
Massively Parallel Hardware

Security Platform

Dan Cvrček, Enigma Bridge, UK

dan@enigmabridge.com

Petr Švenda, CRoCS, Masaryk University, CZ

svenda@fi.muni.cz

Overview

1. Cryptography as a Service

2. Usage scenarios, implication for hardware

3. Options for computational platforms

4. Secure parallel multi-processor design

5. Prototype results and experience

6. Open issues

Cryptography on client

On client, but with secure hardware

Is this enough?

• You don’t need full performance?

• Have peak demands in performance?

• What if you already use cloud servers?

• Cryptography as a Service (CaaS)

Offloading security operations…

WS API: JSON

… into secured environment

How to import key(s) securely?
Which hardware platform to use?

What about high number of clients?

HMAC-based One-Time Password

HOTP = HMAC(ctr++,) = ‘385309’

HMAC(ctr++,) == ‘385309’?

‘385309’

Authentication server

• Improves protection of client side

• Increases risk at Auth. server

HOTP with CaaS

HOTP = HMAC(ctr++,) = ‘385309’

‘385309’

userCtx, ‘385309’

CaaS

OK/NOK

Authentication server

Different levels of trust

• CaaS with trusted CaaS provider

▫ Software operation only, HTTPS for in/out

▫ Trust to provider => valid target, insider attack…

• CaaS with semi-trusted CaaS provider

▫ HTTPS for in/out, decrypted by server

▫ Data sent for processing into trusted hardware

▫ CaaS platform still target (data visible)

• CaaS with untrusted provider

▫ HTTPS for in/out + inner protection

▫ Data decrypted/processed/encrypted inside device

Requirements – client view

• Untrusted CaaS provider (handling secrets)

• Secure import of app’s secrets - enrollment

• Client  CaaS communication security

▫ Confidentiality/integrity of input and output data

▫ Authentication of input/output requests

• Key use control

▫ Use constraints – e.g., number of allowed ops

• Easy recovery from client-side compromise

Requirements – CaaS provider view

• Massive scalability

▫ W.r.t. users, keys, transactions…

• Low latency of responses

• Robust audit trail of key usage

• Tolerance and recovery from failures

▫ hardware/software failures

• Easy to use API

▫ also easy to use securely

Steps of cryptographic operation

1. Transfer input data
2. Transfer wrapped key in
3. Initialize unwrap engine
4. Unwrap data/key (decrypt/verify)
5. Initialize key object with key value
6. Initialize cryptographic engine with key

7. Start, execute and finalize crypto operation
8. Initialize wrap engine
9. Wrap data/key (encrypt/sign)
10. Erase key(s)/engine(s)
11. Transfer output data
12. Transfer wrapped key out

Usage scenarios (users vs. keys)

• S1: One user, few keys
▫ No sharing, all engines fully prepared

• S2: One user, many keys
▫ No sharing, frequent crypto context change

• S3: Few users, few keys
▫ Device is shared  isolation of users

• S4:Few users, many keys
▫ Limited sharing, frequent crypto context change

• S5: Many users, many keys
▫ High sharing, frequent crypto context change

S1: One user, few keys

• No sharing, all engines fully prepared

S5: Many users, many keys

• High sharing, frequent crypto context change

Frequent exchange of
cryptographic context
 implications for

computation platform

Performance perspective

• Use of general-purpose hardware (CPU/GPU)

▫ Great code base and library support

• Use of generic programmable hardware (FPGA)

▫ Flexible for new algorithms, fast reconfiguration

• Use of dedicated cryptographic circuits (ASIC)

▫ Fastest, but fixed to pre-specified design

Security perspective

• Fully trusted provider
▫ No additional protection of data/code
▫ (Additional tamper protection of device)

• Use of secure hardware
▫ Trusted boot (TPM-based)
▫ Intel’s Software Guard Extensions (SGX)
▫ Use of Hardware Security Module (HSM)

• Use of software protection techniques
▫ Fully homomorphic encryption
▫ (promising, but not fully practical yet)

Client-controlled CaaS in the Cloud

• Bleikertz et. al., 2013 (IBM, TU Darmstadt)

• Protection against attacker on logical level

▫ Administrator without physical access

• Modification of Xen hypervisor by standard
Trusted Computing (based on TPM)

▫ Establishment of a separate security-domain
(DomC) for critical cryptographic operations

• (No protection against attacker with physical

access)

https://www.infsec.cs.uni-saarland.de/~bugiel/publications/pdfs/bugiel13-acns.pdf

Cloud service with HSM

• Hardware Security Module (HSM)

▫ Hardened secure device (tamper protection…)

▫ Cryptographic accelerators (9000 RSA1024/sec)

• Example: AWS CloudHSM

▫ Dedicated HSM (SafeNet Luna) in AWS cloud

▫ Pricing (2015-09-16)

 $5000 upfront, $1.88 per hour

• Possibility for custom firmware plugins

▫ But not possible to move generic app inside HSM

Example: AWS CloudHSM

https://aws.amazon.com/cloudhsm/details/

Cloud service with HSM-based KMS

• HSM used only to provide key management service
▫ Key generation and distribution center

• Protection of keys, not application/data itself
▫ Still running in standard computation platform

• Example: AWS Key Management Service
▫ User master key stored inside multiple HSM(s)
▫ New key(s) generated for data blobs as needed

▫ Wrapped by master key for transfer between HSM(s)
▫ Transfer of necessary keys between different AWS

locations
▫ Pricing (2015-09-16): $0.03 per 10,000 requests

Example: AWS Key Management Service

https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf

Security enclave via Intel’s SGX

• New set of CPU instructions intended for future
cloud server CPUs

• Protection against privileged attacker

▫ server admin with physical access, privileged malware

• Application requests private region of code and data

▫ Security enclave (4KB for heap, stack, code)

▫ Encrypted enclave is stored in main RAM memory,

decrypted only inside CPU

▫ Access from outside enclave is prevented on CPU level

▫ Code for enclave is distributed as part of application

Intel’s SGX – some details

• EGETKEY instruction generates new enclave key

▫ SGX security version numbers

▫ Device ID (unique number of CPU)

▫ Owner epoch – additional entropy from user

• EREPORT instruction generates signed report

▫ Local/remote attestation of target platform

• Debugging possible if application opt in

• Enclave cannot be emulated by VM

Why not also random part generated inside CPU?

Secure parallel multi-processor

1. High number of secure processors (100s-10000s)
▫ Secure memory, secure execution, crypto engines
▫ FIPS140-2 Level 3/4, CC EAL 5+

2. Small trusted computing base
▫ Everything outside facilitated in untrusted controller

3. Secure channels between secure processors
4. Technical and logical structure to facilitate:

▫ Efficient requests processing
▫ Efficient inter-key distribution

5. High robustness due to high redundancy
▫ If one processor locks or dies, another serves a request

Controller

Input data: user key #1

Secure processors

Input data: user key #2

User key
(encrypted)

Do we have such secure processors?

• Cryptographic smartcards

1. Programmable, secure runtime environment

2. Dedicated cryptographic coprocessors

3. Secure on-card TRNG generator

4. Secure on-card storage (but limited in size)

5. Reasonable price per unit

6. High-level of tamper protection (FIPS140-2…)

• Supported algorithms (JCAlgTester, 43+ cards)

▫ https://github.com/crocs-muni/JCAlgTest

Cryptographic operations

https://github.com/crocs-muni/JCAlgTest
https://github.com/crocs-muni/JCAlgTest
https://github.com/crocs-muni/JCAlgTest
https://github.com/crocs-muni/JCAlgTest

Common algorithms

• Basic - cryptographic co-processor
▫ TRNG
▫ 3DES, AES128/256
▫ MD5, SHA1, SHA-2 256/512
▫ RSA (up to 2048b common, 4096 possible)
▫ ECC (up to 192b common, 384b possible)
▫ Diffie-Hellman key exchange

• Composite crypto operations (JavaCard VM)
▫ Custom code running in secure environment
▫ E.g. HMAC, OTP code, re-encryption

What is the performance?

• https://github.com/crocs-muni/JCAlgTest

• (excerpt from large tables, will be public soon)

• 256B of data processed

(ms)

https://github.com/crocs-muni/JCAlgTest
https://github.com/crocs-muni/JCAlgTest
https://github.com/crocs-muni/JCAlgTest

Speed of selected operations

What is the performance?

• (Raw performance of crypto engines)

Recall: steps of cryptographic operation

Crypto context change is a problem

• E.g., theoretical AES128 speed  36.5KB/s

▫ complete engine init + encrypt 256B  10.4KB/s

• Performance penalty factor up to 100x for small
blocks on some cards!

Recall: HOTP with CaaS

HOTP = HMAC(ctr++,) = ‘385309’

‘385309’

userCtx, ‘385309’

CaaS

OK/NOK

Authentication server

Verify HOTP (OAuth)

How to minimize contexts change?

1. Cache keys/engines on card

How to minimize contexts change?

2. Proper load-balancing on the controller side

▫ Which card should serve the request?

▫ When context should be removed from card?

▫ How required throughput can be guaranteed?

First prototype:
12+2 configuration

Performance:
144 HMAC/sec

EB prototype (1U):
43+2 configuration

Performance:
~250 RSA-1024 signs/sec

~480 HMAC/sec

Not just “send and encrypt fast”

• Device is shared – load/unload user ctxs

• Protection of incoming/outgoing data

▫ Additional crypto context initializations

• Hierarchical control of loaded keys

▫ Efficient secure distribution of keys

• User specifies limited use for its key (credits)

▫ No more then specified uses allowed

• Signed audit trail collected from processors

▫ independently verifiable, control over uses

Some development issues

• Many common sw/hw components fail when

used in uncommon “extreme” settings

▫ Many readers/cards used, high peak load, long-
term usage…

• Task should be processed in given time frame

▫ Assigned card may fail to deliver result

▫ Several timeouts must be implemented

Some development issues

• 1000 / 1 < 1000 / 11

▫ Adding more cards may not speed up anything

▫ just one smart card - 93s to process 1000 packets

▫ 11 smart cards - 123s required instead

• “Thread hell” inevitable

▫ Serialized assignment of tasks is inefficient

▫ Task assignment must be highly parallelized

• Lock-free programming

▫ Prevent by hard lock or detect and respond?

Freshness of distributed state

• Counter, time/logical time, challenge/response…

• Freshness of data blobs, when:

▫ Secure processors can’t communicate too often,

▫ can’t store too much (limited memory)

▫ and controller is not trusted

• Inter-device communication via secure channel

• User-to-device communication

Trade communication for initialization

• Initializing crypto engines introduces overhead

▫ setKey, initEngine, startEngine  10-30ms

▫ communication is faster  5-15B/ms

• Secure crypto schemes which trades (higher)
data transfer for simpler operation (on card)

▫ E.g., send precomputed keystream as an input

Generic HW

Trusted boot

Intel GCX

HSM

Parallel smart cards

P
er

fo
rm

a
n

ce
 o

f

cr
yp

to
 f

u
n

ct
io

n
s

P
ro

te
ct

io
n

 o
f

a

p
p

li
ca

ti
o

n
 k

ey
s

P
ro

te
ct

io
n

 o
f

a

p
p

li
ca

ti
o

n
 d

a
ta

P
er

fo
rm

a
n

ce
 o

f

g
en

er
ic

 f
u

n
ct

io
n

s

P
ro

te
ct

io
n

 a
g

a
in

st

si
d

e-
ch

a
n

n
el

 a
tt

a
ck

s

P
er

f.
 o

f
cr

yp
to

 f
n

cs

(m
a

n
y

u
se

rs
/k

ey
s)

Conclusions

• Cryptography as a Service
▫ Data/keys moved to untrusted provider
▫ Different hardware platforms available
▫ Different performance vs. security tradeoff

• Usage scenario is important for performance
▫ Number of users, number of keys
▫ Frequency of key exchanges

• Highly parallel grid of secure processors
▫ High performance and scalability
▫ Based on secure cryptographic smartcards

Thank you for your attention!

Questions

Contact me at svenda@fi.muni.cz

mailto:svenda@fi.muni.cz

