## A formula for disaster: a unified approach to elliptic curve special-point-based attacks

## Vladimir Sedlacek $^{1,2}$ Jesus-Javier Chi-Dominguez ${ }^{3,4}$ Jan Jancar ${ }^{1}$ Billy Bob Brumley ${ }^{3}$

${ }^{1}$ Centre for Research on Cryptography and Security, Masaryk University, Brno, Czech Republic
${ }^{2}$ Ca'Foscari University, Venice, Italy
${ }^{3}$ Tampere University, Finland
${ }^{4}$ Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
Asiacrypt 2021, December 7

## What is ECC?

## Elliptic Curve Cryptography

Based on the discrete log: given $P$ and $[k] P$, recover the private key $k$


## What is ECC?

## Elliptic Curve Cryptography

Based on the discrete log: given $P$ and $[k] P$, recover the private key $k$


Textbook affine addition: $P=\left(X_{1}: Y_{1}: 1\right), Q=\left(X_{2}: Y_{2}: 1\right) \Longrightarrow P+Q=\left(X_{3}: Y_{3}: 1\right)$, where $X_{3}=\lambda^{2}-X_{1}-X_{2}, Y_{3}=\lambda\left(X_{1}-X_{3}\right)-Y_{1}, \lambda=\frac{Y_{1}-Y_{2}}{X_{1}-X_{2}}$.

Implementing ECC

? $\qquad$ ?

Implementing ECC


Implementing ECC


Implementing ECC


## Formula example: add-2007-bl

$$
\text { Input: } P=\left(X_{1}: Y_{1}: Z_{1}\right), \quad Q=\left(X_{2}: Y_{2}: Z_{2}\right)
$$

Output: $P+Q=\left(X_{3}: Y_{3}: Z_{3}\right)$

$$
\begin{aligned}
& U_{1}=X_{1} \cdot Z_{2} \\
& U_{2}=X_{2} \cdot Z_{1} \\
& S_{1}=Y_{1} \cdot Z_{2} \\
& S_{2}=Y_{2} \cdot Z_{1} \\
& Z Z=Z_{1} \cdot Z_{2} \\
& T=U_{1}+U_{2} \\
& T T=T^{2} \\
& M=S_{1}+S_{2} \\
& t_{0}=Z Z^{2} \\
& t_{1}=a \cdot t_{0} \\
& t_{2}=U_{1} \cdot U_{2}
\end{aligned}
$$

$$
\begin{aligned}
& t_{3}=T T-t_{2} \\
& R=t_{3}+t_{1} \\
& F=Z Z \cdot M \\
& L=M \cdot F \\
& L L=L^{2} \\
& t_{4}=T+L \\
& t_{5}=t_{4}^{2} \\
& t_{6}=t_{5}-T T \\
& G=t_{6}-L L \\
& t_{7}=R^{2} \\
& t_{8}=2 \cdot t_{7}
\end{aligned}
$$

## Choosing an addition formula

Problems:

- Many formulas with exceptional cases $(P+\underline{Q}=\mathbf{X})$


## Choosing an addition formula

Problems:

- Many formulas with exceptional cases $(P+Q=X)$
- Hidden assumptions $\rightarrow$ unexpected behavior


## Choosing an addition formula

Problems:

- Many formulas with exceptional cases $(P+Q=X)$
- Hidden assumptions $\rightarrow$ unexpected behavior
- Issues in the past:


## Choosing an addition formula

Problems:

- Many formulas with exceptional cases $(P+Q=\mathbf{X})$
- Hidden assumptions $\rightarrow$ unexpected behavior
- Issues in the past:
- NSS, OpenSSL, BoringSSL, Python fastecdsa


## Choosing an addition formula

Problems:

- Many formulas with exceptional cases $(P+Q=X)$
- Hidden assumptions $\rightarrow$ unexpected behavior
- Issues in the past:
- NSS, OpenSSL, BoringSSL, Python fastecdsa
- Incorrect results and/or leakage


## Choosing an addition formula

Problems:

- Many formulas with exceptional cases $(P+Q=\mathbf{X})$
- Hidden assumptions $\rightarrow$ unexpected behavior
- Issues in the past:
- NSS, OpenSSL, BoringSSL, Python fastecdsa
- Incorrect results and/or leakage
- Explicit-Formulas Database (EFD) [Bernstein, Lange] helps...


## Choosing an addition formula

Problems:

- Many formulas with exceptional cases $(P+Q=\mathbf{X})$
- Hidden assumptions $\rightarrow$ unexpected behavior
- Issues in the past:
- NSS, OpenSSL, BoringSSL, Python fastecdsa
- Incorrect results and/or leakage
- Explicit-Formulas Database (EFD) [Bernstein, Lange] helps...but still not ideal


## Choosing an addition formula

Problems:

- Many formulas with exceptional cases $(P+Q=X)$
- Hidden assumptions $\rightarrow$ unexpected behavior
- Issues in the past:
- NSS, OpenSSL, BoringSSL, Python fastecdsa
- Incorrect results and/or leakage
- Explicit-Formulas Database (EFD) [Bernstein, Lange] helps...but still not ideal

Goal: classify all exceptional cases in EFD formulas

## EFD addition formulas

| Model | Coordinates | $(x, y)$ representation | Number of formulas |
| :---: | :---: | :---: | :---: |
| short Weierstrass | projective <br> Jacobian <br> modified <br> w12 with $b=0$ <br> xyzz <br> xz | $\begin{aligned} & (x Z: y Z: Z) \\ & \left(x Z^{2}: y Z^{3}: Z\right) \\ & \left(x Z^{2}: y Z^{3}: Z: a Z^{4}\right) \\ & \left(x Z: y Z^{2}: Z\right) \\ & \left(x Z^{3}: y Z^{3}: Z^{2}: Z^{3}\right) \\ & (x: Z) \end{aligned}$ | $\begin{gathered} 21 \\ 36 \\ 4 \\ 2 \\ 2 \\ 6 \\ 22 \end{gathered}$ |
| Montgomery | xz | (xZ: $Z$ ) | 8 |
| twisted Edwards | projective extended inverted | $\begin{aligned} & (x Z: y Z: Z) \\ & (x Z: y Z: x y Z: Z) \\ & \left(\frac{z}{x}: \frac{z}{y}: z\right) \end{aligned}$ | $\begin{gathered} 3 \\ 18 \\ 3 \end{gathered}$ |
| Edwards | projective inverted <br> yz <br> yzsquared | $\begin{aligned} & (x z: y z: z) \\ & \left(\begin{array}{l} z \\ x \end{array} \frac{z}{y}: z\right) \\ & (y z \sqrt{d}: z) \\ & \left(y^{2} z \sqrt{d}: z\right) \\ & \hline \end{aligned}$ | $\begin{gathered} 12 \\ 6 \\ 6 \\ 6 \end{gathered}$ |

## Classifying exceptional points

- Both fuzzing and manual analysis


## Classifying exceptional points

- Both fuzzing and manual analysis
- All 111 addition and 42 differential addition EFD formulas analyzed


## Classifying exceptional points

- Both fuzzing and manual analysis
- All 111 addition and 42 differential addition EFD formulas analyzed
- All exceptional points completely classified


## Classifying exceptional points

- Both fuzzing and manual analysis
- All 111 addition and 42 differential addition EFD formulas analyzed
- All exceptional points completely classified
- New family of exceptional points found for add-2007-bl:

$$
P=\left(X_{1}: Y_{1}: 1\right) \text { and } Q=\left(X_{2}:-Y_{1}: 1\right) \text { with } X_{1} \neq X_{2}
$$

## Formula example: add-2007-bl (exceptions)

$$
\text { Input: } P=\left(X_{1}: Y_{1}: Z_{1}\right), \quad Q=\left(X_{2}: Y_{2}: Z_{2}\right)
$$

Output: $P+Q=\left(X_{3}: Y_{3}: Z_{3}\right)$

$$
\begin{aligned}
& U_{1}=X_{1} \cdot Z_{2} \\
& U_{2}=X_{2} \cdot Z_{1} \\
& S_{1}=Y_{1} \cdot Z_{2} \\
& S_{2}=Y_{2} \cdot Z_{1} \\
& Z Z=Z_{1} \cdot Z_{2} \\
& T=U_{1}+U_{2} \\
& T T=T^{2} \\
& M=S_{1}+S_{2} \\
& t_{0}=Z Z^{2} \\
& t_{1}=a \cdot t_{0} \\
& t_{2}=U_{1} \cdot U_{2}
\end{aligned}
$$

$$
\begin{aligned}
& t_{3}=T T-t_{2} \\
& R=t_{3}+t_{1} \\
& F=Z Z \cdot M \\
& L=M \cdot F \\
& L L=L^{2} \\
& t_{4}=T+L \\
& t_{5}=t_{4}^{2} \\
& t_{6}=t_{5}-T T \\
& G=t_{6}-L L \\
& t_{7}=R^{2} \\
& t_{8}=2 \cdot t_{7}
\end{aligned}
$$

$$
\begin{aligned}
& W=t_{8}-G \\
& t_{9}=F \cdot W \\
& X_{3}=2 \cdot t_{9} \\
& t_{10}=2 \cdot W \\
& t_{11}=G-t_{10} \\
& t_{12}=2 \cdot L L \\
& t_{13}=R \cdot t_{11} \\
& Y_{3}=t_{13}-t_{12} \\
& t_{14}=F^{2} \\
& t_{15}=F \cdot t_{14} \\
& Z_{3}=4 \cdot t_{15}
\end{aligned}
$$

## Formula example: add-2007-bl (exceptions)

Input: $P=\left(X_{1}: Y_{1}: Z_{1}\right), \quad Q=\left(X_{2}: Y_{2}: Z_{2}\right)$
Output: $P+Q=\left(X_{3}: Y_{3}: Z_{3}\right)$

$$
\begin{aligned}
& U_{1}=X_{1} \cdot Z_{2} \\
& U_{2}=X_{2} \cdot Z_{1} \\
& S_{1}=Y_{1} \cdot Z_{2} \\
& S_{2}=Y_{2} \cdot Z_{1} \\
& Z Z=Z_{1} \cdot Z_{2} \\
& T=U_{1}+U_{2} \\
& T T=T^{2} \\
& M=S_{1}+S_{2} \\
& t_{0}=Z Z^{2} \\
& t_{1}=a \cdot t_{0} \\
& t_{2}=U_{1} \cdot U_{2}
\end{aligned}
$$

$$
\begin{aligned}
& t_{3}=T T-t_{2} \\
& R=t_{3}+t_{1} \\
& F=Z Z \cdot M \\
& L=M \cdot F \\
& L L=L^{2} \\
& t_{4}=T+L \\
& t_{5}=t_{4}^{2} \\
& t_{6}=t_{5}-T T \\
& G=t_{6}-L L \\
& t_{7}=R^{2} \\
& t_{8}=2 \cdot t_{7}
\end{aligned}
$$

$$
\begin{aligned}
& W=t_{8}-G \\
& t_{9}=F \cdot W \\
& X_{3}=2 \cdot t_{9} \\
& t_{10}=2 \cdot W \\
& t_{11}=G-t_{10} \\
& t_{12}=2 \cdot L L \\
& t_{13}=R \cdot t_{11} \\
& Y_{3}=t_{13}-t_{12} \\
& t_{14}=F^{2} \\
& t_{15}=F \cdot t_{14} \\
& Z_{3}=4 \cdot Z_{2}^{3} \cdot Z_{1}^{3} \cdot\left(Y_{2} \cdot Z_{1}+Y_{1} \cdot Z_{2}\right)^{3}
\end{aligned}
$$

## Formula example: add-2007-bl (exceptions)

$$
\text { Input: } P=\left(X_{1}: Y_{1}: 1\right), \quad Q=\left(X_{2}:-Y_{1}: 1\right), \quad X_{1} \neq X_{2}
$$

Output: $P+\underline{Q}=\left(X_{3}: Y_{3}: Z_{3}\right)$

$$
\begin{aligned}
& U_{1}=X_{1} \cdot Z_{2} \\
& U_{2}=X_{2} \cdot Z_{1} \\
& S_{1}=Y_{1} \cdot Z_{2} \\
& S_{2}=Y_{2} \cdot Z_{1} \\
& Z Z=Z_{1} \cdot Z_{2} \\
& T=U_{1}+U_{2} \\
& T T=T^{2} \\
& M=S_{1}+S_{2} \\
& t_{0}=Z Z^{2} \\
& t_{1}=a \cdot t_{0} \\
& t_{2}=U_{1} \cdot U_{2}
\end{aligned}
$$

$$
\begin{aligned}
& t_{3}=T T-t_{2} \\
& R=t_{3}+t_{1} \\
& F=Z Z \cdot M \\
& L=M \cdot F \\
& L L=L^{2} \\
& t_{4}=T+L \\
& t_{5}=t_{4}^{2} \\
& t_{6}=t_{5}-T T \\
& G=t_{6}-L L \\
& t_{7}=R^{2} \\
& t_{8}=2 \cdot t_{7}
\end{aligned}
$$

$$
\begin{aligned}
& W=t_{8}-G \\
& t_{9}=F \cdot W \\
& X_{3}=2 \cdot t_{9} \\
& t_{10}=2 \cdot W \\
& t_{11}=G-t_{10} \\
& t_{12}=2 \cdot L L \\
& t_{13}=R \cdot t_{11} \\
& Y_{3}=t_{13}-t_{12} \\
& t_{14}=F^{2} \\
& t_{15}=F \cdot t_{14} \\
& Z_{3}=4 \cdot\left(Y_{1}+Y_{2}\right)^{3}
\end{aligned}
$$

## Side-channel attacks on formulas

- Exceptional Procedure Attack (EPA) [Izu, Takagi]


## Side-channel attacks on formulas

- Exceptional Procedure Attack (EPA) [Izu, Takagi]
- Other attacks:
- Refined Power Analysis (RPA) [Goubin]


## Side-channel attacks on formulas

- Exceptional Procedure Attack (EPA) [Izu, Takagi]
- Other attacks:
- Refined Power Analysis (RPA) [Goubin]
- Zero-Value Point (ZVP) [Akiskita, Takagi]


## Side-channel attacks on formulas

- Exceptional Procedure Attack (EPA) [Izu, Takagi]
- Other attacks:
- Refined Power Analysis (RPA) [Goubin]
- Zero-Value Point (ZVP) [Akiskita, Takagi]

Goal: unify and generalize these

## Side-channel attacks on formulas

- Exceptional Procedure Attack (EPA) [Izu, Takagi]
- Other attacks:
- Refined Power Analysis (RPA) [Goubin]
- Zero-Value Point (ZVP) [Akiskita, Takagi]

Goal: unify and generalize these

- Common assumptions:


## Side-channel attacks on formulas

- Exceptional Procedure Attack (EPA) [Izu, Takagi]
- Other attacks:
- Refined Power Analysis (RPA) [Goubin]
- Zero-Value Point (ZVP) [Akiskita, Takagi]

Goal: unify and generalize these

- Common assumptions:
- Scalar multiplication side-channel oracle


## Side-channel attacks on formulas

- Exceptional Procedure Attack (EPA) [Izu, Takagi]
- Other attacks:
- Refined Power Analysis (RPA) [Goubin]
- Zero-Value Point (ZVP) [Akiskita, Takagi]


## Goal: unify and generalize these

- Common assumptions:
- Scalar multiplication side-channel oracle
- Static private key k (e.g., in ECDH, X25519)


## Side-channel attacks on formulas

- Exceptional Procedure Attack (EPA) [Izu, Takagi]
- Other attacks:
- Refined Power Analysis (RPA) [Goubin]
- Zero-Value Point (ZVP) [Akiskita, Takagi]


## Goal: unify and generalize these

- Common assumptions:
- Scalar multiplication side-channel oracle
- Static private key $k$ (e.g., in ECDH, X25519)
- If $k^{\prime}$ is a binary prefix of $k$, then $\left[k^{\prime}\right] P$ appears during $[k] P$ computation


## The unified scenario

## Goal: recover $k$ from ECC implementation

## The unified scenario

## Goal: recover $k$ from ECC implementation



## The unified scenario

## Goal: recover $k$ from ECC implementation


(1) Guess $k^{\prime}$ - a prefix of $k$

## The unified scenario

## Goal: recover $k$ from ECC implementation


(1) Guess $k^{\prime}$ - a prefix of $k$
(2) Construct a point $P$ based on $k^{\prime}$ and given formula

## The unified scenario

## Goal: recover $k$ from ECC implementation


(1) Guess $k^{\prime}$ - a prefix of $k$
(2) Construct a point $P$ based on $k^{\prime}$ and given formula
(3) Input $P$ to the implementation

## The unified scenario

## Goal: recover $k$ from ECC implementation


(1) Guess $k^{\prime}$ - a prefix of $k$
(2) Construct a point $P$ based on $k^{\prime}$ and given formula
(3) Input $P$ to the implementation
(4) Verify the guess $k^{\prime}$ using a side channel

## The unified scenario

## Goal: recover $k$ from ECC implementation


(1) Guess $k^{\prime}$ - a prefix of $k$
(2) Construct a point $P$ based on $k^{\prime}$ and given formula
(3) Input $P$ to the implementation
(4) Verify the guess $k^{\prime}$ using a side channel
(5) Repeat to sequentially recover all bits of $k$

## The unified scenario - EPA

## Goal: recover $k$ from ECC implementation


(1) Guess $k^{\prime}$-a prefix of $k$
(2) Construct a point $P$ s.t. $P+\left[k^{\prime}\right] P$ fails
(3) Input $P$ to the implementation
(4) Verify the guess $k^{\prime}$ using a side channel: error
(5) Repeat to sequentially recover all bits of $k$

## The unified scenario - ZVP

## Goal: recover $k$ from ECC implementation


(1) Guess $k^{\prime}$-a prefix of $k$
(2) Construct a point $P$ s.t. $P+\left[k^{\prime}\right] P$ forces an intermediate $f=0$
(3) Input $P$ to the implementation
(4) Verify the guess $k^{\prime}$ using a side channel: intermediate 0 detection
(5) Repeat to sequentially recover all bits of $k$

## Formula example: add-2007-bl (ZVP)

Input: $P=\left(X_{1}: Y_{1}: Z_{1}\right), \quad Q=\left(X_{2}: Y_{2}: Z_{2}\right)$
Output: $P+\underline{Q}=\left(X_{3}: Y_{3}: Z_{3}\right)$

$$
\begin{aligned}
& U_{1}=X_{1} \cdot Z_{2} \\
& U_{2}=X_{2} \cdot Z_{1} \\
& S_{1}=Y_{1} \cdot Z_{2} \\
& S_{2}=Y_{2} \cdot Z_{1} \\
& Z Z=Z_{1} \cdot Z_{2} \\
& T=U_{1}+U_{2} \\
& T T=T^{2} \\
& M=S_{1}+S_{2} \\
& t_{0}=Z Z^{2} \\
& t_{1}=a \cdot t_{0} \\
& t_{2}=U_{1} \cdot U_{2}
\end{aligned}
$$

$$
\begin{aligned}
& t_{3}=T T-t_{2} \\
& R=t_{3}+t_{1} \\
& F=Z Z \cdot M \\
& L=M \cdot F \\
& L L=L^{2} \\
& t_{4}=T+L \\
& t_{5}=t_{4}^{2} \\
& t_{6}=t_{5}-T T \\
& G=t_{6}-L L \\
& t_{7}=R^{2} \\
& t_{8}=2 \cdot t_{7}
\end{aligned}
$$

## Formula example: add-2007-bl (ZVP)

Input: $P=\left(X_{1}: Y_{1}: Z_{1}\right), \quad Q=\left(X_{2}: Y_{2}: Z_{2}\right)$
Output: $P+Q=\left(X_{3}: Y_{3}: Z_{3}\right)$

$$
\begin{aligned}
& U_{1}=X_{1} \cdot Z_{2} \\
& U_{2}=X_{2} \cdot Z_{1} \\
& S_{1}=Y_{1} \cdot Z_{2} \\
& S_{2}=Y_{2} \cdot Z_{1} \\
& Z Z=Z_{1} \cdot Z_{2} \\
& T=U_{1}+U_{2} \\
& T T=T^{2} \\
& M=S_{1}+S_{2} \\
& t_{0}=Z Z^{2} \\
& t_{1}=a \cdot t_{0} \\
& t_{2}=U_{1} \cdot U_{2}
\end{aligned}
$$

$$
\begin{aligned}
& W=t_{8}-G \\
& t_{9}=F \cdot W \\
& X_{3}=2 \cdot t_{9} \\
& t_{10}=2 \cdot W \\
& t_{11}=G-t_{10} \\
& t_{12}=2 \cdot L L \\
& t_{13}=R \cdot t_{11} \\
& Y_{3}=t_{13}-t_{12} \\
& t_{14}=F^{2} \\
& t_{15}=F \cdot t_{14} \\
& Z_{3}=4 \cdot t_{15}
\end{aligned}
$$

## The DCP

## The dependent coordinates problem (DCP)

Given $k^{\prime} \in \mathbb{Z}$, an elliptic curve $E$ over $\mathbb{F}_{p}$ and a polynomial $f$, find $P, Q \in E\left(\mathbb{F}_{p}\right)$ such that $Q=\left[k^{\prime}\right] P \quad$ and $\quad f(P, Q)=0$.

## The DCP

## The dependent coordinates problem (DCP)

Given $k^{\prime} \in \mathbb{Z}$, an elliptic curve $E$ over $\mathbb{F}_{p}$ and a polynomial $f$, find $P, Q \in E\left(\mathbb{F}_{p}\right)$ such that $Q=\left[k^{\prime}\right] P \quad$ and $\quad f(P, Q)=0$.

- Solving DCP $\rightarrow$ constructing oracle $\rightarrow$ private key recovery


## The DCP

## The dependent coordinates problem (DCP)

Given $k^{\prime} \in \mathbb{Z}$, an elliptic curve $E$ over $\mathbb{F}_{p}$ and a polynomial $f$, find $P, Q \in E\left(\mathbb{F}_{p}\right)$ such that $Q=\left[k^{\prime}\right] P \quad$ and $\quad f(P, Q)=0$.

- Solving DCP $\rightarrow$ constructing oracle $\rightarrow$ private key recovery
- For EPA, take $f=Z_{3}$


## The DCP

## The dependent coordinates problem (DCP)

Given $k^{\prime} \in \mathbb{Z}$, an elliptic curve $E$ over $\mathbb{F}_{p}$ and a polynomial $f$, find $P, Q \in E\left(\mathbb{F}_{p}\right)$ such that $Q=\left[k^{\prime}\right] P \quad$ and $\quad f(P, Q)=0$.

- Solving DCP $\rightarrow$ constructing oracle $\rightarrow$ private key recovery
- For EPA, take $f=Z_{3}$
- For ZVP, take $f$ an intermediate expression


## The DCP

## The dependent coordinates problem (DCP)

Given $k^{\prime} \in \mathbb{Z}$, an elliptic curve $E$ over $\mathbb{F}_{p}$ and a polynomial $f$, find $P, Q \in E\left(\mathbb{F}_{p}\right)$ such that $Q=\left[k^{\prime}\right] P \quad$ and $\quad f(P, Q)=0$.

- Solving DCP $\rightarrow$ constructing oracle $\rightarrow$ private key recovery
- For EPA, take $f=Z_{3}$
- For ZVP, take $f$ an intermediate expression
- For RPA, take $f=X_{3}$ or $f=Y_{3}$


## The DCP

## The dependent coordinates problem (DCP)

Given $k^{\prime} \in \mathbb{Z}$, an elliptic curve $E$ over $\mathbb{F}_{p}$ and a polynomial $f$, find $P, Q \in E\left(\mathbb{F}_{p}\right)$ such that $Q=\left[k^{\prime}\right] P \quad$ and $\quad f(P, Q)=0$.

- Hard in general: capturing $Q=\left[k^{\prime}\right] P$ does not scale $-k^{\prime}$ up to $\approx 20$ bits


## The DCP

## The dependent coordinates problem (DCP)

Given $k^{\prime} \in \mathbb{Z}$, an elliptic curve $E$ over $\mathbb{F}_{p}$ and a polynomial $f$, find $P, Q \in E\left(\mathbb{F}_{p}\right)$ such that

$$
Q=\left[k^{\prime}\right] P \quad \text { and } \quad f(P, Q)=0 .
$$

- Hard in general: capturing $Q=\left[k^{\prime}\right] P$ does not scale $-k^{\prime}$ up to $\approx 20$ bits
- Solved new cases (e.g., $k^{\prime} \equiv l / m(\bmod n)$ with $|l|,|m|$ small)


## The DCP

## The dependent coordinates problem (DCP)

Given $k^{\prime} \in \mathbb{Z}$, an elliptic curve $E$ over $\mathbb{F}_{p}$ and a polynomial $f$, find $P, Q \in E\left(\mathbb{F}_{p}\right)$ such that

$$
Q=\left[k^{\prime}\right] P \quad \text { and } \quad f(P, Q)=0 .
$$

- Hard in general: capturing $Q=\left[k^{\prime}\right] P$ does not scale $-k^{\prime}$ up to $\approx 20$ bits
- Solved new cases (e.g., $k^{\prime} \equiv l / m(\bmod n)$ with $|l|,|m|$ small)
- Easy when $f$ does not depend on $Q$ :


## The DCP

## The dependent coordinates problem (DCP)

Given $k^{\prime} \in \mathbb{Z}$, an elliptic curve $E$ over $\mathbb{F}_{p}$ and a polynomial $f$, find $P, Q \in E\left(\mathbb{F}_{p}\right)$ such that

$$
Q=\left[k^{\prime}\right] P \quad \text { and } \quad f(P, Q)=0 .
$$

- Hard in general: capturing $Q=\left[k^{\prime}\right] P$ does not scale $-k^{\prime}$ up to $\approx 20$ bits
- Solved new cases (e.g., $k^{\prime} \equiv l / m(\bmod n)$ with $|l|,|m|$ small)
- Easy when $f$ does not depend on $Q$ :
- RPA


## The DCP

## The dependent coordinates problem (DCP)

Given $k^{\prime} \in \mathbb{Z}$, an elliptic curve $E$ over $\mathbb{F}_{p}$ and a polynomial $f$, find $P, Q \in E\left(\mathbb{F}_{p}\right)$ such that

$$
Q=\left[k^{\prime}\right] P \quad \text { and } \quad f(P, Q)=0 .
$$

- Hard in general: capturing $Q=\left[k^{\prime}\right] P$ does not scale $-k^{\prime}$ up to $\approx 20$ bits
- Solved new cases (e.g., $k^{\prime} \equiv l / m(\bmod n)$ with $|l|,|m|$ small)
- Easy when $f$ does not depend on $Q$ :
- RPA
- Some ZVP cases - new adaptations to window methods, simulated attack against add-2016-rcb


## Contributions

- An open-source formula-unrolling tool - extension of pyecsca (ECC reversing toolkit)


## Contributions

- An open-source formula-unrolling tool - extension of pyecsca (ECC reversing toolkit)
- Complete EFD addition formula classification, new exceptions found


## Contributions

- An open-source formula-unrolling tool - extension of pyecsca (ECC reversing toolkit)
- Complete EFD addition formula classification, new exceptions found
- New attack unification framework + new ZVP attack adaptation


## Contributions

- An open-source formula-unrolling tool - extension of pyecsca (ECC reversing toolkit)
- Complete EFD addition formula classification, new exceptions found
- New attack unification framework + new ZVP attack adaptation
- New DCP cases solved, but remains open


## Lessons learned

- Study popular systems in advance, not reactively


## Lessons learned

- Study popular systems in advance, not reactively
- Simpler viewpoints help cryptanalysis


## Lessons learned

- Study popular systems in advance, not reactively
- Simpler viewpoints help cryptanalysis
- The chosen formula matters


## Lessons learned

- Study popular systems in advance, not reactively
- Simpler viewpoints help cryptanalysis
- The chosen formula matters
- We need to be careful about too strong claims


## Lessons learned

- Study popular systems in advance, not reactively
- Simpler viewpoints help cryptanalysis
- The chosen formula matters
- We need to be careful about too strong claims
- Be explicit about assumptions, document them!


## Additional materials

## Thanks for your attention!



Tooling, analysis, demos and more: crocs.fi.muni.cz/public/papers/formulas_asiacrypt21

## References

ミ Daniel J．Bernstein，Tanja Lange；Explicit－Formulas Database，2007．www．hyperelliptic．org／EFD／
战 Tetsuya Izu，Tsuyoshi Takagi；Exceptional Procedure Attack on Elliptic Curve Cryptosystems．Public Key Cryptography 2003：224－239
白 Louis Goubin；A Refined Power－Analysis Attack on Elliptic Curve Cryptosystems．Public Key Cryptography 2003：199－210
－Toru Akishita，Tsuyoshi Takagi；Zero－Value Point Attacks on Elliptic Curve Cryptosystem．ISC 2003： 218－233
＜／Jan Jancar；pyecsca，2018．neuromancer．sk／pyecsca
Icons and images from $\square$ Font Awesome，Canva \＆Pixabay

