Massively Parallel Hardware
Security Platform

Dan Cvrcek, Enigma Bridge, UK
dan@enigmabridge.com

Petr Svenda, CRoCS, Masaryk University, CZ
svenda@fi.muni.cz

o
C R \°*/ CS
Centre for Research on
Cryptography and Security

Overview

Cryptography as a Service

Usage scenarios, implication for hardware
Options for computational platforms
Secure parallel multi-processor design
Prototype results and experience

Open issues

N R R

Cryptography on client

On client, but with secure hardware

Is this enough?

» You don’t need full performance?
- Have peak demands in performance?
- What if you already use cloud servers?

 Cryptography as a Service (CaaS)

Offloading security operations...

WS API: JSON

... into secured environment

@ How to import key(s) securely?
Which hardware platform to use?

-~ What about high number of clients?

HMAC-based One-Time Password

Authentication server
HMAC(ctr++,/ﬂ} =‘385309°?

- Improves protection of client side
» Increases risk at Auth. server

HOTP with CaaS

CaaS

Authentication server

userCtx, ‘385309’

‘3?5309’

=)
J—
o

OK/NOK

K’ [1]] >

&—J

HOTP = HMAC(ctr++,/") = ‘3853009’

Different levels of trust O

 CaaS with trusted CaaS provider
= Software operation only, HTTPS for in/out
= Trust to provider => valid target, insider attack...
« CaaS with semi-trusted CaaS provider D O
» HTTPS for in/out, decrypted by server C - EF
= Data sent for processing into trusted hardware
= CaaS platform still target (data visible) @
 CaaS with untrusted provider D /
= HTTPS for in/out + inner protection i
> Data decrypted/processed/encrypted inside device =

———

Problem scoping

Requirements - client view

» Untrusted CaaS provider (handling secrets)

» Secure import of app’s secrets - enrollment

» Client <> CaaS communication security
= Confidentiality/integrity of input and output data
= Authentication of input/output requests

- Key use control
= Use constraints — e.g., number of allowed ops

- Easy recovery from client-side compromise

- Massive scalability
= W.r.t. users, keys, transactions...

- Low latency of responses

- Robust audit trail of key usage

- Tolerance and recovery from failures
= hardware/software failures

» Easy to use API
= also easy to use securely

Usege scenarios

R\
Steps of cryptographlc operatlon

Inltlahze unwrap engine
. Unwrap data/key (decrypt/verity)
. Initialize key object with key value
. Initialize cryptographic engine with key
. Start, execute and finalize crypto operation
. Initialize wrap engine
. Wrap data/key (encrypt/sign)
10. Erase key(s)/engine(s)
11. Transfer output data
12. Transter wrapped key out

=0 0N N0~ W

%ﬁ* EQR0 L Q

Usage scenarios (users vs. keys)

» S1: One user, few keys
= No sharing, all engines fully prepared
» S2: One user, many keys
= No sharing, frequent crypto context change
» S3: Few users, few keys
= Device is shared — isolation of users
» S4:Few users, many keys
= Limited sharing, frequent crypto context change
- S5: Many users, many keys
= High sharing, frequent crypto context change

51: One user, few keys

- No sharing, all engines fully prepared
E> 1. Transfer input data

(% 7. Start, execute and finalize crypto operation

<j 11. Transfer output data

55: Many users, many keys
- High sharing, frequent crypto context change

Transfer input data

Transfer wrapped key in

Initialize unwrap engine

Unwrap data/key (decrypt/verify)
Initialize key object w1th key Value

Initialize cryptor%/y
Start, execute a

0N PG AP

L Frequent exchange of
) 8. Initialize wrap e)

4 9. Wrap data/key (cryptographic context
10. Erase key(s)/en; — implications for

11. Transfer output computation p]atform
12. Transfer wrappe

/

Platiorm options for Caas

Performance perspective

- Use of general-purpose hardware (CPU/GPU)
= Great code base and library support

- Use of generic programmable hardware (FPGA)
= Flexible for new algorithms, fast reconfiguration

- Use of dedicated cryptographic circuits (ASIC)
= Fastest, but fixed to pre-specified design

Security perspective

» Fully trusted provider | E
= No additional protection of data/code ~——
= (Additional tamper protection of device)

- Use of secure hardware
= Trusted boot (TPM-based)
= Intel’s Software Guard Extensions (SGX)
= Use of Hardware Security Module (HSM)

- Use of software protection techniques
= Fully homomorphic encryption
= (promising, but not fully practical yet)

Client-controlled CaaS in the Cloud

» Bleikertz et. al., 2013 (IBM, TU Darmstadt)

- Protection against attacker on logical level
= Administrator without physical access

- Modification of Xen hypervisor by standard
Trusted Computing (based on TPM)

= Establishment of a separate security-domain
(DomC) for critical cryptographic operations

- (No protection against attacker with physical
access)

~ N\ :
s DomO DomT DomC DomUE
A D | - 2
r Ac:ess Control Xen]

TPM

“l Hardware ‘

Trusted Computing Base

() untrusted

https://www.infsec.cs.uni-saarland.de/~bugiel/publications/pdfs/bugiel13-acns.pdf

Cloud service with HSM

- Hardware Security Module (HSM)

» Hardened secure device (tamper protection...)

= Cryptographic accelerators (9000 RSA1024/sec)
- Example: AWS CloudHSM

= Dedicated HSM (SafeNet Luna) in AWS cloud

= Pricing (2015-09-16)

* $5000 upfront, $1.88 per hour

» Possibility for custom firmware plugins

= But not possible to move generic app inside HSM

@ Your applications continue to use H

standard crypto APls (PKCS#11, MS
CAPI, JCAJICE, etc.).

SafeNet HSM client replaces existing
crypto service provider libraries and
connects to the HSM to implement
AP callsin hardware

Example: AWS CloudHSM

SafeNet HSM Client can share load
and store keys redundantly across
multiple HSMs

() Key material is securely replicated to

m HSM(s) in your datacenter
N
& | E D N

VPN INTERNET

Application S

SSL

- SSL
HSM Client C

VPC Instance

H5M CloudHSM

AWS Direct

Connect _ Virtual Private Cloud J

| Corporate Datacenter

~ _ AWS J

https://aws.amazon.com/cloudhsm/details/

Cloud service with HSM-based KMS

- HSM used only to provide key management service
= Key generation and distribution center
- Protection of keys, not application/data itself
s Still running in standard computation platform
- Example: AWS Key Management Service
= User master key stored inside multiple HSM(s)
= New key(s) generated for data blobs as needed
= Wrapped by master key for transfer between HSM(s)

= Transfer of necessary keys between different AWS
locations
= Pricing (2015-09-16): $0.03 per 10,000 requests

Example: AWS Key Management Service

GenerateData ' “Hello World!"
/ Key(CMK) / > encrypted key key L eo Tor
(Ol
/ Encrypt / .
KMS Service !

---------- — O

encrypted key encrypted message

KMS Interface

Envelope encryption of “Hello World!”

https://do.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf

Security enclave via Intel’s SGX

- New set of CPU instructions intended for future
cloud server CPUs

- Protection against privileged attacker
= server admin with physical access, privileged malware

- Application requests private region of code and data
= Security enclave (4KB for heap, stack, code)

= Encrypted enclave is stored in main RAM memory,
decrypted only inside CPU

= Access from outside enclave is prevented on CPU level
= Code for enclave is distributed as part of application

Intel’s SGX - some details

- EGETKEY instruction generates new enclave key
= SGX security version numbers
= Device ID (unique number of CPU)
= Owner epoch — additional entropy from user
? Why not also random part generated inside CPU?
- EREPORT instruction generates signed report
= Local/remote attestation of target platform
- Debugging possible if application opt in
- Enclave cannot be emulated by VM

Secure multi-processor

Secure parallel multi-processor

1. High number of secure processors (100s-10000s)
= Secure memory, secure execution, crypto engines
» FIPS140-2 Level 3/4, CC EAL 5+

2. Small trusted computing base
= Everything outside facilitated in untrusted controller

3. Secure channels between secure processors
4. Technical and logical structure to facilitate:

o« Efficient requests processing
= Efficient inter-key distribution
5. High robustness due to high redundancy
= If one processor locks or dies, another serves a request

User key
(encrypted)

3
-

Input data: user key #1

Input data: user key #2

G MW/MI"“ N (1)

AL

\,v.“ a @

)

equire processors

S

U |) | ol | L) |
G G @ w¥ 1 ¢
4 Tml &//-.-- 4 _uml &//-_--

Controller

Do we have such secure processors?
|

- Cryptographic smartcards B
Programmable, secure runtime enyironment
Dedicated cryptographic coprocessors

Secure on-card TRNG generator

Secure on-card storage (but limited in size)
Reasonable price per unit

High-level of tamper protection (FIPS140-2...)

L o

Cryptographic operations

» Supported algorithms (JCAlgTester, 43+ cards)
= https://github.com/crocs-muni/JCAIlgTest

ALG SHA ==21

ALG_MDS «=21

ALG_RIPEMD160 ==21 no no no yes yes yes no no
ALG_SHA_256 2292 yes no no 5"55;'0"5 yes no no yes
ALG_SHA 384 222 no no no no no no no yes
ALG_SHA 512 222 no no no no no no no yes
ALG SHA 224

ALG PSEUDO_RANDOM ==21
ALG_SECURE_RANDOM ==21

https://github.com/crocs-muni/JCAlgTest
https://github.com/crocs-muni/JCAlgTest
https://github.com/crocs-muni/JCAlgTest
https://github.com/crocs-muni/JCAlgTest

Common algorithms

- Basic - cryptographic co-processor
= TRNG
s 3DES, AES128/256
s MD5, SHA1, SHA-2 256/512
= RSA (up to 2048b common, 4096 possible)
= ECC (up to 192b common, 384b possible)
= Diffie-Hellman key exchange
- Composite crypto operations (JavaCard VM)

» Custom code running in secure environment
= E.g. HMAC, OTP code, re-encryption

What is the performance?

e https://github.com/crocs-muni/JCAIgTest (ms)
- (excerpt from large tables, will be public soon)
- 256B of data processed

CARD/FUNCTION (msiop) SECURE RANDOM S5HA-1 hash SHA2-256 hash AES128 encrypt
NXP J2D081 80K 104 173 21.18 6.73
NXP CJ3ADE1 13.8 11.45 21.05 1033
NXP JCOP CJ2A081 1414 1.9 22 46 10.78
NXP JCOP21 v2.4.2R3 3377 1235 22 39 11.65
NXP J2A080 80K 19.58 31.08 60.16 18.57
NXP JCOP3 v2.4.1 72K 2097 341 66.02 20.44
NXP J3A080 21.64 3578 69.32 21.41
Infineon CJTOP S0K INF SL.J 52GLADS0AL Ma.4 249 17.42 35.58 25.53

Gemplus GXP R4 72K 245 3.69 = 26.05

https://github.com/crocs-muni/JCAlgTest
https://github.com/crocs-muni/JCAlgTest
https://github.com/crocs-muni/JCAlgTest

2K

— Infineon CJTOP 80K
INF SLJ 52GLAOS. .

— NXP CJ3A081
—— NXP J2A080 80K
—— NXP J2D081 80K
e —— NXP J3A080
Speed of selected operations —wroe:.
—— NXP JCOP31v24. .
—— NXP JCOP41v2.2. ...

— NXP JCOP 21 V2.
Card compare
— NXP JCOP 31V2....
?5 — NXP JCOP CJ2A081
—— Oberthur ID-ONE...
50
25
0
0 N N N N \ N N N N . N .
0\5‘@6‘ v'@‘ﬁ% “\66% N o X o \@66% @;‘\\g@ eq\@-ao a\;l\'b“ @G?” &€ : ﬂ@':\G“‘(’ < & ° heﬁcﬁ"'!"." @Boc'ﬂq
9
o o e oo e o) e @ * e‘f’% 3 o @"“ﬂ @& o g‘:‘;’l"‘@% &
v’:,c’\}?g ° ‘E’Y\PQ: e P""’%{L = ¥ :) «aﬂc’oq @400" ?5’#\ <
S &

E
JCAlgTest by CRoCS MU is licensed under a
Creative Commons Attribution 4.0 International License.

What is the performance?

- (Raw performance of crypto engines)

Card type AES-128 CBC encrypt|RSA-1024 sign|RSA-2048 sign
NXP CJ2A081 (2012) 36.5kB /sec 10.5 signs/sec | 2.3 signs/sec
Infineon CJTOP 80K (2012) 10.2kB /sec 9.8 signs/sec | 4.1 signs/sec
NXP CJ3A080 v2.4.1 (2011) 17.6kB /sec 6.3 signs/sec | 1.6 signs/sec
Gemalto GXP R4 72K (2008) 10.8kB/sec 2.5 signs/sec | 0.6 signs/sec
NXP JCOP4.1 v2.2.1 72K (2008) N/A 9.3 signs/sec | 1.6 signs/sec

Recall: steps of cryptographic operation

Transfer input data %%x :,

1.
2. Transter wrapped key in

' 3. Initialize unwrap engine

= 4. Unwrap data/key (decrypt/verity)
5. Initialize key object with key value
6.
{7
8.
0.

Initialize cryptographic engine with key
Start, execute and finalize crypto operation
Initialize wrap engine
Wrap data/key (encrypt/sign)
10. Erase key(s)/engine(s)
11. Transfer output data
' 12. Transfer wrapped key out

iﬁ !Qﬁg QE@

Crypto context change is a problem

CARD/FUNCTION (ms/op) AES setKey(128b) AES128 init AES128 encrypt
NXP JCOP CJ2A081 522 11.56 10.78
Infineon CJTOP 80K INF SLJ 52GLAQO20AL M2.4 608 285 2553

NXP JCOP31 v2.4.1 72K 638 12.34 20.44
CARD/FUNCTION (msfop) AES setKey(128b) AES128 init AES128 encrypt
NXP JCOP CJ2A081 022 11.56 10.78

NXP JCOP21 v2.4.2R3 23.48 11.62 11.65

» E.g., theoretical AES128 speed — 36.5KB/s
= complete engine init + encrypt 256B — 10.4KB/s

- Performance penalty factor up to 100x for small
blocks on some cards!

Recall: HOTP with CaaS

CaaS

Authentication server

userCtx, ‘385309’

‘3?5309’

=)
J—
o

K’ [1]] >

OK/NOK

&—J

HOTP = HMAC(ctr++,/") = ‘3853009’

Length (bytes)

Clean call

Repeat call

Verify HOTP code I/0:157/66B| 288ms 134ms
1. Transfer authentication server context, input data and user| 5+88-+4+40+24 34ms 34ms
state into card
2. Unwrap authentication server context — use: 88 14ms 14ms
KﬂuthSer'uerCthnc and KﬂuthSert!erCtIﬂfAC
3. Unwrap user state (HOTP counter, failed attempts, 40 65ms 11ms
settings, HMAC key) — prepare&use: KgtaterEne and
KstatemAC
4. Unwrap input data (HOTP code provided by user) — pre- 24 63ms 10ms
DaFE&USE KcommEnc and Kcom-nlJ"L«fAC
5. Compute HMAC&truncation over current value of counter - 20ms 20ms
obtained from user state— prepare&use: K, uth
6. 4ms 4ms
at

Length (bytes)|Clean call{Repeat call
7. 33ms 10ms
ca
k{11/0:157/66B| 288ms 134ms
8. 36ms 12ms
KstateMAC
9. Transfer output data and user state outside card 4042442 19ms 19ms

How to minimize contexts change?

1. Cache keys/engines on card

Type of object NXP CJ2A081 NXP CJ2D081 BOK NXP JCOP21 v2.4.2R3 145KB
AESKey 128 ary 729 678
AESKey 256 658 607 265
DESKey 196 748 607 265
Cipher AES 79 74 74
Cipher DES 147 136 136
RSA CRT PRIVATE 1024 72 93 Gl
RSA PRIVATE 1024 203 152 141
RSA CRT PRIVATE 2045 61 a1 47

RSA PRIVATE 2048 108 62 77

How to minimize contexts change?

2. Proper load-balancing on the controller side
= Which card should serve the request?

= When context should be removed from card?
» How required throughput can be guaranteed?

(/3 ENIGMA BRIDGE

Building the device

First prototype: | .
12+2 configuration | % _ |

Card Utilisation B

Performance:
144 HMAC/sec

- smarthsm.CryptoCard4 Min. Max 3263 Avg 10.11 == smarthsm CryptoCard5 Min

- 5 300 |
| — ==
d - BB S— -
i ‘ A 100 1
i _'_’_'. ‘] * }‘ ® smarthsm CryptoCardé
o f\\l | 1252 @ 2014-10-03 01:27:00

- smarthsm.CryptoCardé Min: Max 2072 Avg 842 = smarthsm.CryptoCard7 Min

SmartHSM Load

® smarthsm Load
14489 @ 2014-10-05 00:41:00

- smarthsmLoad M

EB prototype (1U):
43+2 configuration

Performance:
~250 RSA-1024 signs/sec
~480 HMAC/sec

Not just “send and encrypt fast”

» Device is shared — load/unload user ctxs
- Protection of incoming/outgoing data
= Additional crypto context initializations
 Hierarchical control of loaded keys
= Efficient secure distribution of keys
- User specifies limited use for its key (credits)
= No more then specified uses allowed
- Signed audit trail collected from processors
= independently verifiable, control over uses

Some interesting problems

Some development issues

- Many common sw/hw components fail when
used in uncommon “extreme” settings

= Many readers/cards used, high peak load, long-
term usage...

- Task should be processed in given time frame
= Assigned card may fail to deliver result
= Several timeouts must be implemented

Some development issues

* 1000 /1 <1000/ 11
= Adding more cards may not speed up anything
= just one smart card - 93s to process 1000 packets
= 11 smart cards - 123s required instead
» “Thread hell” inevitable
s Serialized assignment of tasks is inefficient
» Task assignment must be highly parallelized
» Lock-free programming
= Prevent by hard lock or detect and respond?

Freshness of distributed state

- Counter, time/logical time, challenge/response...

» Freshness of data blobs, when:

= Secure processors can’t communicate too often,

= can’t store too much (limited memory)

= and controller is not trusted
- Inter-device communication via secure channel
» User-to-device communication

Trade communication for initialization

- Initializing crypto engines introduces overhead
s setKey, initEngine, startEngine — 10-30ms
= communication is faster — 5-15B/ms

» Secure crypto schemes which trades (higher)
data transfer for simpler operation (on card)
= E.g., send precomputed keystream as an input

SYOBH B [QUURD-IPIS
JSurese uord9}01]

elep uonjeoridde
JO uono9al0Ig

sAoy uoneorydde
JO U01109301J

SUOIOUNJ ILIQUAS
JO 9OUBRULIOLId]

(SAay/s19sn Aueur)
souj 03dAID Jo ‘JI9g

suonouny 0}dAIo

W | W X | X | X

W WV VX

W | | | X

& | | I |
| V| Y Y|

JO 9OUBULIOLID]
K4
e
\mvs K%
(o) =)
o O
. &AUQ et
) —
(A = |3 =
\& s ia) WAp %)
(&) —
%, 2 |8 |0 <
(aD] + p— =
0 |2 | B |2 =
&) - S A

HSM

Conclusions

o Cryptography as a Service

O

O

= Data/keys moved to untrusted provider
Different hardware platforms available

Different performance vs. security tradeoff

- Usage scenario is important for performance
» Number of users, number of keys
= Frequency of key exchanges
- Highly parallel grid of secure processors
= High performance and scalability
= Based on secure cryptographic smartcards

(/) ENIGMA BRIDGE

Thank you for your attention!

Questions

A, J

Contact me at svenda@fi.muni.cz

mailto:svenda@fi.muni.cz

