
operations - document signatures - executed by CaaS. A typical scenario
is the use of virtual computing platform in the cloud. Use of CaaS re-
duces impact of the potential compromise of this virtual platform and
simplifies subsequent recovery. The attacker will not learn the value of
sensitive keys (e.g., signing keys) and is only able to use the keys for a
limited time. The CaaS is enabling technology for a large number of use
cases where security is important. The concept of scalable and univer-
sally available CaaS has also far-reaching usability, security, legal, and
economics consequences of cloud use. In this position paper, we focus on
requirements for building a CaaS platform – what are the options and
challenges to build hardware and software components for CaaS suitable
for usage scenarios with different load patterns and user requirements.
We propose a suitable architecture for CaaS that can be shared by a large
number of concurrent users, i.e., providing access to a large number of
cryptographic keys. We also provide practical results from our prototype
implementation3.

1 Introduction

There is a strong demand for a secure cryptographic platform for the cloud and
mobile computing to support a variety of sensitive applications. When used in
large scale distributed environments, one of the options is to provide crypto-
graphic operations as a service (CaaS) instead of implementing sensitive com-
putations on end-user device. There are several advantages of this approach,

3 Full details and paper’s supplementary material can be found at
http://crcs.cz/papers/space2015.

as recognized in [17], particularly, end-user device might be more vulnerable to
compromise or lack of entropy source for key generation.

When CaaS is discussed in research literature, performance considerations
are often omitted or neglected. One of such assumptions is that when a CaaS
provider is fully trusted by users, it can have unlimited access to cryptographic
keys. This assumption allows the provider easy scaling of computation power
for cryptographic operations, as there are no security constraints. But the per-
formance becomes quickly an issue when the CaaS provider is untrusted - it
can execute cryptographic operations, but it cannot access keys directly and it
becomes subject of constraints introduced by the API providing access to keys.
Execution of sensitive operations is in this case provided by a specialized trusted
hardware module (HSM) that ensures the cryptographic material cannot be ac-
cessed directly. Current HSMs provide reasonable computational performance
for closed, centralized systems (high-end HSMs can perform up to 9,000 RSA
1024b signatures per second) under certain conditions. But implementing scal-
able CaaS supporting a range of operations and concurrent use of a large number
of keys of CaaS users poses a number of challenges.

So far, high-performance cryptographic hardware platform, providing high
level of shareability was not discussed in details in research literature. In this
work, we summarize existing challenges and introduce open research questions
for alternative architectures capable to host a large number of applications, cryp-
tographic material and concurrent users. Our paper provides considerations and
proposes a suitable architecture for CaaS supporting many users and many key
scenarios, architecture based on secure processors with protected between pro-
cessors. The experience obtained from building such a platform will also be
discussed.

The paper is organized as follows: The next section provides a short intro-
duction to cryptography as a service (CaaS) and defines main usage scenarios
with related requirements on the high-performance cloud-based CaaS platform.
Section 3 reviews different hardware options available and challenges present
to provide high-performance trustworthy computation CaaS platform. The pro-
posed architecture using high number of parallel secure processors connected
with secure channels is described. Section 4 presents case-study of HMAC-based
one-time password provided via proposed architecture together with practical re-
sults from prototype build. Possible future directions are summarized in Section
5 with conclusions given in Section 6.

2 Cryptography as a Service (CaaS)

Information systems face many security threats. Some of them are almost uni-
versal and all systems and business applications have to deal with them, some
are specific. Every designer has to assess risks of their existing or new application
and consider methods to mitigate those risks.

Running applications in the cloud introduces a number of universal threats
that one does not have to think about while he/she runs their applications

from own servers. All those new threats are related to the fact that the cloud
introduces new entities into the system model of cloud applications - the cloud
provider.

Threat modelling is is a subject on its own (refer to [6] for foundations of
cloud security) but we need to introduce some initial assumptions that we use
below for reasoning about security of CaaS and definitions of security levels. Our
initial classification is based on system components.
The list of components is as follows:

Application – the software application providing beneficial functionality for
Client.

Application Owner – an entity that develops the application itself and is re-
sponsible for its correct operation. In many cases the application owner will
be the client of the application as well.

Client – user of the application; when client is different from application owner
the client would expect the application to provide certain business function-
ality. Security aspects may be still an issue though as secure processing and
storage of data is hard to verify through the business functionality provided
by the application.

CaaS Provider – an entity that provides functionality of CaaS including support
and management of CaaS, e.g., system updates. While CaaS provider would
be typically independent of Cloud Provider but it may be Application Owner.

Cloud Provider – the entity that controls the physical platform on which the
application runs. The platform has several layers of components with each
layer potentially provided a different entity.

Internet – communication between entities of the system (e.g., via web services
API).

2.1 Levels of trust and security

We are able to define the following levels of trust for CaaS – using a system
architecture with components defined in the previous section. Let us first assume
different levels of trust in CaaS.

– Client Trust – users may or may not trust CaaS provider directly. The trust,
if it exists, may be complete or based on an assumption of split control
between CaaS provider and Application Owner – an assumption that data
of Client can only be compromised if both parties cooperate. Based on our
empirical experience, CaaS should be trusted more than Application Owner
as CaaS would provide security as its main business and as such have more
expertise needed for implementing security measures correctly.

– Application Owner Trust – if Application Owner trusts CaaS, it can use
its relationship with Clients to leverage own trust in CaaS for persuading
Clients that the use of CaaS increases the security of their data.

– Cloud Provider Trust – from practical point of view it is irrelevant whether
Cloud Provider trusts or distrusts CaaS. It has, however, means to disable
access to CaaS from applications using its platform.

Use of CaaS can be either enforced by compliance requirements or by concerns
of Clients. The former will require Application Owner Trust that may be based
on external validations of CaaS. Such validations would have to be sufficient for
compliance. Concerns of Clients may either prompt Application Owner to use
CaaS or find a way to use CaaS on top of the application.
In terms of dataflows, Client may trust parts of dataflows involving its data:

– Client – computers and/or networks under the control of Client.
– CaaS – systems that implement cryptographic functions for an application

must be trusted by Client and usually by Application Owner as well.
– Application Owner – trust in systems of Application Owner would be limited

– either by Clients or even by Application Owner itself.
– Internet – it is generally untrusted; it is possible to relax requirements on

data protection only if the data itself are not confidential or Client’s security
requirements allow for some security properties to be ignored.

The trust balance between Client systems and CaaS is important in terms
of the CaaS setup for Application. In general, we can assume that CaaS will
provide full life-cycle support for applications but Client may decide not to fully
trust CaaS and keep some aspects of cryptography under its own control.

If Client trusts its computers and/or information systems, it can use it for
enrolment or other bootstrapping operations that are otherwise manageable for
it information systems. A generation of application keys may be one of such
examples.

2.2 Usage scenarios

The typical usage scenario influences significantly properties required for a CaaS
platform as well as imposing restrictions and limitations of the hardware/software
architecture behind the CaaS platform. We will discuss possible usage scenarios
with respect to a number of parallel users and a number of distinct cryptographic
keys used by every user. Note that other classifications are possible, e.g., w.r.t.
the amount of transmitted data (short packets vs. long data streams), number of
messages to finalize a single logical operation (e.g., decryption of single packet
vs. multi-packet challenge-response protocol) or list of required cryptographic
algorithms to name a few. We choose a number of users, and distinct keys be-
cause these factors are the most specific for situation where a CaaS platform is
significantly shared between a number of different entities – a typical “cloud”
scenario that already proved its viability for general purpose computing (but we
will not limit our description only to such scenario).

Note that in the following classification, we will talk about a service rather
than a CaaS platform, as some categories would not classify as CaaS as com-
monly defined, but make sense to list them because of distinct features and
security/performance considerations introduced.

We also use count quantifiers 1, few (M) and many (N) to describe concept
categories, e.g., many users or a few keys per user as different hardware devices

used to facilitate service are capable to store and handle different numbers of
cryptographic contexts of a particular type (e.g., AES or RSA). When more
contexts than a device is able to hold internally are required, contexts must
be offloaded from device when not used and load in again later, introducing
potential delay and additional requirements like the need for out-of-device secure
storage or key wrapping. A provider of a service can utilize more hardware
devices to linearly increase the number of contexts that can be maintained at
the same time. When we use many keyword, its strictly more than number of
contexts that can be fit into available hardware device(s).

S1: One user, few keys (1:M) – no sharing of the target service, as only a
single user with a single key (or very few keys) is using it. Because of exclusive
use and a small number of keys, there is no need to switch cryptographic con-
texts (pre-scheduled keys, initialized cryptographic engines...) before serving
a new request and the whole cryptographic context can reside directly inside
a service computational device(s). There is little need for CaaS to provide
scalability, while secure remote access, use in virtualized environments and
suitable API (e.g., application oriented rather than low-level PKCS#11) re-
quirements remain. Example: a payment card physically owned by the user
with a payment authentication key or an HTTPS TLS accelerator with one
private key.

S2: One user, many keys (1:N) - this use case does not require service shar-
ing, but it does imply frequent changes of cryptographic contexts because of
a high number of keys involved. If the number of used keys is significantly
higher than the number of contexts that can fit into the underlying hardware,
then cryptographic contexts may need to be changed even with every request.
Context loading, cryptographic engine initialization and key scheduling may
significantly contribute to the overall time required to complete a requested
operation. Subsequent performance degradation with the factor of 2-5 is well
known from benchmarks for encryption throughput measuring the effects of
varying message length (bulk encryption vs. small messages). The perfor-
mance degradation is even more severe in the case of secure switching of
cryptographic contexts between the secure processor and untrusted mem-
ory. Use considerations of CaaS are similar to the 1:M scenario. However, as
the higher number of keys amplifies generic key management issues, CaaS
may offer better overall usability. Example: PIN verification procedure per-
formed inside an HSM on behalf of card issuing bank.

S3: Few users, few keys (M:M) – limited sharing of the target service while
every user uses only a few keys. This is the first use case where service’s com-
putational devices are shared by mutually distrusting users. An additional
overhead is introduced due to a need to securely erase sensitive values before
the context switch between users may occur. As only few keys exist in the
system overall, there is no need to offload cryptographic contexts. Example:
Amazon CloudHSM [4] where a small number of users (e.g., 16) is sharing
same physical hardware device performing cryptographic operations.

S4: Few users, many keys (M:N) - an extension of S3: Few users, few keys
(M:M) scenario with a need to perform cryptographic context offload due to
a high number of used keys. As only a few users are present, secure offload can
be done relatively quickly as wrapping and unwrapping engines on service
devices can be left initialized and ready to process next request at all times.

S5: Many users, many keys (N:N) – CaaS service serves many users, each
of them with few keys, resulting in many keys in total. High-level of sharing
of hardware resources of service. Includes also scenarios where primary keys
from many users are used to derive and use new (session) keys based on a user
input. Example: TLS accelerator with different session keys established for
every different user after an initial TLS handshake with the server’s private
key. Note that number of keys can be further amplified if TLS accelerator is
shared as CaaS service between multiple web servers with different private
keys. See Section 4 for details of another example providing HMAC-based
one-time password verification.

2.3 Typical operations needed for CaaS

Although many different algorithms and protocols can be implemented and pro-
vided by CaaS, we can identify a short list of common generic operations:

1. Generate/derive new key – new key K (symmetric, asymmetric or other
secret) is generated by CaaS service. The key then either never leaves the
CaaS service (analogy with on-card non-exportable private key for digital
signatures) or alternatively can be exported back to the Client (e.g., in en-
crypted blob).

2. Import new key – Client provides a key K to be imported and later used
by CaaS. Transfer of a key K can be protected for confidentiality, integrity
and freshness.

3. Process input data – Client provides input data M , processed inside
a CaaS service by a key K and cryptographic algorithm F , where C =
F (M,K). Input data M and output data C (returned to a Client) may be
protected for confidentiality, integrity and freshness.

4. Obtain usage statistics – how many times was a particular key K used?
Requires authorization of process input data requests and protection of usage
data.

5. Remove key from service – when Client doesn’t need to use the key
K any more, key is removed. Key removal might be on a Client request,
automatic (time-limited exposure) or as a result of compliance requirements
(e.g., reset the device at least once every 24 hours if it contains Client’s keys)

2.4 Preferred properties of cloud-based high-performance CaaS

There is no single unified CaaS architecture which would ideally fit all scenar-
ios described in Section 2.2. In this paper, we focus on scenario S5: Many users,

many keys as we believe this scenario is difficult to support with current technol-
ogy on a sufficient level of security. We believe that the most important principles
for a secure and scalable CaaS platform are as follows:

P1: Untrusted CaaS provider for handling of cryptographic secrets – if the
provider of CaaS doesn’t need to be trusted to preserve secrecy of crypto-
graphic material, the attack surface is significantly reduced (highlight for the
Client). Provider itself will not be subject of internal and external attacks
due to its low impact on CaaS security (highlight for provider). Some sys-
tem designs require to trust only provider with physical access to CaaS as
they mitigate threats of corrupted operator with only logical access [5]. If
operator can’t compromise security of CaaS and its cryptographic material,
we can achieve higher level of overall security. Note that this principle is
also beneficial for CaaS provider as it decrease its attractivity as a target for
compromise.

P2: Easy to use API – because platform will be used as a service, a well-
defined and simple interface is vital for fast adoption. Care should be taken
to provide API not only easy to integrate, but also easy to use securely [8].

P3: Secure import of cryptographic material – secure way to import ini-
tial cryptographic material is required in majority of use case scenarios.
Even when a key is generated directly inside the CaaS service as a result of
Client request, additional shared keys are usually required to authenticate
subsequent process input requests.

P4: Low latency of responses in the presence of many requests from many
parallel user – as a platform will be significantly shared, low latency should
not deteriorate even when many parallel requests are served. The tolerable
latency range is specific to the particular usage scenario and in turn affects
limits on the sharing of a given platform.

P5: High performance in the presence of frequent key change – signif-
icant level of sharing between many users, everyone with potentially distinct
cryptographic keys introduces a high number of expected key scheduling be-
fore request can be processed. In an extreme (but not uncommon) scenario,
every request may cause initialization and key scheduling of several crypto-
graphic engines. Overall platform performance is expected to decrease with
more users/requests scale reasonably.

P6: Authentication of input/output requests – once cryptographic mate-
rial is (securely) imported into a CaaS platform, actual use of the imported
key should be authorized by the Client and performed only on data pro-
vided by authorized Client. Verification of authorization itself should not
significantly impact platform performance. Usually achieved by requests au-
thorization by separate shared request authorization keys (commonly called
“API keys”). An output data provided by service back to the Client should
be authenticated as well to provide strong assurance that Client’s original
request was really processed by the imported key.

P7: Confidentiality of input and output data – if sensitive data are trans-
mitted as part of request and corresponding response, confidentiality should
be protected (again, “API keys” can be used).

P8: Easy recovery from client-side compromise – as Client can be com-
promised with the assumption that the key imported to CaaS was not, pro-
cedure to recover from a compromise should be easy to perform (e.g., fresh
re-installation of client environment and transparent change of request au-
thorization keys with perfect forward secrecy property). Eventually, frequent
automatic recovery process can be executed as a preventive measure for un-
detected compromises.

P9: Robust audit trail of key usages – because CaaS is offered as a service,
pay-per-use model may be utilized and Client should be provided with robust
audit trail how often imported key was used. Another important reason for
audit trails steams from potential compromise of client software together
with authorization keys for requests. An attacker can then use an imported
key without a user’s consent. Once the compromise is detected, the user
might be interested in realizing an exact extend of service usage during the
compromise period.

P10: Limit on maximum key usages (before re-authorization) – once a key
is imported and request authorization keys are compromised, an attacker can
issue a large number of requests unless limited by another factor. To limit
an extend of expected malicious usages of imported key, a Client can import
key together with a number of “credits” limiting the maximum number of
requests which can be served by service. Again, the provider of the service
should not be able to manipulate with credits already used.

P11: Tolerance to occasional hardware/software failures – large level of
sharing and high number of requests will inevitably result in occasional fail-
ures of the platform components, which should not impact other parallel
users significantly. Natural requirement, but might be harder to achieve, if
CaaS provider is not trusted and thus cannot inspect the full results of oper-
ation for errors itself. Also, move of Client request from failed to functioning
device is more difficult if relevant contexts are cryptography bound to a
single device.

3 Building hardware for CaaS back-end

In this section, we will discuss various options for building hardware platform
which will satisfy principles described in Section 2.4. Different architectures are
discussed both from performance and security perspective with the focus on S5:
Many users, many keys scenario.

3.1 Designing CaaS

There are many ways how to build computational platform for CaaS. The fol-
lowing list shows some of the more obvious options:

1. Use of general-purpose hardware, e.g., high-performance multi-core server
processor and implementation of the required cryptographic functionality in
software. The advantage is fast development and deployment with existing
cryptographic libraries like OpenSSL [2] or cryptlib++ [1] and medium ex-
pected performance. The main disadvantage is need to trust CaaS provider

as all cryptographic secrets and input/output data are easily accessible in-
side the CaaS implementation. Note that the level of trust to provider with
logical-only access can be limited by a combination of virtualization and
trusted computing [5]. In this particular case, a modified Xen hypervisor is
used to make standard TPM available for secret-less virtual machine result-
ing in significant decrease in the size of trusted computational base (TCB).

2. Use of generic programable hardware (e.g., Field-programmable gate array
(FPGA) or Graphics processing unit (GPU)) with cryptographic operations
accelerated by programmable hardware with advantage of higher perfor-
mance. The disadvantage is increased difficulty of implementation and de-
ployment due to lower number of readily available cryptographic implemen-
tations. Note that GPU architectures like nVidia CUDA [3] provides top
throughput only when the same program (including data-dependent branch-
ing) is executed over multiple input data blocks in parallel. As selected cryp-
tographic operations are heavily data/key dependent (e.g., public-key algo-
rithms based on modular multiplication like RSA) performance gain may be
more difficult to achieve [11]. The need for trust to provider is still present
although more advanced skills may be required to extract cryptographic
secrets from less common architectures, possibly via side-channel attacks.
Additionally, a more complex architecture makes more difficult evaluation
of security assurances when a single device is shared by mutually distrusting
Clients.

3. Use of dedicated cryptographic circuits, e.g., application-specific integrated
circuit (ASIC) can provide very high performance implementation for se-
lected cryptographic algorithms. The disadvantage is a significant increase
in the cost of design and development if required circuits are not readily
available. High-speed cryptographic circuits were proposed and sometimes
built for brute-force cracking of algorithms with insufficient length of key of
used password like Copacobana (based on FPGA) [12]. Note that brute-force
cracking architectures are usually not designed to handle high input/output
traffic. If cryptographic circuit is not additionally protected, trust to provider
is still required.

4. Use of secure processors, e.g., cryptographic smart cards or hardware security
modules (HSM) can significantly limit level of trust put on CaaS provider.
HSMs are able to provide high performance for certain use-cases (see 2.2)
while providing good security for cryptographic keys even for attackers with
physical access to CaaS. Use from virtualized environments is also possible –
Virtual HSM project [15] provides remote physical HSM via PKCS#11 API.

5. Use of fully homomorphic encryption (FHE) – all architectures mentioned
so far except secure processors required trust to CaaS provider. Fully homo-
morphic encryption [10] provides a way to perform sensitive computations
on untrusted platform – a feature well suited for CaaS as well as cloud-based
computations in general. While performance of FHE schemes has been sig-
nificantly improving in recent years [13], including highly optimized imple-
mentations for FPGAs [7] , the overall performance is still several orders of
magnitude slower when compared to unprotected implementations.

3.2 The proposed design

As discussed in previous section, dedicated high-performance hardware offers the
best overall performance, but also comes with a high additional cost to verify
required security properties in an auditable manner.

We instead propose to build CaaS from simple and small secure processing
units that are easier to test for security assurances. A large number (102 − 104)
of these secure processing units are connected in a massively parallel multi-
processor device4. Every secure processor has limited persistent storage and may
provide acceleration of some cryptographic operations. The design has to take
care of all communication between secure processors if needed and to provide
data confidentiality, integrity and freshness with the use of secure processors.
Due to limited computational resources of secure processors, CaaS design will
have to carefully separate untrusted storage for secure off-loading of sensitive
dat from secure processors, provide untrusted connectivity of CaaS components,
allocate of secure processors to tasks, and so on. Overall resiliency of CaaS can be
high if failed or malfunctioning secure processing units are quickly and efficiently
isolated.

In the rest of the section, we will describe how the proposed design can be
implemented from a large number of modern cryptographic smart cards (secure
processors) and how the principles laid out in Section 2.4 can be achieved with
an example test application for computing OATH HOTP values [9] provided in
Section 4.
The proposed architecture has the following key properties:

1. High number of secure processors – depending on the required perfor-
mance, at least 102− 104 processors. Each processor is able to withstand fo-
cused physical and logical attacks as required by FIPS140-2 Level 3 or 4, CC
EAL 4+, or similar. Attacker should not be able to learn any cryptographic
secrets stored inside secure processors, read any sensitive input/output data
even with direct physical access or modify applications running inside secure
processors.

2. Small trusted computing base – every secure processor contains a small
application capable of processing requests coming from Client using previ-
ously imported cryptographic secrets.

3. Untrusted controller – software responsible for efficient distribution of
Client requests and storage of data offloaded from secure processors. The
controller is untrusted, i.e., it must not be able to access plain values of any
cryptographic material or input/output data supplied by Client for process-
ing. If the controller is compromised, no secrets are revealed.

4 Note that analogy with the current multi-core graphic processing units (GPUs)
ends with the high number of cores. Parallel cores of GPUs are not designed for
use as secure processors (both for performance and cost reasons). GPU cores share
both memory and program’s instructions. Also, the GPU is not specifically built to
accelerate cryptographic operations (although high-speed encryption, etc. is possible
– especially when only single key and large data are processed).

4. Secure channels between secure processors – if sensitive data is to
be transferred between secure processors, end-to-end secure channels have
to be established and used. A secure channel should be as lightweight as
possible, yet able to withstand common attacks on network layer, such as
packet replay.

5. High-speed I/O data interface – large number of requests imply signif-
icant volumes of data traffic in the order of gigabits per second. Note that
because of a high number of parallel processors, it would be natural to create
logical or physical clusters of processors with dedicated I/O interface to keep
traffic volume within current technology capabilities.

6. Initialization phase – before a CaaS device is ready for operational use, it
has to be securely initialised. This includes bare hardware and other compo-
nents’ configuration, upload and installation of verified application packages,
exchange of initial secrets needed for secure processors’ communication, gen-
eration and certification of keys and public keys. Initialisation phase is the
single most critical operation of any CaaS device and its correct and secure
execution must be independently verifiable at any time afterwards.

7. Operational phase – after a trusted initialization, a CaaS device is switched
into operational mode and starts serving Client requests. Only code inside
secure processors has to be trusted for processing Client’s cryptographic se-
crets and data, once in operation mode.

8. Restricting use and audit trail – trust is the single most important as-
pect of CaaS. While CaaS has to provide maximum security, it must also
offer means to audit and verify its operation. One of the approaches is to use
authorisation tokens that has to be regularly, or on demand, re-issued. Client
cryptographic secrets are then imported together with authorisation tokens
limited use of secrets. Issued tokens can be then matched against a trusted
audit trail produced by secure cryptographic processors. This not only al-
lows independent verification of CaaS operation but it also gives Clients an
efficient way to disable or even remove their secrets from CaaS – simply by
not refreshing authorisation tokens.

3.3 Why smart cards?

Cryptographic smart cards [16] were designed to withstand attacks in completely
hostile environment under full control of attackers. Cryptographic smart cards
have following significant advantages in comparison to common CPU: 1) Se-
cure runtime environment (an attacker cannot directly inspect executed code
or manipulated data values including cryptographic keys); 2) Dedicated crypto-
graphic coprocessors to speedup operations (especially relevant for asymmetric
cryptography); 3) Secure on-card TRNG generator (usable for on-card keys gen-
eration); 4) Secure on-card storage (but limited in size); 5) Reasonable price per
unit (when bought in larger quantities).

But smart cards are generally perceived as being quite slow and usable only
for a single holder (user), not as a potential component for high-performance
computation. Although it might be true when one compares single card with

a performance of desktop CPU, small size, low energy consumption, relatively
low price and inherent advantage of secure contained environment make smart
cards good candidate for powerful, yet secure computational device following
principles defined in Section 2.4 – if a large number of cards can be utilized as
array of secure processors.

In Table 1, raw performances of selected cryptographic algorithms are pre-
sented5, showing that especially for RSA algorithm, smart cards have decent
performance on its own. If an array of hundreds to thousands of smart cards can
be run in parallel, high-performance composite device can be obtained.

Card type AES-128 CBC encrypt RSA-1024 sign RSA-2048 sign

NXP CJ2A081 (2014) 36.5kB/sec 10.5 signs/sec 2.3 signs/sec

NXP CJ3A080 v2.4.1 (2013) 17.6kB/sec 6.3 signs/sec 1.6 signs/sec

Gemalto GXP R4 72K (2008) 10.8kB/sec 2.5 signs/sec 0.6 signs/sec

NXP JCOP4.1 v2.2.1 72K (2008) N/A 9.3 signs/sec 1.6 signs/sec

Table 1: The raw performance of Cipher engine with AES-128 key in CBC en-
cryption mode and RSA-1024/2048 in PKCS1 sign mode with SHA-1 hash func-
tion. The raw performance is performance achievable when only time spend
inside cryptographic coprocessor itself is assumed – no transfer of input data
to card, key scheduling, engine init and startup etc. For AES algorithm, raw
performance was computed from the difference between an encryption time for
512 and 256 bytes. For RSA algorithm, sole time to execute single sign operation
on-card was measured.

4 The case study: HMAC-based one-time password

HMAC-based one-time password protocol (HOTP) [14] is widely used algorithm
for generation of one-time passwords for an authentication. HOTP authentica-
tion code is based on a secret key shared between an authentication server and
user and changing counter value incremented after every one-time password gen-
eration. HOTP is widely used, e.g., as a basic building block for Initiative For
Open Authentication (OATH) [9]. We selected HOTP as example which involves
not only single operation (e.g., RSA signature), but also maintenance of updated
state (which must be offloaded outside physical card) and need for protected in-
put and output from the Client (authentication server in this case) of a CaaS
service.

5 Note that provided comparison is meant only to demonstrate achievable level of
performance and not as the exact comparison between various cards (there are dif-
ferences between batches of cards). The more detailed comparison is provided in
[18].

HOTP algorithm (RFC4226 [14]) is defined as sequence of four logical steps:

1. HMAC(K,C) = SHA1(K ⊕ 0x5c5c . . . |SHA1(K ⊕ 0x3636 . . . |C)), where
K is a secret key shared between user and authentication server, C is counter
incremented after every authentication attempt, HMAC is construction de-
fined in RFC2104, and SHA1 is a cryptographic hash function.

2. HOTP (K,C) = Truncate(HMAC(K,C)) & 0x7FFFFFFF , where Trun-
cate function selects 4 bytes in a deterministic way from HMAC output.

3. HOTP −Code = HOTP (K,C)mod 10d where d is desired number of digits
of resulting code (system parameter).

4. HOTP −Code generated by user is compared with expected HOTP −Code
generated by the authentication server.

4.1 Why would HOTP will benefit from CaaS?

Because both server and user need to store and use same secret key value K used
during every authentication attempt, not only the user, but also server becomes
a plausible attacker’s target when the value of the secret key is of interest.
When an authentication server is temporarily compromised, an attacker can
learn the secret keys for all of its users – or at least for those authenticated
during the compromise period. An attacker can then use obtained secret keys to
impersonate legitimate users later. To mitigate this threat, authentication server
can utilize CaaS for HOTP code verification instead of computing expected
HOTP code on its own. When a user provides HOTP code, authentication server
asks CaaS service to compute expected code and verify it against supplied user
code. An authentication server is then just notified about the verification result
and does not need to be able to compute expected HOTP code itself. Even when
authentication server is temporarily compromised, an attacker will not learn used
secret key(s) (although may issue requests to CaaS on behalf of compromised
server).

To learn a secret key, an attacker needs to attack CaaS platform, which can
utilize secure hardware (e.g., HSM) to protect manipulated secrets. Authenti-
cation server can also utilize secure hardware itself – but because of associated
upfront costs and management issues, only some will do while others stay with
computation of HOTP in software. Additionally, when the authentication server
runs as a virtual image in a public cloud environment, options to connect own
secure hardware into datacenter are limited or not available at all.

4.2 Moving HOTP into CaaS

Four main operations are required to facilitate HOTP as a CaaS:

1. Import new server’s context – done once for every authentication server.
Contains keys used to protect user states and authenticate requests from
authentication server to CaaS.

2. Generation of initial, wrapped user state – done once for every user of
a particular authentication server. Contains HOTP specific state for given
user including key K and initial value of counter C.

3. Verification of user-supplied HOTP code – done for every user au-
thentication request. Generates and compares expected and supplied HOTP
code.

4. Establishment and use of secure channels – used to facilitate distribu-
tion of secrets and authorizations inside CaaS itself. Necessary to limit the
overall number of HOTP verifications and provide cryptographic audit trail
(principles P9 and P10).

4.3 HOTP implementation

To measure a real cost of HOTP verification in secure hardware using proposed
architecture, we implemented HOTP verification as CaaS service, including all
required operations as a part of CryptoHive design described in Sections 3.2
and 4.6. Using our implementation, we measured detailed time required to per-
form single HOTP verification as well as performance of the whole CryptoHive
prototype.

Note that we excluded overhead related to transmission of Client request
to CaaS service and back as overhead values are highly dependent on platform
settings (e.g., how many credits are uploaded at once before costly recharge
credits operation is invoked or how often is signed audit trail for performed
operations generated).

We also intentionally excluded operations performed by the authentication
server (Client) as this presents no load CryptoHive. We also did not include
operations related to managing user contexts in untrusted part of CryptoHive
where generic computational resources can be made powerful enough to match
required load.

The following data blobs are present and processed: Initial import of au-
thentication server with imported communication keys (256 bytes in total), Au-
thentication server context with imported keys (4x AES128b keys, unchanged
during the request, stored on CaaS platform in rewrapped form after initial im-
port, only some keys shared with the authentication server, 88 bytes in total),
user HOTP state (updated with every request, stored but unreadable by the
authentication server, 40 bytes in total), input/output data with user HOTP
code or verification result respectively (new with every request, provided and
readable by authentication server, 24 bytes in total).

Following cryptographic keys are used: 1) The communication keys for en-
cryption KcommEnc and integrity KcommMAC used for authorization and protec-
tion of data exchanged between the authentication server and CaaS (generated
and used by authentication server). 2) The keys for protection of user HOTP
state KstateEnc and KstateMAC (generated by CryptoHive and not shared with
authentication server). 3) The authentication key Kauth for given user (stored in-
side user HOTP state, generated by CryptoHive and not shared with authentica-
tion server). 4) The CaaS internal keys KauthServerCtxEnc and KauthServerCtxMAC

for protection of offloaded authentication server contexts with KcommEnc, KcommMAC ,
KstateEnc and KstateMAC) (generated by CryptoHive and not shared with au-
thentication server) – note that these keys can be used to protect multiple au-
thentication server contexts6. 5) RSA-2048b keypair KpubCG and KprivCG for
import of initial import of authentication server context (generated by Crypto-
Hive with public key KpubCG distributed to authentication server).

4.4 Performance results – a single card

At first, we provide performance results for primitive operations used as building
blocks to implement whole HOTP in CaaS, followed by the discussion about
possible speedups.

Table 2 provides list of times required to finish HOTP operations7. HOTP
verification operation is measured in two settings – in the first case (called Clean
call) verification is performed with full initialization of all keys and cryptographic
engines – corresponding to the situation when a given user was not authenticated
recently and no pre-initialized engines can be used. In the second case (called
Repeat call), card already have relevant keys initialized from the previous Clean
call – corresponding to the situation when controller was able to keep secrets
on card (e.g., due to low service load or dedicated card for target authentication
server and user – kind of caching).

4.5 Improving on expected performance

Based on the measured results we can identify the steps which consumes most
of the time to process. At first, Verify HOTP code operation is the dominating
operation as all others are executed only once for every authentication server (Im-
port authentication server context) or limited number of times (Generate HOTP
state for a new user once for every user). The Verify HOTP code operation can
be further divided into a data transmission (about 18 %), setup and clear of
cryptographic engines and key objects (about 54 %), encryption/decryption and
MAC operation (about 20 %) and remaining functionality like HMAC, dynamic
truncation or comparison of expected and supplied HOTP code (about 8 %).

The time required for data transmission can be significantly reduced by in-
crease in communication speed between smart card and reader (default value
negotiated is 38400bps, but some smart cards can support 307200bps or more if
the capable reader or custom build reader can be used).

The largest fraction of a time on the card for HOTP verification is clearly
consumed by the preparation of cryptographic engines and not by the crypto-
graphic operation itself (confirmed also by the performance comparisons for a

6 Unwrap keys and engines can be preinitialized as are shared between multiple con-
texts. Additionally, limited number of unwrapped authentication server contexts can
be also left on-card to decrease latency of subsequent requests.

7 Detailed description of measurements with results for other variants can be found
at http://crcs.cz/papers/space2015

Operation Length (bytes) Clean call Repeat call

Verify HOTP code I/O:157/66B 288ms 134ms

1. Transfer authentication server context, input data and user
state into card

5+88+40+24 34ms 34ms

2. Unwrap authentication server context – use:
KauthServerCtxEnc and KauthServerCtxMAC

88 14ms 14ms

3. Unwrap user state (HOTP counter, failed attempts,
settings, HMAC key) – prepare&use: KstateEnc and
KstateMAC

40 65ms 11ms

4. Unwrap input data (HOTP code provided by user) – pre-
pare&use: KcommEnc and KcommMAC

24 63ms 10ms

5. Compute HMAC&truncation over current value of counter
obtained from user state– prepare&use: Kauth

- 20ms 20ms

6. Compare expected and supplied HOTP code, update failed
attempts count, update counter

- 4ms 4ms

7. Wrap output data with status of HOTP code verifi-
cation (correct/incorrect) – prepare&use: KcommEnc and
KcommMAC

16 33ms 10ms

8. Wrap updated user state – prepare&use: KstateEnc and
KstateMAC

32 36ms 12ms

9. Transfer output data and user state outside card 40+24+2 19ms 19ms

Table 2: The performance of operations required to complete single HOTP code
verification request performed by NXP CJ2A081 smart card. The measured time
is an average taken from 100 independent measurements. Note that results on
different cards may differ, see [18]. Prepare&use means: prepare key object(s),
initialize cryptographic engine(s) with prepared key(s) and decrypt/encrypt and
sign/verify data.

Operation Length (bytes) Time (ms)

Import authentication server context I/O:261/90B 534ms

1. Transfer wrapped authentication server context into card 5+256 64ms

2. Unwrap initial authentication server context – use: KprivCG 256 430ms

3. Create internal authentication server context and generate keys
KstateEnc and KstateMAC

32+32 4ms

4. Wrap authentication server context by internal keys – use:
KauthServerCtxEnc and KauthServerCtxMAC

88 14ms

5. Transfer internal authentication server context outside card 88+2 22ms

Table 3: The performance of operations required to complete single import of au-
thentication server context by NXP CJ2A081 smart card. Resulting rewrapped
context is later used in other HOTP operations.

Operation Length (bytes) Time (ms)

Generate HOTP state for a new user I/O:12/42B 70ms

1. Transfer user state information into card 5+7 14ms

2. Prepare new HOTP state for user and generate new Kauth key 28 3ms

3. Wrap user HOTP state – prepare&use: KstateEnc and KstateMAC 40 36ms

4. Transfer user HOTP state outside card 40+2 17ms

Table 4: The performance of operations required to complete creation of context
(HOTP state) for new user of given authentication server by NXP CJ2A081
smart card. Resulting user HOTP state is later used in Verify HOTP code op-
eration.

wider range of different smart cards [18]). The fixed time required to initialize
and setup the engine is especially significant when relatively short data blocks
are processed. The required time can be decreased, if initialized keys and engines
already present on a card are used as demonstrated by Repeat call measurements
in Table 2 – e.g., when multiple requests for the same cryptographic context are
performed in close sequence (requires proper optimization of distribution of re-
quests to same set of cards). Design and implementation should also use lowest
possible (yet secure) number of keys for different operations.

4.6 Performance results – network of processors

So far, we focused on performance of one secure processor – smart card. Even
single card can be suitable platform for smaller uses with ability to serve more
then 300,000 authentications per day. Still, we need to increase transaction rate
significantly to provide CaaS service shared between many users.

We built a prototype “CryptoHive” as described in Section 3.2 to show scal-
ability of our approach. The enclosure is a standard 1U rack-mount with a stan-
dard Intel i5 processor, 4GB of RAM, 2x 120GB SSD disk, and 2x 1Gbps ether-
net interface. The first version used a set of smart cards and smart-card readers
connected to this untrusted controller via USB ports. Prototype characteristics:

– standard size of 1U server, Intel i5, 4GB RAM;
– 45x NXP CJ2A081 smart cards (JavaCard 2.2.2 platform);
– Omnikey 6121 USB SIM Reader as smart card readers;
– 8x active USB hub with 7 ports - connected in a two-level tree; and
– AES128/256 CBC, CBC-MAC/ RSA 2048 as main internal cryptographic

algorithms.

We have encountered several difficulties with this architecture, namely:

– only 10 or 16 card readers are detected by default on OS Windows 7/8 and
Linux (Ubuntu 15.04) respectively;

– parallel requests are inherently serialized by the communication stack (i.e.,
PC/SC interface);

– compatibility issues with some USB hubs and selected readers;
– relatively high failure rate of smart-card readers.

We have eventually overcome these difficulties and created a functional pro-
totype suitable for long-term tests. The experience was used for design of an
improved version. Smart cards are connected via internal Ethernet hub and a
custom communication layer that allow to maximise performance of smart cards
plugged in the “CryptoHive” and significantly improve reliability of the whole
architecture.

Even with relatively small number (45) of smart cards, the only efficient
implementation of the untrusted controller is a fully asynchronous version. It
turned out that 30-40 smartcards were able to serve sufficient amount of requests
to create significant synchronisation bottlenecks when the system with partially
synchronous implementation was used.

Asynchronous controller was able to utilise secure cryptographic processors
near to physical maximum – at about 98 % of the theoretical maximum. This in
effect demonstrates almost linear scalability of the computational power of the
“CryptoHive”.

We have introduced an additional overhead to provide auditable audit trails
and key use dependent on the presence of authorisation tokens but their impact
on the system throughput is in the region of 1-2% with authorisations renewed
on average every 30 seconds.

5 Future directions

We believe that CaaS is only at its beginnings and there are a large number of
research as well as engineering problems that need to be solved. Some particular
issues we encountered while working on this problem include:

Efficient secure channel context management – the question is to find an
efficient mechanism to protect and efficiently access cryptographic contexts
with only a limited secure resources (computational power, memory space).
Scaling of CaaS means that the number of contexts greatly exceeds the
size of secure memory. This is closely related to efficient offload and restore
of intermediate cryptographic context including fully scheduled keys and
initialized engine. Such a feature is not currently supported by smart cards
because in single holder scenario, keys are changed infrequently and will all
fit into available on-card memory. Also, offloading intermediate state extends
an attack surface to mount various side-channel or fault attacks. But benefits
of such a would be high as preparation of cryptographic contexts accounts
for more then half of total time of HOTP verification.

Highly accessible distributed shared state with updates – freshness of
requests in highly distributed environment, where updates have to be in-
stantly distributed to a large number of processing units. The classic option
is either to limit modification of the state data only to single processor (which
would decrease performance) or to combine partial state updates into a final

state later. Delayed combination of state can be performed either in secure
processors (increasing latency to serve request) or in untrusted controller
(which requires suitable secure scheme).

Robust architecture tolerant to hardware/software failures – the archi-
tecture must be be fault tolerant and be able to recover automatically; if a
particular secure computational resource fails permanently, the system has
to adapt to that and continue safe and secure operation.

Encryption and authentication schemes – establishment of cryptographic
contexts is an expensive operation and ability to merge multiple atomic
cryptographic operations into single invocation of cryptographic engine pro-
vides immediate computational boost. For example, it is faster to encrypt
and transmit 256B of data then encrypt and then MAC only 32B of data.
If some precomputation of data otherwise done by service (e.g., keystream)
can be done by Client and transmitted inside encrypted request to service,
performance gain can be obtained.

6 Conclusions

As more and more services are being moved into cloud environment, user has
less control over his/her sensitive data including cryptographic keys. Cryptog-
raphy as a Service (CaaS) is an attempt to offer cryptographic functions in a
similar manner as a generic computation is offered in cloud. There has been little
systematic discussion yet about actual user needs in such a context as well as
design of new architectures able to fulfil those needs.

We described several usage scenarios of CaaS and discussed its properties.
We believe that scenario with many users and many cryptographic keys fits the
best situation when secure hardware is shared among many users in the cloud
computing. For such many users, many keys scenario, we defined set of principles
which should be followed by platform offering CaaS functionality. Based on these
principles, we discussed various available hardware architectures which can be
used to provide computational resources for CaaS.

We propose scalable secure architecture for CaaS based on large numbers
of secure processors, interconnected by secure channels to facilitate information
exchange via untrusted surrounding environment and provide hierarchical con-
trol yet retains high performance. The proposed architecture was implemented
as a prototype called “CryptoHive” using an array of cryptographic smart cards
and evaluated on HMAC-based one-time password authentication (HOTP) pro-
tocol. We identified frequent switch of the cryptographic context switching (key
scheduling, cryptographic engine initialization) as the major performance im-
pactor in the HOTP as well as other usage scenarios. Based on the practical
experience, a set of tips for improving performance are discussed together with
possible future directions.

References

1. CryptLib++ project, http://www.cryptlib.com/ [12/7/2015].
2. OpenSSL project, https://openssl.org [12/7/2015].
3. NVIDIAs next generation CUDA compute architecture: Fermi. NVIDIA, 2009.
4. Amazon AWS. CloudHSM, https://aws.amazon.com/cloudhsm/ [12/7/2015].
5. Sren Bleikertz, Sven Bugiel, Hugo Ideler, Stefan Nrnberger, and Ahmad-Reza

Sadeghi. Client-Controlled Cryptography-as-a-Service in the Cloud. In Applied
Cryptography and Network Security, LNCS 7954, pages 19–36. Springer, Berlin,
2013.

6. Richard Chow, Philippe Golle, Markus Jakobsson, Elaine Shi, Jessica Staddon,
Ryusuke Masuoka, and Jesus Molina. Controlling data in the Cloud: Outsourcing
computation without outsourcing control. In ACM Workshop on Cloud Computing
Security (CCSW ’09), pages 85–90. ACM, 2009.

7. Yarkin Doroz, Erdinc Ozturk, and Berk Sunar. Accelerating fully homomorphic
encryption in hardware. In IEEE Transactions on Computers, volume 64/6, pages
1509–1521. IEEE, 2015.

8. Riccardo Focardi, Flaminia L. Luccio, and Graham Steel. An introduction to
security API analysis. In Foundations of Security Analysis and Design VI, LNCS
6858, pages 35–65. Springer Berlin Heidelberg, 2011.

9. Initiative for open authentication (OATH). http://www.openauthentication.org/
[12/7/2015].

10. Craig Gentry. Fully homomorphic encryption using ideal lattices. In 41st ACM
Symposium on Theory of Computing (STOC), pages 169–178. ACM, 2009.

11. Keon Jang, Sangjin Han, Seungyeop Han, Sue Moon, and Kyoungsoo Park.
SSLSshader: cheap SSL acceleration with commodity processors. In 8th USENIX
conference on Networked systems and implementation, NSDI11. USENIX Associ-
ation, 2011.

12. Sandeep Kumar, Christof Paar, Jan Pelzl, Gerd Pfeiffer, and Manfred Schimmler.
Breaking ciphers with COPACOBANA –a cost-optimized parallel code breaker. In
Proceedings of the 8th International Conference on Cryptographic Hardware and
Embedded Systems, CHES’06, pages 101–118. Springer-Verlag, 2006.

13. Tancrede Lepoint and Michael Naehrig. A comparison of the homomorphic en-
cryption schemes FV and YASHE. In AFRICACRYPT 2014, LNCS 8469, pages
318–335. Springer, 2014.

14. D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen. HOTP: An
HMAC-based one-time password algorithm. In RFC 4226. IETF, 2005.

15. OpenVZ. VirtualHSM project, https://openvz.org/virtual hsm [12/7/2015].
16. W. Rankl and W. Effing. Smart Card Handbook, ISBN 9780470856680. Wiley,

2004.
17. Peter Robinson. Cryptography as a service. In RSAConference Europe 2013, 2013.
18. Petr Švenda. JCAlgTester project, http://www.fi.muni.cz/∼xsvenda/jcsupport.html

[12/7/2015].

