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Abstract. The output of modern cryptographic primitives like pseudorandom
generators and block or stream ciphers is frequently required to be indistinguish-
able from a truly random data. The existence of any distinguisher provides a hint
about the insufficient confusion and diffusion property of an analyzed function.
In addition to targeted cryptoanalysis, statistical tests included in batteries such
as NIST STS, Dieharder or TestU01 are frequently used to assess the indistin-
guishability property. However, the tests included in these batteries are either
too simple to spot the common biases (like the Monobit test) or overly complex
(like the Fourier Transform test) requiring an extensive amount of data. We pro-
pose a simple, yet surprisingly powerful method called BoolTest for the construc-
tion of distinguishers based on an exhaustive search for boolean function(s). The
BoolTest typically constructs distinguisher with fewer input data required and di-
rectly identifies the function’s biased output bits. We analyze the performance on
four input generation strategies: counter-based, low hamming weight, plaintext-
ciphertext block combination and bit-flips to test strict avalanche criterion. The
BoolTest detects bias and thus constructs distinguisher in a significantly higher
number of rounds in the round-reduced versions of DES, 3-DES, MD5, MD6
and SHA-256 functions than the state-of-the-art batteries. Finally, we provide a
precise interpretation of BoolTest verdict (provided in the form of Z-score) about
the confidence of a distinguisher found. The BoolTest clear interpretation is a sig-
nificant advantage over standard batteries consisting of multiple tests, where not
only a statistical significance of a single test but also aggregated decision over
multiple, potentially correlated tests, needs to be correctly performed.
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1 Introduction

Both newly designed as well as widely used cryptographic primitives (block cipher,
stream cipher, hash function, pseudo-random generators, etc.)1 are subjected to various
analysis techniques like linear, differential and algebraic cryptanalysis which looks for
flaws or information leakage in the primitive design. The standard techniques try to

1 This is extended version of the paper ’The Efficient Randomness Testing using Boolean Func-
tions’ (Sýs et al., 2017, SeCrypt)
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find any significant correlations between the tested primitive input (plaintext), output
(ciphertext) and key bits (if used). The existence of correlated bits indicates a weak-
ness of the function, which might be exploitable to predict bits of a secret key or next
output bits of the pseudorandom generator. Although these techniques can be partially
automated, the aid of the skilled cryptanalyst is still needed.

Fully automated but weaker statistical test suites (e.g., NIST STS, Dieharder, Test-
U01) are often used as a quick and cheap tool before the deeper cryptanalysis is per-
formed (Simion, 2015). Commonly, well-designed crypto-primitives should produce
output with the same characteristics as truly random data. Test suites examine the cor-
relation of function output bits through randomness analysis of data it produces. Each
test suite (often called battery) usually consists of tens of empirical tests of random-
ness. Each test looks for a predefined pattern of bits (or block of bits) in data, and thus
it examines randomness property from its specific point of view. Each test computes a
histogram of a specific feature of bits (or block of bits). The histogram is statistically
compared with the expected histogram (for random data). The result (p-value) of the
test is probabilistic measure how well both histograms match. Data are considered to be
non-random if histograms differ significantly. Although there is an unlimited number
of tests in principle, batteries opt for implementation of only several selected ones for
the practical reasons. The randomness in such a context is a probabilistic property, and
we can commit two types of errors – Type I (truly random data rejected) and Type II
(non-random data not rejected).

The batteries implement many tests of various complexity – from the very simple
Monobit computing statistic of bits (frequency of ones and zeros) to the very complex
statistics computed from large blocks (e.g., computation of linear profile). The complex-
ity of tests usually determines the amount of data necessary to compute the histograms
for comparison. In order to decrease the Type I and II errors, sufficiently many data
sequences (up to several GBs of data) are required in practice.

We can identify the following generic limitations of standard batteries with respect
to the analysis of cryptographic functions:

1. An insufficient strength to detect bias in unweakened functions – The tests in-
cluded in a battery are usually too weak to detect biases in an output of a modern
cryptographic function with a full number of rounds and other standard security
parameters.

2. An insufficient detection sensitivity if only a small amount of data is available
– The tests might be too insensitive to detect biases when an only limited amount of
data is available for the testing. The tests usually require from 10 MB up to several
GBs of data which may not be available in particular test scenario.

3. The difficulty of test results interpretation – The interpretation of test results
is often only generic in the form of “something is wrong with the provided data”.
Only a few tests are able to identify concrete dependent bits and provide this crucial
information to a cryptanalyst.

Our goal is to resolve the last two aforementioned problems and to construct the
set of statistical tests that will be stronger in detecting the bias when given a limited

The BoolTest implementation and paper supplementary material can be found at
https://crocs.fi.muni.cz/papers/booltest2018.
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amount of data yet directly identifying the biased output bits. In fact, we are looking
for the strongest distinguisher possible (of cryptographic function from the truly ran-
dom data) within the given amount of tested data and complexity of a distinguishing
function. A distinguisher is iteratively constructed in the form of simple function start-
ing from the simplest possible and proceeding towards the more and more complex
boolean functions. Surprisingly, such a test is missing from all three commonly used
test suites. Our approach is a generalization of the simple Monobit test and was practi-
cally tested on the wide range of cryptographic functions of various types – block and
stream ciphers, hash functions and pseudo-random number generators (PRNGs). We
have found practical strong distinguishers which can also be used as the bit predictors
(although usually weak) for the corresponding functions.
In short, we make the following contributions:

– Simple, yet strong test: We designed the principally simple, yet surprisingly strong
test called BoolTest based on the boolean functions with an easy interpretation
whether a robust distinguisher for tested data and function was found (or not). The
standard batteries are notoriously difficult to interpret as both the results of a sin-
gle test as well as multiple, potentially cross-correlated tests needs to be properly
reasoned about.

– Interpretable test for small data: We have shown that BoolTest not only requires
significantly less data and runs faster (seconds) but also allows for the direct inter-
pretation of a distinguisher found – which particular bits in tested function output
are biased together and how.

– Large number of function analyzed: The BoolTest sensitivity was tested on com-
mon and widely used cryptographic functions like AES or SHA-3 (with over 20
functions tested total), all with a gradually reduced complexity via the decreased
number of internal rounds. The sensitivity of BoolTest is mostly equal to the state-
of-the-art batteries like TestU01 when tested on 100 MB data streams with some
notable differences. The counter-based input generation strategy results in more
internal rounds still distinguishable by BoolTest for DES, 3-DES, Keccak, MD5,
MD6, SHA-1, SHA-256, and TEA functions when no bias is detected anymore
by the standard batteries. Conversely, the TestU01 battery is able to distinguish
a higher number of rounds in DES, MD5, MD6, and SHA-1 functions when the
strict-avalanche testing input generation strategy is used.

– A different strategies for input data generation examined: A tested crypto-
graphic function is first repeatedly executed to produce a sufficiently long output
data stream, which is then supplied for the testing. However, the properties of the
inputs supplied to the tested function during the output generation are crucial and
significantly influence the randomness properties of generated output. The four dif-
ferent input data generation strategies were tested: 1) counter-based, where input
block is in the form of incremental counter, 2) very low hamming weight block,
3) random input block with a corresponding pair formed by single bit flip (focused
on the analysis of strict avalanche criterion) and 4) random input block, but also
inserted into the output data stream to test for input/output correlation.

– Practical distinguisher for C/Java rand: Among others, we found previously un-
known biases in the output of C rand() and Java Random pseudo-random genera-
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tors forming surprising strong practical distinguishers regardless of the initial seed
used. A deeper analysis of these distinguishers is provided.

– Open-source implementation: We release the code of BoolTest (Sýs and Klinec,
2017) as an open-source to facilitate further research in this area and complement
the standard test batteries.

The paper is organized as follows: Section 2 describes principles of the commonly
used batteries and provides the motivation for more efficient tests. Section 3 provides
background and detailed description of our strategy for distinguisher construction based
on boolean functions with relevant implementation details which significantly speed up
the computations. The comparison of results with common statistical batteries on more
than 20 functions are provided in Section 4 together with the detailed discussion of
practical distinguishers found for the Java and C pseudo-random generators and other
functions. Section 5 is devoted to the statistical interpretation of results reported by
BoolTest. Section 6 surveys the previous work and is followed by the conclusions given
in Section 7.

2 Motivation for better tests

Tests in batteries can be roughly divided into three main categories w.r.t. their com-
plexity. 1) The very simple tests compute statistic of bits (e.g., a histogram of ones and
zeros) within an entire tested sequence or within smaller parts of the whole sequence. 2)
The slightly more complex and usually slower tests compute statistic of a small block
of bits (e.g., an entropy of 8-bit blocks) within a sequence. 3) The complicated and
slow tests compute a complex statistic (e.g., the histogram of rank for matrices, linear
complexity) within the large parts of the sequence.

How well the common batteries perform in the analysis of crypto primitives? Let’s
take the 100 MB data produced by truly random number generator (which should pass
all tests), divide it into 128-bit blocks and introduce minor modification to original
random stream – the last bit (b127) of every block is changed so that xor with the very
first bit (b0) of that block gives always 0 as the result (b0⊕b127 = 0) instead of in only
half of the cases as expected. Even such a strong bias is detected only by a handful of
tests, most significantly by the block frequency test. If the resulting 0 is produced 1 %
more frequently than 1 (instead of always as previously), only one test of the TestU01
battery detects the bias. Moreover, for 0.1 % none of the standard tests (batteries NIST
STS, Dieharder and TestU01) detect this – still significant – bias. The problem lays in
a structure of patterns the tests are searching for in tested data.

Dieharder and NIST STS batteries analyze randomness according to consecutive
m bits for small m (typically m < 20). The tests included in TestU01 take a different
approach as data are transformed into series of real values with first r bits (of every
real value) discarded and only next s bits used for the analysis. TestU01 analyzes data
usually as point in k dimensions and thus t consecutive blocks of s bits represent point
in t dimensions. Values of r, s are typically in range [0,32] and t is usually small value
< 10.

Very simple and bit-oriented tests like Monobit test are usually also the fastest.
Besides the speed, the additional advantage of simple tests is usually the small amount
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of data necessary to compute correct results (statistic distribution is approximated well).
The more complex tests need significantly more data for the sufficient approximation
and thus also for detection of bias (if present). Another drawback of standard tests is a
lack of possibility to retrospective identify the exact biased or correlated bits even when
a test is able to detect some bias. The observed statistic computed by a test is given by
frequencies (histogram) of some feature. For more than two bins we are usually unable
to identify which bin has unexpectedly high or low value (w.r.t. reference values). Hence
we cannot identify the concrete input bits responsible for the production of the extreme
value of the observed statistic. On the other hand, if histogram contains only two bins,
the value in one bin automatically determines the value of the second bin.

According to the previous reasoning, the histogram (of frequencies) should prefer-
ably consist of two bins. To identify the biased or correlated bits, the searched relation
should be bit-oriented as well. One statistical test of randomness can be used to exam-
ine only one relation of specific bits (within a block). In order to find correlated bits, we
need to repeat the process many times with many different relations and bits selected.
The time required to evaluate the tests should be reasonably small, and therefore the
inspected relation represented as a simple boolean function is a natural choice. Such
representation is fast to compute as only bitwise operations are used to compute the
required histogram. Moreover, the exact (and not only approximated) reference distri-
bution expected for the truly random data can be computed analytically. Finally, one can
easily order two candidates (boolean functions) based on their complexity (degree and
number of components) and find the simplest function which exhibits unexpected bias
thus providing a more sensible guide for cryptanalyst. The following section provides
more details for the constructions of such distinguishers.

3 The randomness distinguisher based on the boolean functions

Our approach is inspired by the Monobit test which examines the proportion of ones
and zeros within the provided sequence. The frequencies of ones and zeros computed in
Monobit test represent results of a boolean function f (x1) = x1 when applied to all bits
of the sequence. This can be generalized to an arbitrary boolean function f (x1,x2, · · · ,xm)
of m variables applied to non-overlapping blocks of m bits.

In our approach, we construct set of boolean functions (potentially distinguishers)
defining different tests of randomness. All tests (functions) are applied the same way
(see Section 3.2) to given sequence resulting in a set of test statistics. The results of
our approach are the maximal observed test statistic and the corresponding boolean
function.

The maximal observed test statistic and the boolean function can be used to evaluate
the randomness of analyzed sequence or a new sequence:

– Maximal observed test statistic can be directly used to assess the randomness of
the analyzed sequence. The interpretation of maximal test statistic is based on the
distribution of maximal test statistic obtained for reference random data (see Sec-
tion 5).

– Found boolean function can also be used to assess the randomness of a new se-
quence from the same source as described in Section 3.2.
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The distinguisher (boolean function) is constructed iteratively from simpler and
weaker distinguishers (simpler boolean functions). Besides the fact that simpler dis-
tinguishers are found first, this also allows to speed up the entire process since many
intermediate computational results (for simpler functions) can be reused.

3.1 Test of randomness

The majority of empirical randomness tests are based on the statistical hypothesis test-
ing. Tests are formulated to evaluate the null hypothesis – “data being tested are ran-
dom”. Each test computes a specific statistic of bits or block of bits which is a function
of tested data. Firstly, a histogram of patterns for the given dataset is computed by
the test. Then the histogram is transformed into a single value – observed test statistic
which represents randomness quality of a sequence according to an analyzed feature.
The distribution (null distribution) of the test statistic under the null hypothesis (data
are random) is used to evaluate the test. Exact null distribution of a test statistic is usu-
ally complex function hence its close approximation is used instead. The most of the
tests have χ2 or normal distribution as their null distribution. A test checks where the
observed test statistic appears within the null distribution. The hypothesis is rejected if
value happens to be in extreme parts of the null distribution (tail). In such a case, the
tested data are considered to be non-random. An observed test statistic is usually trans-
formed to a p-value (using the null distribution). The p-value represents the probability
that a perfect random number generator would have produced a sequence “less random”
(more extreme according to analyzed feature) than the tested sequence (Rukhin, 2010).
The p-value is compared with the significance level α typically set to smaller values
0.01,0.005 or 0.001 for the randomness testing. If the p-value is smaller/bigger than α

hypothesis is rejected/accepted and data are considered to be non-random/random. The
following example illustrates how p-value is computed for the Monobit test.

Example 1. The Monobit test examines whether number of ones (#1) and zeros (#0) in
a sequence of n bits are close to each other as would be expected for random data. The
test statistic is computed as sobs =

|#0−#1|√
n . The reference distribution of the test statistic

is half normal as stated in (Rukhin, 2010) but this is just approximation. The p-value is
computed in the Monobit test as:

p-value = erfc
(

sobs√
2

)
= erfc

(
|#0−#1|√

2n

)
using the well-known complementary error function (erfc) (Press et al., 2007). Same
p-value can be computed for statistic sobs = #1. The exact distribution of #1 is binomial
distribution B(n,0.5) for a sequence of n bits. Figure 1a illustrates the exact reference
binomial distribution for sobs = #1 and sequences of n = 100 random bits (bins). The
figure also shows that the discrete binomial distribution can be approximated well by
the continuous normal distribution for sufficiently large n (documentation of NIST STS
recommends n≥ 100). The p-value represents the probability that RNG would generate
data with more extreme test statistic than sobs. A p-value can be computed as an area
below the normal distribution in the tail bounded by the observed test statistic sobs.
Figure 1a illustrates the value of p-value for n = 100 and sobs = 56.
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(a) Discrete binomial distribution B(100,0.5) and
its approximation by continuous normal distribu-
tion N (50,25). Area in the right tail represents p-
value for the test statistic defined by sobs = #1 for
a sequence with n = 100 bits (Sýs et al., 2017).

(b) The relation of Z-score and p-value. Z-score
is expressed in the units of the standard devia-
tion (Sýs et al., 2017).

Fig. 1: Monomial bit test and Z-score

3.2 Distinguisher evaluation

In order to evaluate the strength of the distinguisher (test), we use common principles
from randomness testing. We adapt and generalize the Monobit test. The distinguisher
(boolean function) defines the test of randomness, and the computed test statistic is
used directly as the measure of the strength of distinguishers. A more extreme value
of observed statistic means stronger distinguisher and conversely. To generalize the
Monobit test, let us characterize steps of a test of randomness.

An empirical test of randomness consists (in general) of the following steps:

1. Compute the histogram H of some features (within data).
2. Compute (transform the histogram to) the observed test statistic sobs.
3. Compute the null distribution (exact or its close approximation) D(x) of the test

statistic under the null hypothesis (random data).
4. Compute the p-value from sobs using the distribution D(x).

In our approach, the histogram of results of the boolean function f (x1, · · · ,xm) of m
variables applied to non-overlapping m-bit blocks of the sequence is computed. Our
test statistic is Z-score (Sheskin, 2003) defined as:

Z-score =
#1− pn√
p(1− p)n

, (1)

which normalize a binomial distribution B(n, p). Binomially distributed variable #1 is
normalized to Z-score which is distributed normally. P-value can be directly computed
from the Z-score. Figure 1b illustrates the relation of a Z-score (standardly expressed in
the units of standard deviation x ·σ) and the corresponding p-value (area of two tails).

In most cases distribution D(x) is given.
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The symbol p denotes the probability that the result of boolean function f is equal
to 1 for random input. The symbol n denotes the number of non-overlapping blocks (of
m bits) in the analyzed sequence (not the number of bits). Similarly, as in the Monobit
test, our histogram consists of two frequencies #1 and #0, but only #1 is computed
(#0 = n− #1) and is used for the evaluation. The only difference is that the expected
probability p is not p= 0.5. In general, p is arbitrary value from the interval [0,1] which
depends on the given boolean function f . The Z-score and relevant statistical theory is
discussed in Section 5 in more details.

Figure 2 illustrates our approach with the boolean function f (x1, · · · ,xm) = x2 +
x89 +x94. Firstly, data to be analyzed are divided into multiple non-overlapping blocks.
Then the number of results equal to one (#1) is computed (blocks serve as the inputs
for the function f ). The final result – Z-score is computed as the statistical distance
between observed and expected number of ones (#1).

Fig. 2: Our approach and the computation of Z-score using boolean function f (x1, · · · ,xm) =
x2 + x89 + x94. Z-score is computed as the statistical distance of observed #1 for tested data and
#1 = p.n expected for truly random data (Sýs et al., 2017).

To perform the test, we have to compute only #1 and the expected probability p (as
the p changes with the function f ). The algorithm for the computation of p is described
in Section 3.5. We may omit the computation of the p-value since the strength of dis-
tinguishers can be compared directly using their Z-scores. The bigger Z-score is, the
stronger distinguisher is obtained and vice versa.

3.3 Distinguisher construction

Our approach assumes that stronger and more complex distinguishers can be obtained
as a combination of the weaker and simpler ones. This assumption is natural in a sense
that if this would not be true, we have to find more complex distinguishers by brute
force anyway. As we start with a test of the simpler candidate distinguishers first, we
naturally obtain the simplest possible yet strong enough distinguisher. The potentially
stronger, but more complex distinguishers are evaluated later. We work with the boolean
functions of m variables for some fixed m. The construction is iterative. We first start
with the simplest boolean functions f (x1, · · · ,xm) = xi for i ∈ {1,2, · · · ,m} and con-
struct more and more complex (more monomials, higher degree) functions. Since we
want to find the weakness (biased bits) in the output of a tested cryptographic function,
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the number of variables m of a boolean function should correspond with the size of
function’s output. Therefore, the typical value of m is set to m = 128 or to its small
multiple 256, 384, 512 to match frequent block sizes used in common cryptographic
functions. For such small values of m, we can check all such simple boolean functions
by brute force. The construction is divided into two phases:

1. Firstly, the set S of k strongest and simple distinguishers is found: We search
through the set of monomials (xi, xi.x j, xi.x j.xk) of small degree ≤ deg since a total
number of functions raise exponentially with the degree. We assess the strength of
all monomials and set S of strongest (biggest Z-score) t distinguishers (|S| = t) is
sent to the next phase.

2. In the second phase, we construct more complex distinguishers: The simple dis-
tinguishers (elements of S from the first step) are combined using the addition
(XOR) operator. We construct all possible functions in the form of f (x1, · · · ,xm) =
b1 +b2 + · · ·+bk such that bi ∈ S and k is fixed.

The advantage of the described process is that the simple boolean functions are tested
first and if the sufficiently strong distinguisher (large Z-score) is found the process can
be terminated at any point. Moreover, construction of complex boolean function from
simpler allows reusing the intermediate results (distribution of ones and zeroes) com-
puted in the earlier stages to improve the entire performance significantly.

Fig. 3: Illustration of the first phase of distinguisher construction. The phase is parametrized by
parameters m, deg, t. Input to this phase is data (fixed) to be analyzed. All Boolean functions in the
first (and also in the second) phase are defined over m variables (m = 128 here). Each monomial
(out of

( m
deg
)

monomials) of degree deg (deg = 2 here) is applied to data and corresponding
Z− score is computed. Then absolute values of Z− scores are computed and sorted. The result
of the first phase is set of t (t = 100) strongest distinguishers – Boolean functions bi (monomials)
with highest absolute values of Z− score.
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Fig. 4: Distinguisher construction – second phase. Second phase is parametrized by parameters
m, k. The inputs to this phase are: the same data (as in previous phase) to be analyzed, and
the set t of best distinguishers bi found in the first phase. In this phase new Boolean functions
are constructed as sum (XOR) of k Boolean functions bi. All constructed B.f. are applied to
data corresponding Z− score is computed. The result of this phase and of entire approach is the
function f – distinguisher, and the value – Z− score. The Z− score can be used to assess the
randomness of analyzed data.

3.4 Implementation details

A result of the boolean function f (x1, · · · ,xm) can be computed efficiently using fast
bitwise operators AND and XOR. Moreover, these operators allow us to compute 32,
64 or 128 results at once (based on the CPU architecture and the instruction set). The
principle follows the way how the distinguisher is constructed. We firstly compute “ba-
sis” of results for the simple boolean functions when applied to all input blocks (of
m-bits) of a given sequence. Then the basis vectors are used to compute results for the
arbitrary complex boolean function applied to the same inputs.

– Firstly, a “basis” of results is constructed. For each variable xi, i ∈ {1, · · · ,m} we
fill the basis vector Xi (bit vector) by results of boolean function fi(x1, · · · ,xm) = xi
when applied to all input m-bit blocks of the tested data.

– The vector of all results X f of the function f can be computed using our vector
basis Xi in the same way as result of f is computed using xi. In fact, to compute the
vector of all results, it suffices to perform same operations with vectors Xi instead
of xi where AND and XOR are operators of boolean vectors now. The basis vectors
are packed into words for more efficient computation.

The principle can be illustrated on the following example. Let assume that we want
to compute 64 results of the boolean function f (x1,x2,x3,x4) = x1x2 + x3 for 64 blocks
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Bi each having 4-bits. We firstly compute basis bit-vector Xi that represents results (64
bits) of boolean function fi(x1,x2,x3,x4) = xi applied to all blocks Bi. Vector of results
X f for the function f (applied to Bi) can be computed as

X f = (X1 AND X2) XOR X3

for operators AND, XOR working with bit-vectors. The vector of results X f can be
computed using just two bitwise operations working with 64-bits words. The longer
sequences should be divided into words of 64 bits.

In our approach, boolean functions of a small degree and with the small number of
monomials (t) are constructed. Therefore vectors Xi, Xi, j =Xi AND X j corresponding to
functions xi, xi · x j are fully pre-computed and used as the basis for result computation.

3.5 On the computation of expected p

Determining p, i.e., the probability of evaluating polynomial f to 1 under the null hy-
pothesis that tested data are random, is equivalent to finding all variable settings under
which f evaluates to 1. This problem is exponentially complex with the size of the f .

Let pi be the probability of xi evaluating to one, P( f ) the probability of f evaluating
to 1 under all possible settings. The basic cases are:

1. P(xi) = 0.5
2. P(xixi+1 · · ·xi+k−1) = pi pi+1 · · · pi+k−1 = 2−k

3. P(xi + x j) = pi(1− p j)+(1− pi)p j
4. P(xi + x j + xk) = P((xi + x j)+ xk) using associativity and the rule 3.

By using these rules, it is easy to determine P( f ) for a general polynomial in alge-
braic normal form (ANF) in linear time w.r.t. a number of variables (under the assump-
tion of disjoint terms). However, the evaluation is more time-consuming if the terms are
dependent, as the relations above do not hold. The solution for the problem with de-
pendent terms requires to evaluate a polynomial for all possible variable settings, then
count the number of cases where f (x) = 1 and finally compute resulting P( f ). This time
complexity of the algorithm is exponential with respect to the number of variables.

Table 1: Experimental execution time of BoolTest running on Python 3.6.4, Intel Xeon CPU E5-
2630 v3 2.40. BoolTest configuration is: block bit size - degree - term combination degree

data \ conf 256-2-3 256-3-3 512-2-3 512-3-3
10 MB 23 s 1 m 12 s 21.1 s 3 m 29 s

100 MB 2 m 40 s 9 m 53 s 1 m 42 s 31 m 30 s

We use few tricks to reduce the computation time. Let denote f = b1 +b2 + · · ·bk,
where bi = ∏

deg
j=1 x j is a term of degree deg. If deg( f ) = 1 the rule 2 is used. In case of

dependent terms we fall-back to naı̈ve algorithm – evaluate f in all settings.
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As example, lets examine the polynomial f1 = x1x2x3 + x1x5x6 + x7x8x9. Using
naı̈ve approach the f1 is evaluated 28 times. With the closer look it can be evaluated
as: P((b1 + b2)+ b3), as b3 is independent of other terms so whole evaluation is done
only in 25 steps and one rule 3 application. To generalize this trick we just need to
compute dependency components between terms bi.

The terms bi, b j are dependent if bi ∩ b j 6= /0, i.e., they share at least one variable.
The trick is to apply the naı̈ve algorithm to all dependent components of the polynomial,
then merge the components using rules 3, 4 as they are pairwise independent. Com-
ponent finding is implemented with Union-Find algorithm with complexity O(α(n))
which yields the resulting complexity O(n α(n))

To further optimize the evaluation, we can convert the input polynomial to a canon-
ical form by renumbering the variables and sorting the terms. E.g. x60x120x48→ x1x2x3.
Then by caching previous computations (e.g., LRU), we can avoid some expensive
computations in a dependent component evaluation.

Another optimization is to use pruning and recursive application of the rules above
when evaluating dependent components. Consider b= x1x2x3+x1x5x6. In branch x1 = 0
we directly have b = 0 thus all evaluation sub-branches are pruned. In branch x1 = 1
we have b′ = x2x3 + x5x6. By applying the algorithm recursively, we see x2x3, x5x6 are
independent and no naı̈ve algorithm is used, only rules 2, 3, 4.

In practice, we use polynomials and terms of a relatively small degree, so we do
not use optimization with pruning and LRU caching as evaluating terms by the naı̈ve
algorithm is faster with this sizes. The overall benefit is the fast dependent component
detection, and in practice, the vast majority of polynomials have independent terms
which yield very fast P( f ) computation, in O(n α(n)). Practical running times of the
overall BoolTest are stated in Table 1.

4 Testing methodology and results

To demonstrate the practical usability of the proposed approach, we tested the approach
on a variety of cryptographic primitives – hash functions, block and stream ciphers and
(pseudo-) random number generators (PRNG). The results are compared with the ex-
isting automated approaches utilized by the randomness statistical test batteries NIST
STS, Dieharder and TestU01. The data used for analysis are generated using four dif-
ferent strategies.

4.1 Preparation of data for testing

Several different data generation strategies were used to analyze target function output
confusion and diffusion properties, namely CTR, LHW, SAC and RPC as shown in
Figure 5 and explained below. With the given strategy, the 100 MB of output data are
generated and used as an input for the randomness testing battery.

The CTR strategy generates blocks of particular size each containing the current
block index. Intuitively the high bits are set to zero while the low bits are iterating until
the 100 MBs of data is generated.
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(a) CTR, counter mode (b) LHW, fixed hamming weight vector of weight
2

(c) SAC, inputs generated randomly, f lip() flips
one bit at random position.

(d) RPC, inputs are generated randomly

Fig. 5: Data generation modes and formation of output stream for testing.

The LHW stands for low Hamming weight as it generates function’s input blocks
with the fixed and low Hamming weight. The weight is derived from the block size as
it is required to avoid cycling of the generator, i.e., depleting of all options on the block
size. If tested function f has input block size of 128 bits, the Hamming weight is set to
4, because 16

(128
4

)
≈ 170 MB. For 64-bit input block, the minimal required Hamming

weight is 6, as 8
(64

6

)
≈ 600 MB. The idea behind the LHW strategy is to cover the

whole input block with small changes only, keeping the total Hamming weight low
thus feeding the minimal possible entropy to a function. Both CTR and LHW serve as
low-entropy input generators.

The SAC strategy aims to test the Strict Avalanche Criterion. It generates pairs of
blocks where the first block in the pair is randomly generated and the second one is
almost the same except for single bit flip at a randomly selected position. Both blocks
are then used as an input to tested function f .

The RPC strategy stands for random-plaintext-ciphertext and generates random in-
put block pi, which is an input to a tested function f . The resulting data block used
for statistical analysis is then pi|| f (pi), the concatenation of plaintext and ciphertext.
This particular testing method adds additional entropy to the tested function making the
detection more difficult, e.g., it is expected that number of function’s internal rounds
with still detectable bias would be lower when compared to low-entropy inputs such
as CTR and LHW. On the other hand, we can directly analyze function’s input-output
correlation.

4.2 Parameters of boolean functions

Our approach is parameterized by the parameters deg, m, t and k. We search for the dis-
tinguisher with m variables and of k monomials each with degree of deg. The parameter
t represents the number of best monomials used to construct distinguisher in the second
phase (as described in Section 3.3). For instance, parameters deg = 2, m = 4, t = 128,
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k = 3 means that we searched for 128 strongest distinguishers (boolean functions) of
the form f (x1,x2,x3,x4) = xix j for different xi,x j ∈ {x1,x2,x3,x4} in the first phase. In
the second phase we combine every k-tuple of them to find the strongest distinguisher
of the form f (x1,x2,x3,x4) = xix j + xkxl + xrxs among the all possible combinations.
We tested data produced by various crypto functions with various settings. We used the
combination deg, m, t, k where deg ∈ {1,2,3}, m ∈ {128,256,384,512}, t = 128, and
k ∈ {1,2,3}.

4.3 Common cryptographic functions with CTR strategy

In order to compare our results with the standard batteries, we tested the data generated
with CTR strategy both with BoolTest and NIST STS, Dieharder and TestU01 test suites
(Alphabit, BlockAlphabit, Rabbit, Small Crush). Table 2 summarizes the results and
strength of tools according to a number of rounds for which deviation from distribution
expected for random data (null hypothesis) is detected by the respective tool for 100 MB
of data. We consider tested data to be rejected by a battery if at least one test from the
battery fails with the conservative significance level set to α = 1%.

Table 2: The number of rounds (of selected primitives and PRNGs) in which non-randomness was
detected for 100 MB data for NIST STS (NI), Dieharder (Di) and TestU01 (U01). Our approach
is presented for two well performing settings Bool1(deg = 2, k = 1, m = 384) and Bool2(deg = 2,
k = 2, m = 512). Character ’+’ means that more rounds were distinguished by boolean function
found with other parameters than two presented.

function NI Di U01 Bool1 Bool2
AES 3 3 3 3 3
ARIRANG 3 3 4 3 3
AURORA 2 2 4 2 2
BLAKE 1 1 1 1 1
Cheetah 4 4 6 4 4
CubeHash 0 0 1 0 0
DCH 2 2 2 1 1
Decim 6 6 6 5 5
Echo 1 1 1 1 1
Grain 3 2 2 2 2
Grøstl 2 2 2 2 2
Hamsi 0 0 0 0 0

function NI Di U01 Bool1 Bool2
JH 6 6 6 6 6
Keccak 2 2 2 3 3
Lex 3 3 3 3 3
Lesamta 2 3 3 2 2
Luffa 7 7 7 7 7
MD6 8 8 8 9 8
Simd 0 0 0 0 0
Salsa20 6 4 6 4+ 4+
TEA 4 4 4 4+ 4+
TSC-4 13 12 13 13+ 13+
Twister 6 6 7 6 6

Table 2 shows the best results of our tool obtained for two particular BoolTest set-
tings: Bool1( deg = 2, k = 1, m = 384) and Bool2(deg = 2, k = 2, m = 512). In 15 out
of 24 functions tested, BoolTest was able to detect non-randomness in stream produced
by the same number of rounds in round-reduced cryptographic functions when com-
pared to NIST STS. The more and fewer rounds were distinguished for Keccak, MD6,
and DCH, Decim, Grain, Salsa20 functions respectively.

It should be noted that BoolTest was able to find boolean functions with other pa-
rameters than Bool1 and Bool2 capable of detecting non-randomness of Salsa20 with
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4 rounds, TEA reduced to 5 rounds, and TSC-4 reduced to 14 rounds, but performing
same or worse on the remaining configurations.

The second practically important property of any test is the least amount of data
necessary to spot the bias (if present). We tested and compared the performance of
BoolTest with statistical batteries using 10 MB, 100 MB, and 1 GB of input data. The
results are summarized in Table 3. For test suites, the number of passed tests are shown.

Table 3: Results of NIST STS (NI), Dieharder (Di), TestU01 (U01) and our approach with two
settings Bool3(deg = 1, k = 2, m = 384, t = 128) and Bool4(deg = 1, k = 2, m = 512, t = 128)
obtained for 10 MB, 100 MB and 1 GB of data produced with primitives with limited number of
rounds (Sýs et al., 2017).

size func NI Di U01 Bool3 Bool4

10 MB

AES (3) ∀ 18 15 8.6 6.7
TEA (4) ∀ 20 ∀ 20.6 11.5

Keccak (3) ∀ ∀ 15 3.7 5.3
MD6 (9) ∀ ∀ ∀ 3.9 13.3

SHA-256 (3) 0 0 6 88.7 242

100 MB

AES (3) ∀ 16 15 8.9 15.0
TEA (4) 14 21 ∀ 73.6 5.2

Keccak (3) 14 22 15 3.8 9.2
MD6 (9) ∀ ∀ ∀ 3.7 26.4

SHA-256 (3) 0 0 4 50.7 828

1 GB

AES (3) 9 18 14 12.8 41.2
TEA (4) 13 24 ∀ 127 4.3

Keccak (3) ∀ 26 15 3.5 32.0
MD6 (9) 13 25 15 4.1 26.4

SHA-256 (3) 0 1 3 78.0 3043

The computed Z-scores are shown for the BoolTest and two best settings according to
given a set of analyzed functions. The results of BoolTest and test suites which can
be interpreted as detected non-randomness (null hypothesis rejected) are highlighted in
gray. Based on the results, we can conclude that test based on boolean functions usually
requires an order of magnitude fewer data to detect bias than common batteries.

4.4 Comparison of data generation strategies on selected functions

The four different data generation strategies described in Section 4.1 and their impact
on the randomness properties of tested function output is shown in Table 4. The notable
results are as follows:

– MD5 hash function reduced to 18 rounds and with LWH data generation mode
as tested by TestU01. The test smarsa BirthdaySpacings from TestU01 Small
Crush consistently evaluates the input as non-random. The test’s p-value increases
with increasing number of rounds up to 18, but it is always significant (≤ 10−9).
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Table 4: The number of rounds (of selected primitives) in which non-randomness was detected for
100 MB data for NIST STS (NI), Dieharder (Di) and TestU01 (U01) compared to our approach
BoolTest (BT). The input generation is described in Subsection 4.1. Gray highlight the best result
for given function on every data generation strategy.

Scenario CTR LHW SAC RPC
Fun.\Tests NI Di U01 BT NI Di U01 BT NI Di U01 BT NI Di U01 BT

AES 3 3 3 3 2 3 3 3 2 2 2 2 - 1 1 1
Blowfish 2 2 2 2 2 3 3 3 2 2 3 3 - 1 1 1
DES 4 4 4 5 4 4 4 5 4 4 5 4 1 1 2 4
3-DES 2 2 2 3 2 2 3 3 2 2 2 2 1 1 1 2
Grøstl 2 2 2 2 2 2 2 2 - - - - - - - -
JH 6 6 6 6 6 6 6 6 6 6 6 5 2 2 2 3
Keccak 2 2 2 3 2 2 2 3 2 2 2 2 1 - 1 1
MD5 9 10 9 11 12 13 20 13 9 11 14 12 3 3 4 6
MD6 8 8 8 8 8 8 8 9 7 7 8 7 5 5 7 5
SHA-1 12 12 13 14 16 16 16 16 11 15 16 14 4 4 5 7
SHA-256 6 6 6 7 12 12 12 13 11 11 12 13 3 4 4 4
TEA 4 4 4 5 3 3 3 4 3 4 3 3 - 2 1 1

The test snpair ClosePairsBitMatch from TestU01 Rabbit fails with even more
extreme p-values. This test fails even for MD6 reduced to 20 out of total 64 rounds
(p-values ≤ 10−19).

– Among the input generation strategies, RPC is consistently the scenario which is
the most difficult to distinguish from the truly random stream. The SAC is more dif-
ficult than CTR and LHW, which are roughly comparable. However, for SHA-256
the CTR scenario is more difficult than both LHW and SAC. We hypothesize that
CTR difficulty is caused by more chaotic bit-flips within two consecutive blocks
compared to other scenarios.

– BoolTest is among the most successful tests for CTR, LHW and RPC inputs for
tested data with 100 MB length. For SAC generation strategy, TestU01 is the most
sensitive battery, while BoolTest performs similarly to Dieharder battery.

Note, that the interpretation of BoolTest result (if the tested sequence is random or
non-random) is more straightforward than for the standard batteries. While BoolTest
consists of only a single test and resulting single Z-score, standard batteries consist
of multiple statistical tests, each with own p-value interpretation and also potentially
correlated to other tests. This property was also confirmed while comparing the results
shown in the Table 4.

4.5 Pseudo-random number generators

The proposed approach was tested on several commonly used non-cryptographic pseudo-
random number generators (PRNGs): Mersenne Twister 19937, Multiply-with-Carry
C++ generator, Ranlux24, T800, TT800 from TestU01 and C stdlib rand() and Java
java.util.Random. The practical distinguishers were found for the last two generators
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(as discussed below) and no distinguisher was found for any tested parameters and data
sizes up to 1 GB for the remaining ones.

Using BoolTest, we were able to find universal distinguishers i.e., which work for
large groups of PRNG seeds, for C stdlib rand() and Java java.util.Random (C rand,
Java rand in short). We tested BoolTest on 1000 different bit streams generated by the
C rand respectively, each bit stream generated by using a different random seed from
the interval [0,232−1].

Let define an input bit stream as τi and the best distinguisher and its corresponding
Z-score value for τi returned by BoolTest as (ξi,δi). Figures 6 and 7 depict the set of
the best distinguishers ξi ∈ { f1, f2, f3, f4, f5, f6} and their Z-scores found by BoolTest
on input bit streams τ1, . . . ,τ1000. In order to emphasize the Z-score deviation polarity
each distinguisher has, the Z-score results are split into two box plots, for positive and
negative Z-scores values. The number of occurrences of the distinguisher f+1 is | f+1 |=
|{i;ξi = f1∧δi≥ 0}|. E.g., the f−1 column represents all the Z-score values δi < 0 where
ξi = f1 and the f+1 column represents δi ≥ 0 where ξi = f1.

Note for the C rand the deviation is only positive while for Java Random it is usually
symmetric.
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f1 = x71x319 + x295x379

f2 = x88x375 + x127x351

Fig. 6: The best distinguishers, C rand(), 1000 x 1 MB data samples, 384-bit block, random 32-bit
seed, Ubuntu 16.04. The best distinguisher occurrences in 1000 tests: | f+1 |= 520, | f+2 |= 480

The distinguishers from Figure 7 were discovered with the parameters (deg = 3,
k = 3, m = 512). In this setting the BoolTest examined input bit stream of increasing
sizes: {19200, . . . ,x j,2x j, . . . ,300 · 10242} bytes and found { f3, f4, f5, f6} distinguish-
ers after examining 37.5 MB bit stream. In the previous iterations with smaller input
bit stream only weak distinguishers were found. When using different settings (deg,
m, k) ∈ {{1,2,3}×{128,258,384,512}×{1,2,3}} we were able to find only weaker
distinguishers which required significantly more data to achieve the same Z-score. In-
terestingly, { f3, f4, f5, f6}we discovered after examining 37.5 MB bit stream work very
well also for smaller data sizes, as depicted in Figure 5.

It is evident there exists a good distinguisher of a low degree for Java Rand but due
to top-heuristics the BoolTest was not able to find it with other combinations rather than
(deg = 3, k = 3, m = 512) and the particular size of the data. The utilization of suitable

f1, f2, f3, f4, f5, f6 are particular boolean functions.
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| f−3 |= 352, | f+3 |= 374, | f−4 |= 48, | f+4 |= 86

| f−5 |= 45, | f+5 |= 63, | f−6 |= 32, | f+6 |= 0

f3 = x38x326 + x39x327 + x326x486

f4 = x38x326 + x205x327 + x326x486

f5 = x38x326 + x326x486 + x327x359

f6 = x38x326 + x167x327 + x326x486

Fig. 7: The best distinguishers, Java Random, 1000 x 1 MB data samples, 512-bit block, random
32-bit seed. Java OpenJDK 1.8.0 121, Oracle Java 1.7.0 6, 1.8.0 65, (Sýs et al., 2017).

optimization methods like genetic algorithms could lead to stronger distinguishers also
for other tested functions.

Note that once the universal distinguisher for a tested function is found, the applica-
tion on data produced by this function is straightforward and requires only small amount
of data produced. Table 5 compares the BoolTest performance for tested PRNGs with
standard test suites.

Table 5: Results of NIST STS (NI), Dieharder (Di), Test U01 (U01) and BoolTest obtained for
1 MB, 10 MB and 100 MB of data. ∀means all tests passed, fraction means number of tests passed
from the total number. BoolTest column represents an average of |Z-score| values produced by
the best distinguishers { f1, f2, f3, f4, f5, f6} on 1000 randomly seeded input bit streams.

size func NI Di U01 BoolTest

1 MB
c - ∀ ∀ 19.67

java - ∀ ∀ 17.78

10 MB
c ∀ ∀ ∀ 60.92

java ∀ ∀ ∀ 55.98

100 MB
c ∀ 22/23 ∀ 191.37

java ∀ ∀ 15/16 176.62
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Fig. 8: The size of the input bit stream vs. |Z-score| using distinguishers { f3, f4, f5, f6} for Java
Random, 1000 random seed samples per data size category. Dashed line represents ref. Z-score
value for the test, (Sýs et al., 2017).

5 The statistical interpretation

The result of BoolTest is the maximal Z-score computed within a set of boolean func-
tions. The interpretation of Z-score for a single boolean function is simple and straight-
forward. Z-score is normally distributed random variable and p-value can be computed
directly from it. However, the computation of p-value from the maximal Z-score (de-
noted as Z-SCORE) computed by our tool is more complicated. In this Section, we
describe the Z-score, the p-value and the statistical theory related to our approach. Af-
terward, we discuss interpretations of the result of BoolTest based on reference results
computed for truly random data.

5.1 P-value and Z-score

The p-value represents the probability that more extreme results are obtained (for the
true hypothesis) than we observed (sobs). In our case, p-value represents the probability
that a perfect random number generator would produce less random sequences than
the sequence being tested. The p-value is computed from the observed test statistic
sobs and the reference distribution D or its close approximation. The null distribution
of many tests is binomial distribution B(n, p). It is approximated well (for n > 10p
and n · (1− p) > 10) by normal distribution N (µ,σ2) (Wackerly et al., 2002). Normal
distribution is symmetric around mean µ and therefore p-value is computed as an area
under bell curve in both tails (see Figure 1b). Sometimes Z-score is computed instead
of p-value since they are related

p-value = erfc
(

Z-score√
2

)
(Chevillard, 2012) and computation of Z-score is simpler and faster. The Z-score rep-

resents the distance from the mean µ in units of σ. The binomial distribution B(n, p) is
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approximated by N (µ,σ2), with the parameters µ = np and σ2 = np(1− p) (Sheskin,
2003) i.e. Z-score of binomially (B(n, p)) distributed #1 is computed as

Z-score =
#1− pn√
p(1− p)n

=
#1−µ

σ
.

Table 6: The mean (µ) of maximal Z-SCORE computed by BoolTest for various settings k, deg ∈
{1,2,3}, m ∈ {128,256,384,512} and t = 128.

deg 1 2 3
m \ k 1 2 3 1 2 3 1 2 3

128 2.80 3.96 4.81 3.87 5.35 5.80 4.71 6.56 7.61
256 3.05 4.00 4.81 4.23 5.66 6.01 5.13 7.10 8.24
384 3.14 4.01 4.77 4.39 5.86 6.19 5.32 7.41 8.55
512 3.24 3.92 4.79 4.55 6.02 6.28 5.54 7.64 8.86

Table 7: The standard deviation (σ) of maximal Z-SCORE computed by BoolTest for various
settings k, deg ∈ {1,2,3}, m ∈ {128,256,384,512} and t = 128.

deg 1 2 3
m \ k 1 2 3 1 2 3 1 2 3

128 0.39 0.25 0.25 0.33 0.30 0.32 0.27 0.23 0.27
256 0.42 0.30 0.24 0.36 0.31 0.26 0.28 0.23 0.26
384 0.37 0.31 0.25 0.26 0.27 0.26 0.25 0.22 0.23
512 0.37 0.30 0.23 0.31 0.30 0.27 0.28 0.20 0.31

5.2 Maximal Z-score

In order to interpret result (Z-SCORE) of our tool we have to find expected distribu-
tion fmax of Z-SCORE for the null hypothesis i.e. random data. The value of Z-SCORE
is determined by the boolean functions constructed in two phases using setting deg,
m, k, t. The value Z-SCORE is computed as a maximal Z-score for a set of Z-scores
corresponding to constructed boolean functions. The theoretical assessment of the dis-
tribution fmax should follow the process of the construction of the best distinguisher
with maximal Z-score (in absolute value). It is hard to theoretically derive probability
density function (pdf) fmax for settings with k > 1. But for the settings with k = 1 the
pdf fmax can be derived much easier.

– For k = 1 the resulted Z-SCORE is equal to a maximal Z-score computed for
boolean functions constructed in the first phase, since in the second phase no func-
tions are constructed. While Z− scores corresponding to boolean functions (mono-
mials xi for i ∈ 1, · · · ,m) of degree deg = 1 are independent normally distributed
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random variables, the Z−scores of functions of higher degrees are dependent since
these functions share variables e.g. x1.x2 and x1.x3. The correlation is not signifi-
cant and variables can be modeled as independent with small bias when compared
to empirically obtained fmax.

– In the case of k > 1 the situation is quite different. First of all, Z-scores for the
best t distinguishers selected in the first phase are normally distributed but with
different means and standard deviations. It is clear that the pdf of a maximum of
t normal variables is different to pdf of the second largest normal variable. The
reason is obvious: the probability P(max(Xi) =V ) that maximum (l-th order statis-
tic) of normal variables X1, · · · ,Xl is equal to very large value is strictly smaller
than probability that second maximal value (within Vi) is equal to V . Second of all
dependency of boolean functions constructed in the second phase is bigger, more
complex since these functions are constructed as a sum of several (two or three)
partially dependent functions. Therefore to derive theoretical expected pdf fmax for
k > 1 is hard task in general.

In the case k = 1, the theoretical pdf fmax can be derived using the fact that pdf
fmax of largest X (l-th order statistic) for independent and identically random variables
X1, · · · ,Xl with pdf f is given by

fmax(x) = l · f (x) ·F(x)l−1,

for the cumulative distribution function F of variables Xi. We are looking for fmax for
maximum of absolute values of Z-scores hence f (x) = 2 ·ϕ(x) and F(x) = 2 · (Φ(x)−
0.5) for standard normal distribution ϕ(x) and corresponding cdf Φ(x). The pdf fmax of
Z-SCORE for k = 1 can expressed as:

fmax(x) = l ·ϕ(x) · (2 ·Φ(x)−1)l−1

for l =
( m

deg

)
representing number of boolean functions constructed in the first phase.

We computed functions fmax(x) for settings k, deg ∈ {1,2,3}, m ∈ {128,256,384,512}
and realized that function fmax represent normal distribution with mean µ very close to
average Z− score obtained empirically.

Table 8 shows theoretical µ computed in statistical software R.

Table 8: The mean (µ) of maximal Z-SCORE computed by BoolTest and reference theoretical
computation in statistical software R (R-soft) for various settings k = 1, deg ∈ {1,2,3}, m ∈
{128,256,384,512}.

deg 1 2 3
m BoolTest R-soft BoolTest R-soft BoolTest R-soft

128 2.80 2.70 3.87 3.85 4.71 4.68
256 3.05 2.92 4.23 4.18 5.13 5.09
384 3.14 3.03 4.39 4.36 5.32 5.32
512 3.24 3.12 4.55 4.48 5.54 5.48
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6 Related work

NIST STS (Rukhin, 2010), Dieharder (Brown et al., 2013) (an extended version of the
Diehard (Marsaglia, 1995)) and TestU01 (L’Ecuyer and Simard, 2007) are the most
commonly used batteries for statistical randomness testing. The NIST STS is the basic
battery required by NIST to test RNGs of cryptographic devices by the FIPS 140-2
certification process (NIST, 2001) with four out of total 15 of NIST STS tests required
as power-up tests executed on-device. The Dieharder battery is an extension of original
Diehard battery (Marsaglia, 1995) with some (but not all) NIST STS tests also included.
Overall, Dieharder consists of 76 test variants. Dieharder is generally more powerful
than NIST STS with the ability to detect smaller biases as it may analyze longer data
stream.

TestU01 can be viewed as the current state-of-the-art of randomness testing. TestU01
is a library that implements more than 100 different tests of randomness. These tests are
grouped into six sub-batteries called Small Crush, Crush, Big Crush, Rabbit, Alphabit,
BlockAlphabit. The first three sub-batteries are proposed to test floating point random
numbers from the interval [0,1]. The fastest is Small Crush (10 tests), significantly
slower is Crush (96 tests) and very slow but powerful is Big Crush battery (all 106
tests). The amount of data used for analysis increases with the number of tests and their
complexity. The Small Crush/Crush/Big Crush need at least 206 MB/2.6 GB/51.3 GB
data to run all tests of the battery. Other three batteries are proposed for testing the bi-
nary sequences specifically. The Rabbit (26 tests), Alphabit (9 tests) and BlockAlphabit
(54 tests) batteries are not limited in fact (Rabbit is restricted to 500 bits) in the size of
data they need for the analysis. Other statistical testing tools we are aware of are: Don-
ald Knuth’s tests (Knuth, 1969), Crypt-X suite (Caelli et al., 1998), PractRand (Doty-
Humphrey, 2014), RaBiGeTe (Piras, 2004), CryptoStat (Kaminsky and Sorrell, 2013),
YAARX (Biryukov and Velichkov, 2014), ENT (Walker, 2008), SPRNG (Mascagni and
Srinivasan, 2000), gjrand (Jones, 2007) and BSI’s test suite (Schindler and Killmann,
2002).

Batteries analyze data with an assumption that data were generated by a black box
function. It is clear that more information we have about the generator the better ran-
domness analysis we can perform. There are three basic approaches (linear, differential
and algebraic cryptanalysis) for randomness analysis of data produced by a primitive
which are based on its internal structure. Nice tutorial on linear and differential crypt-
analysis can be found in (Heys, 2002). Various methods of algebraic cryptanalysis are
described in the book (Bard, 2009). There are several automated tools that implement
aforementioned approaches. These tools look for dependency between inputs and out-
puts of the primitive (and key, IV bits). List of current such cryptanalytical methods and
tools implemented in recent years can be found at (Mouha, 2010).

In (Filiol, 2002) a new and strong method of statistical testing of hash functions
and symmetric ciphers was proposed. In this approach, each output bit is described as
a boolean function in the algebraic normal form (ANF). The test statistic is based on
a number of monomials in ANF. Since the number of monomials is exponential in the
number of variables, the randomness is evaluated based on the number of monomials
of degree exactly d which has χ2 distribution for random boolean functions. Another
automated cryptanalytic tool (Englund et al., 2007) is based on the strong d-monomial
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test. In (Englund et al., 2007) monomial test was generalized to perform chosen IV sta-
tistical attacks on stream ciphers. In (Stankovski, 2010), a greedy method was proposed
to find distinguishers from randomness for stream and block ciphers. The method is
based on maximum degree monomial test similar to d-monomial test. Previous meth-
ods are based on ANF of analyzed function which is statistically compared with ANF
of random boolean function expected for the truly random data. This is completely dif-
ferent to our approach, where the boolean function itself defines the statistic of a test of
randomness.

The automated testing tool for cryptographic primitives named CryptoStat (Kamin-
sky and Sorrell, 2014) is focused on testing block ciphers and message authentication
codes. CryptoStat consists of several tests each computing the probability that block of
bits of the ciphertext equals to bits taken from plaintext and key. Bits are selected either
randomly, or block of consecutive bits are taken. The tests of CryptoStat are reducible
to Bernoulli trials, and they are evaluated using Bayesian conditional probability.

Hernández and Isasi proposed an automated construction of distinguisher for TEA
block cipher (Hernández and Isasi, 2004). They searched for a distinguisher in the form
of input bitmask of the 192-bit block (64-bit plaintext and 128-bit key). As the search
space of all possible bitmasks is too large, a heuristic based on genetic algorithm was
used to construct a distinguisher for TEA limited up to 4 rounds. In the (Garrett et al.,
2007), authors optimized the Hernández’s approach with a quantum-inspired genetic
algorithm and found distinguisher for TEA limited to 5 rounds. BoolTest is performing
same as shown in Table 4, yet the scenarios are not directly comparable.

The similar but more general approach is used in EACirc framework (EACirc,
2017) which constructs distinguisher (test of randomness) for crypto primitive with-
out knowledge about primitive design (black-box). In the EACirc test of randomness is
constructed for the predefined representation as circuit-like software over the set AND,
XOR, NOR, NOT of boolean operations. The ciphers with a limited number of rounds
were tested with results comparable to NIST STS battery. Although the Dieharder bat-
tery still provides overall better randomness analysis EACirc was able to detect some
non-randomness for Hermes and Fubuki (Sýs et al., 2014) where both batteries failed
to detect any deviances.

7 Conclusion

This paper provides deeper analysis of newly proposed statistical testing tool called
BoolTest (Sýs et al., 2017, SeCrypt). In the former work, authors focused on randomness
testing of an output of cryptographic functions and random generators. In this work,
we present three new strategies focusing on the correlation of input and output bits of
cryptoprimitives. To compare the new strategies to the former one, we analyzed the
same functions, and we extended the testbed with six new cryptoprimitives (Blowfish,
DES, 3-DES, MD5, SHA-1, and SHA-256).

The new results show that BoolTest is filling the gap among most common statistical
batteries like NIST STS, Dieharder, and TestU01. For CTR and RPC strategies, BoolTest
is on average capable of detecting bias in one additional round. It performs comparable
for LHW strategy and slightly worse in SAC strategy.
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Additionally, the bias spotted is directly interpretable as a relation between several
fixed output bits of the analyzed function. The BoolTest can be used as a fast alterna-
tive to existing batteries and to complement its results. The direct interpretability of a
boolean function based distinguisher adds benefit for human cryptologist interested in
the more detailed analysis of weakness present in an inspected cryptographic function.

The future work will address speeding up the brute-force part of the computation
by utilizing the FPGA and smarter selection of terms using a heuristic.
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