
Measuring Popularity of Cryptographic Libraries
in Internet-Wide Scans

Matus Nemec

Masaryk University,

Ca’ Foscari University of Venice

mnemec@mail.muni.cz

Dusan Klinec

EnigmaBridge, Masaryk University

dusan@enigmabridge.com

Petr Svenda

Masaryk University

svenda@fi.muni.cz

Peter Sekan

Masaryk University

peter.sekan@mail.muni.cz

Vashek Matyas

Masaryk University

matyas@fi.muni.cz

ABSTRACT
We measure the popularity of cryptographic libraries in large data-

sets of RSA public keys. We do so by improving a recently proposed

method based on biases introduced by alternative implementations

of prime selection in different cryptographic libraries. We extend

the previous work by applying statistical inference to approximate

a share of libraries matching an observed distribution of RSA keys

in an inspected dataset (e.g., Internet-wide scan of TLS handshakes).

The sensitivity of our method is sufficient to detect transient events

such as a periodic insertion of keys from a specific library into Cer-

tificate Transparency logs and inconsistencies in archived datasets.

We apply the method on keys from multiple Internet-wide scans

collected in years 2010 through 2017, on Certificate Transparency

logs and on separate datasets for PGP keys and SSH keys
1
. The

results quantify a strong dominance of OpenSSL with more than

84% TLS keys for Alexa 1M domains, steadily increasing since

the first measurement. OpenSSL is even more popular for GitHub

client-side SSH keys, with a share larger than 96%. Surprisingly,

new certificates inserted in Certificate Transparency logs on certain

days contain more than 20% keys most likely originating from Java

libraries, while TLS scans contain less than 5% of such keys.

Since the ground truth is not known, we compared our mea-

surements with other estimates and simulated different scenarios

to evaluate the accuracy of our method. To our best knowledge,

this is the first accurate measurement of the popularity of crypto-

graphic libraries not based on proxy information like web server

fingerprinting, but directly on the number of observed unique keys.

KEYWORDS
RSA algorithm, cryptographic library, prime generation

1
Full details, processing scripts, datasets and supplementary materials can be found at

https://crocs.fi.muni.cz/papers/acsac2017.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACSAC 2017, December 4–8, 2017, San Juan, PR, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5345-8/17/12. . . $15.00

https://doi.org/10.1145/3134600.3134612

1 INTRODUCTION
With solid mathematical foundations for the currently used cryp-

tographic algorithms like RSA or AES, a successful attack (a com-

promise of used keys or exchanged messages, a forgery of signa-

tures, etc.) is achieved only very infrequently through mathematical

breakthroughs, but dominantly by a compromise of secrets at the

end-points, by attacks on the protocol level or via so-called imple-

mentation attacks, often combined with an immense computational

effort required from the attacker.

Implementation attacks exploit some shortcomings or a specific

behavior of the software leading to unintended data leakages in

otherwise mathematically secure algorithms. A large number of

practical attacks in recent years [31] testifies how difficult it is to

make an implementation secure, robust and without side-channel

leakage. Even major libraries such as OpenSSL, Java JCE or Mi-

crosoft CryptoAPI were hit by multiple problems including extrac-

tion of RSA private keys [11] or AES secret keys [10] remotely from

a targeted web server and generation of vulnerable keys by a weak

or a malfunctioning random generator [1, 24]. It is reasonable to

expect that similar problems will occur in future for these and other

cryptographic libraries as well.

The prediction of an impact for a future bug depends not only on

the nature of the bug (unknown in advance) but also on the overall

popularity of the affected cryptographic library within the targeted

usage domain. A security bug in OpenSSL will probably cause more

harm than a bug in an unknown or sparsely used library.

Yet the estimation of the popularity of a given library is a com-

plicated affair. As a library produces random keys, it is difficult to

attribute a particular key to its originating library based only on the

bits of the key. A common approach is to make indirect estimates

based on additional information such as specific strings inserted

into certificates, default libraries used by a software package which

is identified by other means (e.g., the Apache HTTP Server typ-

ically uses OpenSSL) or specific key properties (uncommon key

lengths or domain parameters). All these approaches leave a large

uncertainty about the real origin of the target key. A certificate can

be crafted by a different software than its key was, a server key may

be imported, and a combination of an algorithm and key length are

only rarely specific to a single library.

Our work aims to accurately measure the popularity of libraries

based on the subtle biases in bits of RSA public keys due to different

implementations of the prime pair selection process, as recently

described in [36]. The bias has almost no impact on the entropy

https://crocs.fi.muni.cz/papers/acsac2017
https://doi.org/10.1145/3134600.3134612

of a key and poses no threat with respect to factorization attacks.

However, it allows for a probabilistic attribution of a key to the

originating library. We focus on answering the following questions:

(1) How many keys in an inspected dataset originate from specific
cryptographic libraries?

(2) How does the popularity of cryptographic libraries change over
time? Can we detect sudden temporary changes?

(3) What library generated a single given RSA key if the key usage
domain (TLS, SSH, etc.) is known?

In the original work, all libraries were assigned the same prior

probability – an assumption that is certainly inaccurate (intuitively,

OpenSSL is a far more common source of TLS keys than PGP soft-

ware). We propose an improved method that automatically extracts

the prior probability directly from a large dataset – obtaining the

popularity of libraries in the inspected dataset and subsequently

improving the classification accuracy of individual keys.

The answer to the first question tells us the popularity of cryp-

tographic libraries in different usage domains. Since the method is

based on the actual key counts instead of anecdotal proxies (e.g., in-

stalled packages or server strings), it is significantly more accurate.

Besides providing usage statistics, the popularity of the libraries is

important when estimating the potential impact of (past and future)

critical flaws, as well as when deciding where to most efficiently

spend the effort on development and security code review.

The availability of large Internet-wide scans of TLS handshakes

performed every week, Certificate Transparency logs and append-

only PGP keyserver databases, allow us to perform a study of cryp-

tographic library popularity over time, hence to find an answer to

the second question. When the scans are performed as frequently as

every week or even every day, temporary changes in the popularity

ratio can reveal sudden changes in the distributions of the keys,

possibly making a library more prominent than expected. Such

phenomena may indicate users reacting to a disclosed vulnerability

(e.g., by replacing their keys) or some significant changes in security

procedures of server implementations.

Finally, an accurate answer to the third question allows us to

reveal the originating library of a particular key. The previous

work [36] correctly labeled the origin of about 40% of random keys,

when a single public key was classified in a simulation with evenly

probable libraries. We improved the accuracy to over 94% for prior

probabilities of libraries typical for the TLS domain.

Contributions. Our paper brings the following contributions:
• Amethod for an accurate survey of popularity of cryptographic

libraries based on matching observed counts of RSA keys to

a mixture of biased reference distributions produced by the

libraries.

• Analyses of usage trends for large real-world archived datasets

of certificates for TLS, SSH and PGP from 2010 through 2017.

• Detection and analysis of abrupt transient events manifested

by a sudden change in the ratio of libraries.

• Release of the classification tool and extensible catalog of more

than 60 profiles for open/closed-source software libraries, hard-

ware security modules, cryptographic smartcards and tokens.

The rest of the paper is organized as follows: Section 2 provides

the necessary background for understanding the RSA key classifi-

cation method based on slight biases in the distribution of keys and

a basic overview of the automatic extraction of prior probabilities

from an inspected dataset. Section 3 explains the details of the li-

brary popularity measurement method and discusses the accuracy.

Section 4 applies our method to large current and archived datasets

to measure the popularity of libraries in time and discusses the

observed results. Section 5 provides a review of related work. The

paper is concluded in Section 6.

2 METHOD OVERVIEW
The authors of [36] demonstrated how different implementation

choices made by developers of cryptographic libraries lead to biases

in generated RSA keys. To generate an RSA key pair, two large

random primes p and q (typically half of the binary length of the

modulus) must be found. The modulus N is the product of the

primes. None of the sources of keys examined by [36] produced

moduli with uniformly distributed most significant byte, as one

might expect from cryptographic keys. Instead, the distributions of

moduli of each source were determined by the choice of the primes.

In order to reduce the uncertainty about the origin of a particular

key, three conditions must be satisfied: 1) bias is present in the key,

2) reference distributions of (ideally) all implementations are known,

and 3) a suitable method exists to match the reference data and the

observed data.

We use the same biases as observed in [36]. We collected refer-

ence distributions from additional sources and other versions of

cryptographic libraries, extending the knowledge of possible key

origins. The original classification method was based on conditional

probabilities and the application of Bayes’ rule. The origin (a group

of sources) of a key could be correctly estimated in 40% of attempts

– as opposed to 7.7% success of a random guess. We devised a new

method that estimates the proportion of sources in a given dataset

and more than doubles the average accuracy in TLS datasets.

2.1 Choice of key features
The most common reasons for the biases in the private primes were

efficiency improvements, a special form of the primes, bugs, and

uncommon implementation choices. The biases propagate to public

moduli to a certain degree – some are directly observable, some

require a large number of keys to distinguish and some cannot be

seen from the public values. This calls for a creation of a mask of the

public keys – instead of dealing with the full keys, some properties

are extracted and each key is represented by a vector of features.

We use the following features, inspired by the original approach:

(1) The most significant bits of the modulus (2nd to 7th bit): The
highest bits of the primes are often set to a constant, e.g.,

the two highest bits set to 1 to ensure the modulus has the

correct bit length. The high bits are sometimes manipulated

further, up to four bits were determined non-randomly. Even

without directly manipulating the top bits, the intervals from

which the primes are chosen are seen in the top bits of the

modulus.

(2) The modulus modulo 4: Due to bugs and unusual (for RSA)

implementation choices, the moduli might end up being

Blum integers – due to the primes always being equal to 3

modulo 4, the moduli are always equal to 1 modulo 4.

0 64 128 192 255
Mask value

0.0

0.5

1.0

1.5

2.0

2.5
M

as
k

pr
ob

ab
ilit

y
[%

] N % 3 == 1 N % 3 == 2
 N % 4
 == 1

 N % 4
 == 3

 N % 4
 == 1

 N % 4
 == 3

N
=

10
00

00
0.

..
N

=
11

00
00

0.
..

N
=

11
11

11
1.

..
N

=
10

00
00

0.
..

N
=

11
00

00
0.

..
N

=
11

11
11

1.
..

N
=

10
00

00
0.

..
N

=
11

00
00

0.
..

N
=

11
11

11
1.

..
N

=
10

00
00

0.
..

N
=

11
00

00
0.

..
N

=
11

11
11

1.
..

Feature mask

Figure 1: Features extracted fromapublic RSAmodulus. The
moduli generated by OpenSSL are always equal to one mod-
ulo three (N % 3 = 1), but they are uniformly distributedmod-
ulo four (N % 4 = 1 and N % 4 = 3, with the same probability).
The most significant bits of the moduli are never equal to
10002, and have the value 11002 more frequently than 11112.

(3) The modulus modulo 3: Another unexplained implementation

decision (in OpenSSL and elsewhere) avoids primes p if p − 1
has small divisors, other than 2. If p − 1 and q − 1 are never
divisible by 3, then themodulus is always equal to 1 modulo 3

and never equal to 2 modulo 3. For larger prime divisors (5, 7,

11, etc.), the property is not directly observable from a single

modulus and is therefore impractical for key classification.

We rely on the deep analysis of the key generation process and

statistical properties of the resulting keys presented in [36]. We

construct our mask similarly, however, we decided to drop the

feature encoding the bit length of themodulus – as it is only relevant

for one uncommon library implementation.

Our choice of the mask is reflected in Figure 1, illustrated by the

distributions of mask values for OpenSSL. When compared to [36],

we also changed the order of the features in the mask, to allow for

an easier interpretation of distributions from the illustrations. The

relevant biases for all sources are listed in Table 3 in the Appendix.

2.2 Clustering analysis
For each source we generate a large number of keys (typically

one million), extract the features from the keys according to the

feature mask and compute the distributions of the feature masks.

The previous research [36] used a highly representative sample of

cryptographic libraries in what were then the most recent available

versions. For this research, we also added keys from two hardware

security module devices, two cryptographic tokens and from the

PuTTy software, a popular SSH implementation for Microsoft Win-

dows. The latter is valuable when we consider the domain of SSH

authentication keys collected from GitHub.

We also collected new keys from the latest implementations of

the considered libraries, this unveiled a change in the behavior of

Libgcrypt 1.7.6 in the FIPS mode. Furthermore, we added earlier

releases of several libraries, to support the claims made about older

datasets. However, we only detected a change in the algorithm

for Nettle 2.0, when comparing the libraries with their current

versions. Most notably, the addition of new sources did not change

the results of clustering analysis as performed previously – the

number of groups and their division remains mostly unchanged.

Since we examine many libraries across several versions, we

often encounter very similar distributions (i.e., the algorithm did not

change across versions or multiple libraries use the same algorithm).

Since these distributions are not mutually distinguishable, we use

clustering analysis to create clusters (groups) of sources with very

similar properties. We use the Euclidean distance as the metric with

a bound (threshold) for the creation of clusters, exactly as applied in

[36]. The result of the clustering analysis is visualized in Figure 2 as

a dendrogram. Instead of working with individual libraries, we do

the analysis with the groups. Even though we cannot differentiate

between libraries inside a group, luckily, the most popular libraries

(OpenSSL, Microsoft) are represented by a distinct or a very small

group.

0.30 0.15 0.00

 Clustering of sources

Euclidean distance

o [2] G&D SmartCafe 4.x & 6.0

o [7] OpenSSL 0.9.7 & 1.0.2g & 1.0.2k & 1.1.0e

o [5] NXP J2A080 & J2A081 & J3A081 & JCOP 41 V2.2.1

o [6] Oberthur Cosmo Dual 72K

o [8] PGPSDK 4 FIPS

o [12] HSM Utimaco Security Server Se50

o [12] Bouncy Castle 1.53 (Java)

o [12] SunRsaSign OpenJDK 1.8.0

o [12] PuTTY 0.67

o [12] Cryptix JCE 20050328

o [12] Nettle 2.0

o [12] FlexiProvider 1.7p7

o [12] PolarSSL 0.10.0

o [12] mbedTLS 1.3.19 & 2.2.1 & 2.4.2

o [4] Gemalto GXP E64

o [13] PGPSDK 4

o [13] Oberthur Cosmo 64

o [13] Gemalto GCX4 72K

o [13] Feitian JavaCOS A22 & A40

o [13] HSM SafeNet Luna SA−1700

o [13] LibTomCrypt 1.17

o [13] Botan 1.5.6 & 1.11.29 & 2.1.0

o [13] OpenSSL FIPS 2.0.12 & 2.0.14

o [13] cryptlib 3.4.3 & 3.4.3.1

o [13] WolfSSL 2.0rc1 & 3.9.0 & 3.10.2

o [13] Libgcrypt 1.6.0 & 1.6.5 & 1.7.6

o [13] Nettle 3.2 & 3.3

o [13] Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS

o [11] Libgcrypt 1.7.6 FIPS

o [11] Crypto++ 5.6.0 & 5.6.3 & 5.6.5

o [11] Microsoft CryptoAPI & CNG & .NET

o [11] Bouncy Castle 1.54 (Java)

o [3] GNU Crypto 2.0.1

o [10] YubiKey NEO

o [10] NXP J2D081 & J2E145G

o [1] G&D SmartCafe 3.2

o [9] YubiKey 4 & 4 Nano

o [9] Infineon JTOP 80K

Clustering threshold = 0.02

Figure 2: The result of the clustering analysis visualized as
a dendrogram. Clusters are created based on the Euclidean
distance, with a separation threshold of 0.02 (blue dashed
line), similarly as the approach of [36]. The group numbers
are listed in brackets next to the source name.

2.3 Dataset classification – original approach
The main focus of the authors of [36] was to get information about

the origin (the most probable group G) of a particular key K . To
achieve it, the authors applied the Bayes’ rule:

P (G |K) =
P (K |G)P (G)

P (K)
, (1)

where P (G |K) is the conditional probability that a groupG was used

to generate a given key K (the aim of the classification), P (K |G)
is the conditional probability that a key K is generated by a given

group G (obtained from the reference distributions), P (G) is the
prior probability of a group G and P (K) is the probability of a key

K in a dataset. The highest numerical value of P (G |K) corresponds
to the first guess on the most probable group G.

To reason about the popularity of libraries in large datasets, all

keys were considered separately and then the information was

summarized. Among the main shortcomings of the method was the

assumption that cryptographic libraries (alternatively, groups of

libraries) are chosen evenly by users (i.e., the prior probability P (G)
is equal for all groupsG), which is evidently false. The method also

failed to consider the “big picture” – keys were considered in small

batches (e.g., a single key or a few keys assumed to originate from

a same source), hence the probability P (K) of a key was usually 1.

2.4 Dataset classification – our approach
We improved the method in the following way: to estimate the

origin of a key, we use an appropriate prior probability P (G) for the
domain where the key can be found (e.g., different for TLS, PGP,

SSH...). To our best knowledge, no reliable estimates of the prior

probability P (G) were published for large domains. We therefore

propose and apply our ownmethod for estimating the proportion of

cryptographic libraries in large datasets, based on statistical infer-

ence. In this way, we construct a tailored prior probability estimate

from the “big picture” before we make claims about individual keys.

To accomplish the prior probability estimation, we create amodel

based on our reference distributions and we search for parameters

of the model that best match the whole observed sample. We use

a numerical method – the non-negative least squares fit (NNLSF)

[30]. It is the standard least squares fit method with a restriction

on the parameters, since the probabilities must be non-negative. A

detailed description of the methodology is given in Section 3.

The described approach also provides more than a two-fold

increase in the accuracy of origin estimation for public keys when

compared to the original approach of [36] in the domain of TLS.

The improvement is due to the application of the obtained prior

probabilities. More details and accuracy measurements for the prior

probability estimation itself are discussed in Section 3.4.

2.5 Limitations
Individual sources that belong to a single group cannot be mutually

distinguished. Fortunately, the two most significant TLS libraries

belong to small groups – OpenSSL is the single source in Group 7

and Microsoft libraries share Group 11 only with Crypto++ and two

recently introduced library versions – Bouncy Castle since version

1.54 (December 2015) and Libgcrypt 1.7.6 FIPS (January 2017).

The particular version of a library cannot be identified, only a

range of versions with the same key generation algorithm. E.g.,

Bouncy Castle from version 1.53 can be differentiated from version

1.54 due to a change in key generation, but not from version 1.52

that shares the same code in the relevant methods.

Based on our simulations, an accurate prior probability estima-

tion requires a dataset with at least 10
5
keys. However, note that the

classification of a single key is still possible and on average benefits

greatly from the accurate prior probability of its usage domain.

3 METHODOLOGY IN DETAIL
When aiming to estimate the library usage in a given domain, we

create a model of the domain backed by reference distributions

collected from known sources. We obtain RSA keys from the tar-

get domain and search for the parameters of our model which fit

the observed data. We use the model and the estimated library

probabilities to classify individual keys according to their origin.

3.1 Model
We assume there are m groups of sources, created by clustering

analysis (Section 2.2) based on the similarity of the distributions

of generated public keys. The probability P (K) that a randomly

chosen key in the sample has a particular mask value K (the feature

mask is explained in Section 2.1) is given by:

P (K) =
m∑
j=1

P (G j)P (K |G j), (2)

which is the sum of probabilities P (G j)P (K |G j) over allm groups

G j , where P (G j) is the probability that a source from a group G j
is chosen in a particular domain (prior probability of source in the
domain) and P (K |G j) is the conditional probability of generating a

key with mask K when a library from the group G j is used.

The probabilities P (K |G j) are estimated by generating a large

number of keys from available sources, which represent the refer-

ence distributions of the key masks (the profile of the group). The
probability of a key K in a dataset of real-world keys is approxi-

mated as #K/D, where #K is the number of keys with the mask K
and D is the number of all keys in the dataset.

3.2 Prior probability estimation
The process of estimating prior probability is completely automated

and does not require any user input. This fact allows us to construct

an independent estimate of library usage from public keys only,

without an influence of other information.

We find what are the likely prior probabilities of libraries that

would lead to the observed distribution of keys in a given sample,

based on the reference group profiles. The principle is illustrated in

Figure 3 – the observed distribution is reconstructed by combining

the 13 distributions in a specific ratio (prior probability estimated by

our approach). Intuitively, for a good estimate of prior probabilities

it is necessary (but not always sufficient) that the observed and the

reconstructed distributions match closely.

For each of n possible values of mask K , we substitute observed
values into Equation 2. In our case, the system has 256 equations

with 13 unknowns P (G j). Since both the distribution of real world

0 64 128 192 255
0
1
2
3
4
5
6

M
as

k
pr

ob
ab

ilit
y

[%
] Group 1

0 64 128 192 255
0.0
0.5
1.0
1.5

M
as

k
pr

ob
ab

ilit
y

[%
] Group 6

0 64 128 192 255
0.0
0.2
0.4
0.6
0.8

M
as

k
pr

ob
ab

ilit
y

[%
] Group 11

0 64 128 192 255
0
2
4
6
8

10
12

M
as

k
pr

ob
ab

ilit
y

[%
] Group 2

0 64 128 192 255
0.0
0.5
1.0
1.5

M
as

k
pr

ob
ab

ilit
y

[%
] Group 7

0 64 128 192 255
0.0
0.2
0.4
0.6
0.8

M
as

k
pr

ob
ab

ilit
y

[%
] Group 12

0 64 128 192 255
0
1
2
3
4

M
as

k
pr

ob
ab

ilit
y

[%
] Group 3

0 64 128 192 255
0.0

0.2

0.4

M
as

k
pr

ob
ab

ilit
y

[%
] Group 8

0 64 128 192 255
0.0
0.2
0.4
0.6
0.8

M
as

k
pr

ob
ab

ilit
y

[%
] Group 13

0 64 128 192 255
0.0

0.5

1.0

M
as

k
pr

ob
ab

ilit
y

[%
] Group 4

0 64 128 192 255
0.0

0.5

1.0

1.5

M
as

k
pr

ob
ab

ilit
y

[%
] Group 5

0 64 128 192 255
0
1
2
3
4

M
as

k
pr

ob
ab

ilit
y

[%
] Group 9

0 64 128 192 255
0
1
2
3
4

M
as

k
pr

ob
ab

ilit
y

[%
] Group 10

0 64 128 192 255
Mask

0K

50K

100K

150K

200K

Nu
m

be
r o

f k
ey

s w
ith

 a
 g

iv
en

 m
as

k Certificate Transparency 03/2017
Total keys: 17,745,546

Original distribution
Group 7: 60.06%
Group 12: 20.40%
Group 13: 15.21%
Group 11: 3.50%
Group 4: 0.68%

10
/10

01
/11

04
/11

07
/11

10
/11

01
/12

04
/12

07
/12

10
/12

01
/13

04
/13

07
/13

10
/13

01
/14

04
/14

07
/14

10
/14

01
/15

04
/15

07
/15

10
/15

01
/16

04
/16

07
/16

10
/16

01
/17

04
/17

0M

1M

2M

3M

4M

5M

6M

7M

8M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

HTTPS Ecosystem
EFF SSL Observatory

Rapid7 Sonar
Censys IPv4 TLS scan

Sonar fixed TLS 1.2 handshake

Unfinished Sonar scan

Group 1: G&D SmartCafe 3.2
Group 2: G&D SmartCafe 4.x & 6.0
Group 3: GNU Crypto 2.0.1
Group 4: Gemalto GXP E64
Group 5: NXP J2A080 & J2A081
 & J3A081 & JCOP 41 V2.2.1
Group 6: Oberthur Cosmo Dual 72K
Group 7: OpenSSL 0.9.7 & 1.0.2g
 & 1.0.2k & 1.1.0e
Group 8: PGPSDK 4 FIPS

Group 9: Infineon JTOP 80K, YubiKey 4 & 4 Nano
Group 10: NXP J2D081 & J2E145G, YubiKey NEO
Group 11: BouncyCastle 1.54 (Java), Crypto++ 5.6.0 & 5.6.3 & 5.6.5,
 Libgcrypt 1.7.6 FIPS, Microsoft CryptoAPI & CNG & .NET
Group 12: BouncyCastle 1.53 (Java), Cryptix JCE 20050328,
 FlexiProvider 1.7p7, HSM Utimaco Security Server Se50,
 Nettle 2.0, PolarSSL 0.10.0, PuTTY 0.67, SunRsaSign OpenJDK 1.8.0,
 mbedTLS 1.3.19 & 2.2.1 & 2.4.2
Group 13: Botan 1.5.6 & 1.11.29 & 2.1.0, Feitian JavaCOS A22 & A40,
 Gemalto GCX4 72K, HSM SafeNet Luna SA-1700, LibTomCrypt 1.17,
 Libgcrypt 1.6.0 & 1.6.5 & 1.7.6, Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS,
 Nettle 3.2 & 3.3, Oberthur Cosmo 64, OpenSSL FIPS 2.0.12 & 2.0.14,
 PGPSDK 4, WolfSSL 2.0rc1 & 3.9.0 & 3.10.2, cryptlib 3.4.3 & 3.4.3.1

Figure 3: The reference distributions of the key mask from each library are used to compute the probability with which the
given library contributes to the overall distribution of keys in the measured sample. The distribution of keys submitted to
Certificate Transparency logs during March 2017 likely contains keys from a mix of distributions as given in the last picture.
When we scaled each distribution accordingly and plotted the bars on top of each other (note – the bars are not overlapping),
the fit is visually close (the original distribution is given by a black dashed outline and matches the tops of the approximated
bars).

keys and the reference distributions are empirical, a precise solution

may not exist, due to the presence of noise (see Section 3.4.1).

We chose the linear least squares method constrained to non-

negative coefficients (non-negative least squares fit or NNLSF) im-

plemented in Java [28] based on the algorithm by Lawson and

Hanson [30] to find an approximate solution to the overdetermined

system of equations. The solution is the estimated prior probability

P̂ (G j) for each group G j . The method numerically finds a solution

that minimizes the sum of squared errors (P (Ki) − P̂ (Ki))
2
over

all n mask values Ki , where P (Ki) is the idealized probability of

mask Ki (obtained from the dataset) and P̂ (Ki) is the estimated

probability, given by substituting the real group probability P (G j)

in Equation 2 with the estimated group probability P̂ (G j).

3.3 Key classification
We classify the keys according to their origin using the Bayes’ rule

(Section 2.3). When compared to the approach of [36], we use the

estimated prior probabilities for a more precise classification. In a

classification of a single key, the groups are ordered by the value of

the conditional probability P (G |K). The groupG with the highest

probability is the most likely origin of the key.

3.4 Evaluation of accuracy
We are interested both in the accuracy of the prior probability esti-

mation (given as the expected error in the estimation, Table 1) and

in the average correctness of the overall classification process (given

as the proportion of keys that were correctly classified, Table 2). For

the measurement, we repeatedly simulate large datasets according

to different distributions, add noise and perform our method.

3.4.1 Random noise. Even if keys in a large dataset were gener-

ated with the same library across many users, the overall distribu-

tion will not match our reference distribution exactly, due to the

non-deterministic nature of key generation. This contributes to a

random noise in the data. We achieve such a noise in our simula-

tions by generating masks non-deterministically (i.e., instead of

using reference distributions in place of data, we randomly sample

masks according to the distribution).

3.4.2 Systematic noise. Our analysis does not cover all existing
libraries used on the Internet. However, it is quite likely that al-

gorithms used by unknown libraries are similar to those already

known (e.g., consider the size of Group 13). In such a case, the

library would belong to one of our groups and the only error of

the estimation would be in the interpretation of the results – the

library is not correctly labeled as a part of our group. Yet still, there

may exist groups with profiles that do not match any of our known

groups, hence keys generated from these implementations would

add systematic noise to the profile of the sample. In our simula-

tions, we create a group representing all unknown distributions.

The group profile is chosen randomly in each experiment. To sim-

ulate the presence of keys from this group, we modify the prior

probability of the simulation to include a certain percentage (e.g.,

ranging from 0% to 3% in Tables 1 and 2) of keys to be sampled from

the distribution. For example, 3% of systematic noise represents

the situation where 3% of the keys in the sample originate from an

unknown distribution, not covered by our analysis and belonging

to a completely different, never seen before, group.

3.4.3 Simulation scenarios. We considered several distributions

of prior probability library usage:

Evenly distributed probabilities match the approach in [36], how-

ever, we face an additional task of first estimating the probabilities

from the simulated data. Furthermore, our mask does not use one

of the original features (Section 2.1).

We also assign random prior probabilities to the groups in a

different scenario – each group is assigned a uniformly chosen real

number from 0 to 1 and the numbers are normalized to sum to 1.

Real-world popularities of libraries are better characterized by a

geometric distribution – one source dominates (e.g., 50% in our case)

and other are exponentially less probable. We additionally ensure

that each group has a probability at least 2%. This way, even very

rare sources are not completely excluded from the analysis, even

if the library is outdated (e.g., PGP SDK 4) or the hardware is very

old (e.g., Gemalto GXP E64 smartcard from 2004). We also test the

geometric distribution for different permutations of the groups –

while in TLS, OpenSSL is always the most probable, in our tests

each group may take the first place.

Finally, we simulate the data according to the prior probabilities
extracted from TLS datasets. We add deviations to the probabilities

to simulate subtle changes in the popularity of libraries.

3.4.4 Accuracy of prior probability estimation. The accuracy of

the prior probability estimation is given as the expected error in

the resulting estimation. The summary is given in Table 1.

We consider the average error (the expected error in percentage

points (pp) for each group probability in each experiment) and the

average worst error (the expected error in pp for the worst result in

a given experiment). As an example, if the real probabilities are 60%,

30%, and 10%, andwe estimate them as 61%, 32%, and 7%, the average

error of the experiment is (1+ 2+ 3)/3 = ±2 pp and the worst error

is ±3 pp. The averages in Table 1 are given for 100 experiments,

Estimation error (in percentage points)

Noise: 0% 1% 2% 3% 0% 1% 2% 3%

Distribution Average error Average worst error

Even 0.19 0.37 0.63 0.90 0.73 1.71 3.33 5.07

Random 0.19 0.37 0.61 0.84 0.78 1.74 3.25 4.68

Geometric 0.18 0.38 0.63 0.91 0.71 1.70 3.33 4.97

TLS 0.17 0.39 0.66 0.94 0.65 1.78 3.49 5.16

Table 1: Accuracy of prior probability estimation for differ-
ent types of distributions and different amount of system-
atic noise. The average error gives the expected error of prior
probability estimation for each group in percentage points
(pp). The average worst error gives the expected value of the
largest error in each experiment. E.g., when the keys were
generated from a TLS-like distribution with 1% of system-
atic noise added, the probability of each group differed by
±0.39 pp on average and the worst estimation was off by
±1.78 pp on average.

Classification accuracy (in %) with noise

Noise: 0% 1% 2% 3%

Guess: 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Even 33.4 53.2 33.3 52.9 32.9 52.4 32.3 51.8

Random 45.5 67.5 46.1 67.8 45.0 66.7 43.9 65.1

Geometric 81.1 95.2 82.5 95.0 80.3 94.6 80.9 94.3

TLS 94.8 98.7 94.6 98.6 94.4 98.4 94.3 98.3

Table 2: Accuracy of key origin classification when prior
probability estimates are included in the method for differ-
ent types of distributions and different amount of system-
atic noise. The values are in percents. E.g., when the keys
were generated from a TLS-like distribution with 1% of sys-
tematic noise added, for 94.6% of the keys, the original li-
brary was correctly identified on the first guess and 98.6% of
keys were correctly labeled by the first or the second most
probable group.

each simulating one million keys. We considered distinct scenarios

(Section 3.4.3) and levels of systematic noise (Section 3.4.2).

3.4.5 Accuracy of the overall classification process. The accuracy
of key classification is given as the proportion of keys that were

correctly classified as the first guess or at least the second guess.

The values in Table 2 are given in percents.

Tables 1 and 2 refer to the same set of simulations. The prior

probability estimation is performed first. The results show that

the classification is quite robust even in the case of errors in prior

probability estimations at a level of 5 percentage points, since the

success of the classification is not affected dramatically.

When compared to the approach of [36], the average accuracy

increased for other than the even distribution of groups. However,

the classification accuracy is improvedmostly for the more probable

groups and the less probable libraries may be classified incorrectly

more frequently than before.

3.5 Additional accuracy considerations
Some reference distributions can be approximated by a combina-

tion of other reference distributions, similarly as the distribution

observed in a dataset can be obtained as a combination of reference

distributions. An example of this phenomenon at its worst is the

close match of Group 11 (Microsoft libraries) as a combination of

41.3% of Group 13, 30.6% of Group 8, 22.7% of Group 4 and a small

portion of other groups. The situation for all groups is illustrated

in Figure 4, with the most notable groups enlarged. Group 13 has

the next closest match, however the error is much larger. Group 7

(OpenSSL) cannot be obtained as a combination of other groups.

As a result, the prior probability estimation process may inter-

change the distribution of Group 11 for a mixture of other dis-

tributions or vice versa. Currently, we do not detect such events

automatically, since an additional user input would be needed.

When considering the results, the domain must be taken into

account. E.g., according to our measurement, around 1% of keys

in some samples of TLS keys originate from Group 8 (PGP SDK 4

FIPS). Since the presence of the library in TLS is highly unlikely and

no other known implementation has the same (quite uncommon)

algorithm, we must conclude that this is an error in the estimation.

We suspect the error is due to the aforementioned approximation

of Group 11. However, there may exist different approximations of

the group, hence we cannot simply substitute the suspected ratio.

We hypothesize that such errors could be avoided if the prior

probability estimation would start from a very rough approximation

of the probabilities supplied by the user (we use evenly distributed

groups) as the starting guess of the NNLSF method. A more resolute

solution would remove groups from the analysis if they are unlikely

to occur in an examined domain according to empirical evidence.

4 RESULTS ON RELEVANT DATASETS
Rough estimates of popularity for some cryptographic libraries

were provided in [36] for TLS, CT and PGP, but with relatively

high expected errors. The improvement of accuracy in our work

allows for a better inspection of datasets, including the detection

of transient events. We also processed significantly more datasets,

including the archived ones.

4.1 Data preparation
We used a wide range of datasets for our analysis. Due to different

formats, we pre-process all data into a unified intermediate format.

For all datasets, only keys with unique moduli were considered.

4.1.1 Censys TLS scan. Censys [15] performs a full IPv4 address

space scan of TCP port 443 on a weekly basis [4]. The dataset

contains historical scans back to 2015-08-10 when the first scan was

performed and continues to present. Each scan is a full snapshot,

independent from all other scans, containing all raw and post-

processed data from the scan in the form of JSON and CSV files,

compressed by LZ4 algorithm [5]. Some snapshots are only a few

days apart and some larger gaps occur, but overall the weekly

periodicity is prevalent.

Censys scanner tries to perform a TLS handshake with the host

being scanned, respecting the IP blacklist maintained by Censys.

The latest scan tried to contact 53M hosts.

4.1.2 Censys Alexa 1M. The dataset [3] has the same properties

as the Censys IPv4 dataset (with respect to periodicity and format).

It contains processed TLS handshakes with the top 1 million web-

sites according to the Alexa ranking. The dataset also provides an

insight into a specific portion of the Internet certificates, which

are otherwise hidden from ordinary IPv4 scans because of the use

of Server Name Indication (SNI) TLS extension. SNI enables the

web server to multiplex X.509 certificates on a single IP address,

because the client sends the desired host name directly in the TLS

handshake. Simple TLS handshake returns only one, default virtual

host certificate, hence other virtual hosts are hidden from the scan.

Moreover, the default certificate is usually generated during server

installation (if not overridden later) and thus does not have to be

relevant to the context.

4.1.3 Rapid7 Sonar SSL. Project Sonar [6] performs a regular

scan of IPv4 SSL services on TCP port 443. The dataset includes both

raw X.509 certificates and processed subsets. It contains snapshots

taken within a time frame of maximum 8 hours. It ranges from

2013-10-30 to the present (still active) with many samples. The files

with certificates are incremental, so the scan from a particular day

contains only new certificates – not yet seen in the preceding scan.

We transform the increments into snapshots. The scanning peri-

odicity varies, making the analysis more complicated. The project

also maintains an independent IP address blacklist that evolves in

time. Additionally, the scanner code evolves (cipher suite selection,

bug fixes, methodology fixes) causing fluctuations in the data.

4.1.4 HTTPS Certificate Ecosystem. IPv4 TLS scanning dataset

[18] ranging from 2012-06-10 to 2014-01-29. It is essentially the

same as the Sonar SSL dataset with respect to the format and the

properties. This dataset contains one host-to-certificate fingerprint

mapping file for each scan and one big certificate database for the

whole dataset. The periodicity varies a lot. There are many snap-

shots only two days apart, as well as large gaps between samples,

up to 50 days. We recoded the dataset to the Sonar SSL format, with

an incremental certificate database. We then transformed it to the

full snapshot format identical as for Sonar SSL.

4.1.5 Certificate Transparency. The specification of CT (RFC

6962) allows retrieving an arbitrary range of entries from a log. We

processed all entries in logs maintained by Google up to May 2017.

All entries must be submitted with all the intermediate certificates

necessary to verify the certificate chain up to a root certificate

published by the log. We process only the leaf certificates. Since the

logs are append-only, there is no reliable way of knowing whether

an older certificate is still active (the validity period gives an upper

estimate), hence we do not have a sample of all certificates in use

for a given date. Instead, we process incremental samples – all

certificates submitted during a specific period (a day or a week).

4.1.6 Client SSH keys – GitHub. GitHub gives users SSH-au-

thenticated access to their Git repositories. Developers upload their

public SSH keys. One user can have no, one or more SSH keys.

GitHub provides an API to list all the registered users and another

endpoint allows downloading SSH keys on a per-user basis. We

downloaded a list of almost 25M GitHub users with almost 4.8M

SSH keys found. The scan was performed in February 2017 and took

3 weeks to finish on a commodity hardware. We implemented a

0 64 128 192 255
0
1
2
3
4
5
6

M
as

k
pr

ob
ab

ilit
y

[%
] Group 1 approximated

0 64 128 192 255
0
2
4
6
8

10
12

M
as

k
pr

ob
ab

ilit
y

[%
] Group 2 approximated

0 64 128 192 255
0
1
2
3
4

M
as

k
pr

ob
ab

ilit
y

[%
] Group 3 approximated

0 64 128 192 255
0.0

0.5

1.0

M
as

k
pr

ob
ab

ilit
y

[%
] Group 4 approximated

0 64 128 192 255
0.0
0.5
1.0
1.5

M
as

k
pr

ob
ab

ilit
y

[%
] Group 5 approximated

0 64 128 192 255
0.0
0.5
1.0
1.5

M
as

k
pr

ob
ab

ilit
y

[%
] Group 6 approximated

0 64 128 192 255
0.0

0.2

0.4

0.6
M

as
k

pr
ob

ab
ilit

y
[%

] Group 8 approximated

0 64 128 192 255
0
1
2
3
4

M
as

k
pr

ob
ab

ilit
y

[%
] Group 9 approximated

0 64 128 192 255
0
1
2
3
4

M
as

k
pr

ob
ab

ilit
y

[%
] Group 10 approximated

0 64 128 192 255
0.0
0.2
0.4
0.6
0.8

M
as

k
pr

ob
ab

ilit
y

[%
] Group 12 approximated

0 64 128 192 255
0.0
0.5
1.0
1.5

M
as

k
pr

ob
ab

ilit
y

[%
] Group 7 approximated

0 64 128 192 255
0.0
0.2
0.4
0.6
0.8

M
as

k
pr

ob
ab

ilit
y

[%
] Group 11 approximated

0 64 128 192 255
0.0
0.2
0.4
0.6
0.8

M
as

k
pr

ob
ab

ilit
y

[%
] Group 13 approximated

Figure 4: Some distributions may be interchanged for a mix of other distributions. We used our method to approximate each
of the 13 distributions using only the remaining 12 distributions. The graphs show the original distribution as a green outline
and the combination of libraries that minimizes the sum of squared distances is visualized by stacking the scaled distributions
on top of each other. The results show that Group 7 (OpenSSL) cannot be easily approximated by other groups (the process
leads to a large squared differences in the distributions that will not be permitted by the NNLSF method). However, Group 11
(withMicrosoft libraries) can be simulated relatively closely by a combination of other distributions. Hence, when a real world
distribution contains keys fromGroup 11, themethodmaymisattribute the keys as coming from a specificmixture of libraries
instead.

custom multi-threaded crawler for this purpose, downloading user

list, SSH keys, parsing them and producing a file for classification.

4.1.7 Pretty Good Privacy (PGP). PGP key servers play an im-

portant role in the PGP infrastructure as public registers of public

PGP keys. The PGP servers synchronize among themselves periodi-

cally. We downloaded a dump of the database in April 2017, parsed

it and extracted RSA master and sub-keys for the analysis. Anyone

can upload a valid PGP public key to the key server and download

the key later. This has to be taken into account during analysis.

Anyone can generate thousands of keys and upload them to the key

server, which would skew a statistics. This actually happened when

a group called Evil 32 [29] generated a new PGP key for thousands

of identities in the PGP server with a collision on the short key ID

to demonstrate the weakness of using a short 32-bit identifier in

the PGP ecosystem.

4.2 Internet-wide TLS scans
Various projects performed Internet-wide scanning since 2010, with

different periods, frequencies and scanning techniques. We ex-

tracted unique RSA keys from certificates collected by EFF SSL

Observatory (only two scans), HTTPS Ecosystem (07/2012-02/2014),

Rapid7 SonarSSL (11/2013-05/2017) and Censys IPv4 TLS (08/2015-

05/2017) scans. The processing is described in Section 4.1.

The overlapping portions of the different scans provide a good

match except for Group 11 (Microsoft libraries) in the Rapid7 Sonar

SSL scan between 11/2013 to 06/2015. The significant decrease of

Microsoft libraries is caused by an improper implementation of the

TLS v1.2 handshake by the scanning software, resulting in exclusion

of a significant portion of Microsoft IIS servers for 18 months as

confirmed by Project Sonar authors.

Figure 5 shows the absolute number of unique RSA keys attrib-

uted by us to every classification group of cryptographic libraries.

OpenSSL (Group 7) is increasingly more popular, also relatively to

other libraries. As of May 2017, there are about 8 million active

unique RSA keys generated by OpenSSL. Group 11 that contains

Microsoft libraries is relatively stable since 2012 starting with 2M,

rising to 2.4M in 2014 and then slightly decreasing to 2.2M keys in

2016. Since there are several changes in the data collection method-

ology and software, it is difficult to make a conclusion about the

significance of the numbers. However, the data indicates a compa-

rably stable number of keys originating from the group.

The large Group 13 (containing Nettle, OpenSSL FIPS, and Wolf-

SSL among others) used to be the third most common library with

0.4-0.5M keys, but was gradually matched by Group 12 (containing

OpenJDK and mbedTLS) in year 2016. Both groups now have an

almost equal share of about 0.5 M unique keys.

The last somewhat significant group is Group 8 with about 1%

of keys, slightly decreasing in popularity since 2016. The group

contains only the PGPSDK 4 FIPS implementation, which is unlikely

to be so popular in TLS. There either exists a different popular

library with a similar prime generation algorithm (not included in

the set of libraries studied by us), or a portion of the dataset was

misattributed to the library due to a similarity of a combination of

profiles, as explained in Section 3.5.

10
/10

01
/11

04
/11

07
/11

10
/11

01
/12

04
/12

07
/12

10
/12

01
/13

04
/13

07
/13

10
/13

01
/14

04
/14

07
/14

10
/14

01
/15

04
/15

07
/15

10
/15

01
/16

04
/16

07
/16

10
/16

01
/17

04
/17

0M

1M

2M

3M

4M

5M

6M

7M

8M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

HTTPS Ecosystem
EFF SSL Observatory

Rapid7 Sonar
Censys IPv4 TLS scan

Sonar fixed TLS 1.2 handshake

Unfinished Sonar scan

Group 1: G&D SmartCafe 3.2
Group 2: G&D SmartCafe 4.x & 6.0
Group 3: GNU Crypto 2.0.1
Group 4: Gemalto GXP E64
Group 5: NXP J2A080 & J2A081
 & J3A081 & JCOP 41 V2.2.1
Group 6: Oberthur Cosmo Dual 72K
Group 7: OpenSSL 0.9.7 & 1.0.2g
 & 1.0.2k & 1.1.0e
Group 8: PGPSDK 4 FIPS

Group 9: Infineon JTOP 80K, YubiKey 4 & 4 Nano
Group 10: NXP J2D081 & J2E145G, YubiKey NEO
Group 11: BouncyCastle 1.54 (Java), Crypto++ 5.6.0 & 5.6.3 & 5.6.5,
 Libgcrypt 1.7.6 FIPS, Microsoft CryptoAPI & CNG & .NET
Group 12: BouncyCastle 1.53 (Java), Cryptix JCE 20050328,
 FlexiProvider 1.7p7, HSM Utimaco Security Server Se50,
 Nettle 2.0, PolarSSL 0.10.0, PuTTY 0.67, SunRsaSign OpenJDK 1.8.0,
 mbedTLS 1.3.19 & 2.2.1 & 2.4.2
Group 13: Botan 1.5.6 & 1.11.29 & 2.1.0, Feitian JavaCOS A22 & A40,
 Gemalto GCX4 72K, HSM SafeNet Luna SA-1700, LibTomCrypt 1.17,
 Libgcrypt 1.6.0 & 1.6.5 & 1.7.6, Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS,
 Nettle 3.2 & 3.3, Oberthur Cosmo 64, OpenSSL FIPS 2.0.12 & 2.0.14,
 PGPSDK 4, WolfSSL 2.0rc1 & 3.9.0 & 3.10.2, cryptlib 3.4.3 & 3.4.3.1

Figure 5: The combined results from scans of TLS services in the whole IPv4 space as provided by four independent datasets,
given with one-month granularity. An absolute number of unique keys as attributed to different groups by our method are
shown. The sudden “jump” for Group 11 (Microsoft libraries) in SonarSSL in 06/2015 is caused by an improper implementation
of TLS 1.2 handshake in the scanning software, resulting in an exclusion of a significant portion of Microsoft IIS servers for
18 months.

4.3 Popularity between usage domains
Although the TLS ecosystem is the most frequently studied one,

large datasets of RSA keys exist for other usage domains. We an-

alyzed and compared the relative popularity of cryptographic li-

braries as of March 2017 for Internet-wide TLS scans (Censys),

obtained from the 1 million most popular domains according to the

Alexa survey, and the certificates uploaded to all Google’s Certifi-

cate Transparency logs during that month. We also present the TLS

keys as of December 2010 to illustrate the progress in time. Addi-

tionally, SSH authentication keys of all GitHub users and all keys

from PGP key servers were analyzed. The differences are shown in

Figure 6.

The analysis shows significant differences among the usage do-

mains. The GitHub SSH dataset is clearly dominated by OpenSSL

with more than 96% – the default library behind ssh-keygen utility

from OpenSSH software. Fewer than 3% belong to Group 12, which

contains the popular SSH client PuTTY for Microsoft Windows.

The PGP keys are generated mostly by Group 13 (containing

Libgcrypt from the widely used GnuPG software) with about 85%

share, followed by OpenSSL with approximately 11%.

4.4 TLS to CT comparison
According to a survey based on IPv4 scans, Certificate Transparency

(CT) and a large set of active domain names [37], the combination of

CT and IPv4 scans provides a representative sample of the Internet.

We are interested in the differences between the methodologies.

An interesting popularity distribution can be observed from CT

logs. CT has been used on a large scale since 2015, with the first

logs launching in 2013. The logs now contain almost an order of

magnitude more certificates than those reachable by direct IPv4

TLS scans. Due to the validation of TLS certificates performed by

all modern browsers, all valid certificates used for TLS are now

present in CT, but also more. CT logs also contain TLS certificates

hidden from IPv4-based scans due to Server Name Indication (SNI)

0 64 128 192 255
Mask

0K

10K

20K

30K

40K

50K

60K

70K

Nu
m

be
r o

f k
ey

s w
ith

 a
 g

iv
en

 m
as

k TLS 08/2010 (EFF SSL Observatory)
Total keys: 5,333,919

Original distribution
Group 7: 56.65%
Group 11: 23.73%
Group 13: 15.23%
Group 8: 2.02%
Group 12: 1.94%
Group 4: 0.35%

0 64 128 192 255
Mask

0K

50K

100K

150K

Nu
m

be
r o

f k
ey

s w
ith

 a
 g

iv
en

 m
as

k TLS 03/2017 (Censys)
Total keys: 11,649,495

Original distribution
Group 7: 70.16%
Group 11: 19.56%
Group 12: 4.61%
Group 13: 4.10%
Group 8: 1.15%
Group 4: 0.34%

0 64 128 192 255
Mask

0K

1K

2K

3K

4K

5K

6K

Nu
m

be
r o

f k
ey

s w
ith

 a
 g

iv
en

 m
as

k TLS 03/2017 Alexa Top 1M (Censys)
Total keys: 353,185

Original distribution
Group 7: 84.59%
Group 11: 11.08%
Group 12: 2.17%
Group 13: 0.92%
Group 8: 0.67%
Group 4: 0.47%

0 64 128 192 255
Mask

0K

50K

100K

150K

200K

Nu
m

be
r o

f k
ey

s w
ith

 a
 g

iv
en

 m
as

k Certificate Transparency 03/2017
Total keys: 17,745,546

Original distribution
Group 7: 60.06%
Group 12: 20.40%
Group 13: 15.21%
Group 11: 3.50%
Group 4: 0.68%

0 64 128 192 255
Mask

0K
10K
20K
30K
40K
50K
60K
70K
80K

Nu
m

be
r o

f k
ey

s w
ith

 a
 g

iv
en

 m
as

k GitHub 02/2017
Total keys: 4,740,955

Original distribution
Group 7: 96.72%
Group 12: 2.62%
Group 8: 0.58%

0 64 128 192 255
Mask

0K

5K

10K

15K

20K

25K

30K

35K

Nu
m

be
r o

f k
ey

s w
ith

 a
 g

iv
en

 m
as

k PGP 04/2017
Total keys: 3,650,466

Original distribution
Group 13: 85.20%
Group 7: 11.21%
Group 6: 2.24%
Group 12: 0.59%
Group 8: 0.51%
Group 10: 0.11%
Group 9: 0.10%

10
/10

01
/11

04
/11

07
/11

10
/11

01
/12

04
/12

07
/12

10
/12

01
/13

04
/13

07
/13

10
/13

01
/14

04
/14

07
/14

10
/14

01
/15

04
/15

07
/15

10
/15

01
/16

04
/16

07
/16

10
/16

01
/17

04
/17

0M

1M

2M

3M

4M

5M

6M

7M

8M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

HTTPS Ecosystem
EFF SSL Observatory

Rapid7 Sonar
Censys IPv4 TLS scan

Sonar fixed TLS 1.2 handshake

Unfinished Sonar scan

Group 1: G&D SmartCafe 3.2
Group 2: G&D SmartCafe 4.x & 6.0
Group 3: GNU Crypto 2.0.1
Group 4: Gemalto GXP E64
Group 5: NXP J2A080 & J2A081
 & J3A081 & JCOP 41 V2.2.1
Group 6: Oberthur Cosmo Dual 72K
Group 7: OpenSSL 0.9.7 & 1.0.2g
 & 1.0.2k & 1.1.0e
Group 8: PGPSDK 4 FIPS

Group 9: Infineon JTOP 80K, YubiKey 4 & 4 Nano
Group 10: NXP J2D081 & J2E145G, YubiKey NEO
Group 11: BouncyCastle 1.54 (Java), Crypto++ 5.6.0 & 5.6.3 & 5.6.5,
 Libgcrypt 1.7.6 FIPS, Microsoft CryptoAPI & CNG & .NET
Group 12: BouncyCastle 1.53 (Java), Cryptix JCE 20050328,
 FlexiProvider 1.7p7, HSM Utimaco Security Server Se50,
 Nettle 2.0, PolarSSL 0.10.0, PuTTY 0.67, SunRsaSign OpenJDK 1.8.0,
 mbedTLS 1.3.19 & 2.2.1 & 2.4.2
Group 13: Botan 1.5.6 & 1.11.29 & 2.1.0, Feitian JavaCOS A22 & A40,
 Gemalto GCX4 72K, HSM SafeNet Luna SA-1700, LibTomCrypt 1.17,
 Libgcrypt 1.6.0 & 1.6.5 & 1.7.6, Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS,
 Nettle 3.2 & 3.3, Oberthur Cosmo 64, OpenSSL FIPS 2.0.12 & 2.0.14,
 PGPSDK 4, WolfSSL 2.0rc1 & 3.9.0 & 3.10.2, cryptlib 3.4.3 & 3.4.3.1

Figure 6: Library share in different usage domains. The sources responsible for at least 0.1% of all keys in a particular scan of
the domain are listed in the legend. OpenSSL library dominates in all domains, except for the PGP dataset.

TLS extension. Additionally, certificates never seen in TLS or not

intended for TLS can be submitted to the logs. According to a study

of the CT landscape [22], almost 95% of certificates stored in CA

operated logs are also seen in CT logs operated by Google (Pilot,

Icarus, Rocketeer, Skydiver, Aviator) – we therefore use these logs

with newly inserted certificates during certain time frames (a day,

a week, a month) to perform our analysis.

We compare selected results for certificates submitted to CT

during March 2017 with a Censys scan from the same month in

Figure 6. While OpenSSL is again the most common library in CT,

it is responsible only for about 60% of unique RSA keys, where the

Censys scan contains about 70% of the same. Microsoft libraries

(Group 11) are in a minority with 3.5% in CT, whereas they are

responsible for almost 20% in TLS. The longer validity of certificates

generated by Microsoft software (especially when compared to

certificates produced by Let’s Encrypt CA with 3-month validity)

is a potential reason, with SNI multiplexing being another one.

Groups 12 and 13 are relatively common in CT with 20% and 15%,

respectively, whereas both are below 5% in TLS.

4.5 Detection of transient events
We used our method to estimate the proportion of libraries for

keys newly submitted every week to Google’s CT servers between

10
/16

11
/16

12
/16

01
/17

02
/17

03
/17

04
/17

05
/17

0.0M

0.5M

1.0M

1.5M

2.0M

2.5M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

1
2

3
4

5
6

7
8

9
10

11
12

13

Figure 7: The number of keys from distinct groups added to
CT weekly, found in certificates issued by Let’s Encrypt CA.

October 2016 and May 2017, limited to certificates issued by Let’s

Encrypt CA, as shown in Figure 7. The number of certificates added

every week fluctuates significantly, as well as the responsible li-

braries. Only a relatively small number of keys from Group 11 were

inserted when compared to the number of certificates in active use

found by TLS scans. This suggest that Microsoft libraries are less

likely to be used with Let’s Encrypt software. Interestingly, there is

a certain periodicity between such certificates being submitted.

Some periodic monthly insertion events are also visible for

Group 12 (OpenJDK, Bouncy Castle before v. 1.54, mbedTLS, etc.)

and bi-monthly for Group 13 (OpenSSL FIPS, WolfSSL, etc.). Most

Let’s Encrypt certificates from the events are reissued after 60 days.

5 RELATEDWORK
Only very few prior publications are concerned with the identifica-

tion of the library responsible for generating an RSA key. Except for

[36] (the work we directly improve on), the task was done by [32],

who observed that particular biases in private keys generated by

OpenSSL can be also seen in the majority of keys that were found

in TLS scans and factored by [1, 23, 24]. However, the method only

worked because of the knowledge of the private primes. Further-

more, the keys were generated with insufficient entropy due to bad

random generators. Hence the technique can be extended neither

to all keys generated by OpenSSL, nor to other libraries.

The popularity of a library can be also estimated from the positive

ratings (stars or likes) of open-source repositories, such as those

hosted on GitHub. However, this seems to be a very poor method –

OpenSSL only has four times as many stars as mbedTLS and closed-

source libraries like Microsoft CAPI/CNG cannot be compared this

way at all.

Server fingerprints were used to probabilistically determine the

operating system, or even the versions of the deployed software

[34, 35]. Indeed, the estimates on the number of servers running

Microsoft OS published by [33] matches the results of our analysis

of a scan of the Alexa Top 1 million domains. A similar analysis

was performed for software packages handling the SSH connec-

tion [8] mostly served by Dropbear and OpenSSH, confirming the

dominance of OpenSSH-based software.

Debian-based Linux distributions offer public statistics about the

popularity of software packages as a part of a quality assurance

effort [7]. The results are based on a relatively high number of users

(almost 200K) and provide an insight into the number of package

installation, yet they cannot capture the number of keys in use.

The libraries used to validate SSL certificates in non-browser client

software were surveyed in [21].

A direct identification of software packages running on other

cores in a cloud environment based on cache side-channels was

demonstrated by [26, 27]. The measurement requires a local pres-

ence, does not scale and cannot be used on archived datasets. How-

ever, it recovers not only the library, but also a particular version.

Measurements and analyses of the TLS ecosystem have a long

history with large scale scans starting in 2010 with the EFF SSL

Observatory project [2], followed by analyses of both valid cer-

tificates [13, 16, 17, 19, 20] (the majority of papers) as well as in-

valid ones [12]. The significant increase of popularity of Certificate

Transparency servers now provides a view of the certificates that

are otherwise unreachable via IP address based scanning [37]. Re-

searchers usually focus on the properties of the certificates (e.g.,

validity period) or the certificate chain extracted from the TLS hand-

shakes. Chosen cryptographic algorithms and key lengths were

also analyzed [15, 25], showing that more than 85% of currently

valid certificates use the RSA algorithm –making our method based

on RSA keys representative of the ecosystem.

The client SSH authentication keys extracted from GitHub were

previously collected and analyzed [9, 14] with a focus on the al-

gorithms, key lengths, and presence of weak keys, detecting keys

generated from OpenSSL with insufficient entropy.

6 CONCLUSIONS
A wide-scale accurate measurement of the popularity of crypto-

graphic libraries is an important precursor for a security analysis of

the Internet ecosystem, such as an evaluation of resilience against

security bugs. Yet so far, it was based only on proxy measurements,

like the popularity of web server implementations. We proposed a

measurement method based on statistical inference, which finds a

match between the observed distribution of keys on the Internet

and a specific proportion of reference distributions of RSA public

keys extracted from cryptographic libraries. Our method does not

rely on active communication with a server implementation, hence

it also works when proxy information is not available, such as for

SSH client keys, where direct scanning of clients is not performed.

The analysis is possible thanks to the recently discovered biases in

the implementations of RSA public key generation [36].

The results show an overall increasing reliance on OpenSSL –

its share grew from 56% to 70% between the years 2010 and 2017 as

observed from keys used by TLS servers. The prevalence of OpenSSL

reaches almost 85% within the current Alexa top 1M domains and

more than 96% for client-side SSH keys as used by GitHub users.

The usage trends of Microsoft libraries are mostly stable with a

share of around 20% for TLS serves and a 10% share of the Alexa top

1M domains. The GnuPG Libgcrypt library and statistically similar

implementations are responsible for 85% of all PGP keys. Certificate

Transparency logs provide a different ratio of libraries for recently

added certificates than Internet-wide scans – OpenSSL is down to

60%, Microsoft is at only 3.5% (probably due to longer validity of

certificates) and the remaining libraries account for more than 35%

(while their share in IPv4 TLS scans is lower than 10%).

This method can also capture short-term events, when incremen-

tal datasets are examined (e.g., daily changes). We observed that

many certificates from specific libraries were submitted to Certifi-

cate Transparency logs periodically, coinciding with the validity

of Let’s Encrypt certificates. Our measurement also revealed an

inconsistency between historical datasets, caused by a bug in the

scanning software of Project Sonar, which led to an omission of

more than a million Microsoft servers from IPv4 TLS scans during

the period of 18 months.

ACKNOWLEDGMENTS
We would like to thank our colleagues for fruitful discussions, espe-

cially Marek Sys and Stanislav Katina. We acknowledge the support

of the Czech Science Foundation under project GA16-08565S. The

access to the computing and storage resources of National Grid In-

frastructure MetaCentrum (LM2010005) is also greatly appreciated.

Vashek Matyas thanks Red Hat Czech and CyLab, Carnegie Mellon

University for a supportive sabbatical environment during some of

his work on this paper.

REFERENCES
[1] DSA-1571-1 openssl – predictable random number generator, 2008. [cit. 2017-09-

20]. Available from https://www.debian.org/security/2008/dsa-1571.

[2] The EFF SSL Observatory, 2010. [cit. 2017-09-20]. Available from https://www.

eff.org/observatory.

[3] Censys TLS Alexa Top 1 Million Scan, 2015. [cit. 2017-09-20]. Available from

https://censys.io/data/443-https-tls-alexa_top1mil.

[4] Censys TLS Full IPv4 443 Scan, 2015. [cit. 2017-09-20]. Available from https:

//censys.io/data/443-https-tls-full_ipv4/historical.

[5] LZ4 Extremely Fast Compression algorithm, 2015. [cit. 2017-09-20]. Available

from http://www.lz4.org/.

[6] Rapid 7 Sonar SSL full IPv4 scan, 2015. [cit. 2017-09-20]. Available from https:

//scans.io/study/sonar.ssl.

[7] Debian quality assurance: Popularity contest statistics, 2017. [cit. 2017-09-20].

Available from https://qa.debian.org/popcon.php.

[8] Albrecht, M. R., Degabriele, J. P., Hansen, T. B., and Paterson, K. G. A

surfeit of SSH cipher suites. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (2016), CCS ’16, ACM, pp. 1480–1491.

[9] Barbulescu, M., Stratulat, A., Traista-Popescu, V., and Simion, E. RSA weak

public keys available on the Internet. In International Conference for Information
Technology and Communications (2016), Springer-Verlag, pp. 92–102.

[10] Bernstein, D. J. Cache-timing attacks on AES, 2005. [cit. 2017-09-20]. Preprint

available at https://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[11] Brumley, D., and Boneh, D. Remote timing attacks are practical. In Computer
Networks (2005), vol. 48, Elsevier, pp. 701–716.

[12] Chung, T., Liu, Y., Choffnes, D., Levin, D., Maggs, B. M., Mislove, A., and

Wilson, C. Measuring and applying invalid SSL certificates: The silent majority.

In Proceedings of the 2016 ACM on Internet Measurement Conference (2016), ACM,

pp. 527–541.

[13] Clark, J., and van Oorschot, P. C. SoK: SSL and HTTPS: Revisiting past chal-

lenges and evaluating certificate trust model enhancements. In IEEE Symposium
on Security and Privacy (2013), IEEE, pp. 511–525.

[14] Batch-GCDing Github SSH Keys, 2015. [cit. 2017-09-20]. Available from https:

//cryptosense.com/batch-gcding-github-ssh-keys/.

[15] Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., and Halderman, J. A. A

search engine backed by internet-wide scanning. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (2015), ACM,

pp. 542–553.

[16] Durumeric, Z., Bailey, M., and Halderman, J. A. An internet-wide view of

internet-wide scanning. In Proceeding of USENIX Security Symposium (2014),

pp. 65–78.

[17] Durumeric, Z., Kasten, J., Adrian, D., Halderman, J. A., Bailey, M., Li, F.,

Weaver, N., Amann, J., Beekman, J., Payer, M., et al. The matter of Heartbleed.

In Proceedings of the 2014 Conference on Internet Measurement Conference (2014),
ACM, pp. 475–488.

[18] Durumeric, Z., Kasten, J., Bailey, M., and Halderman, J. A. Analysis of the

HTTPS certificate ecosystem. In Proceedings of the 13th Internet Measurement
Conference (2013).

[19] Durumeric, Z., Kasten, J., Bailey, M., and Halderman, J. A. Analysis of the

HTTPS certificate ecosystem. In Proceedings of the 2013 ACM Internet Measure-
ment Conference (2013), ACM, pp. 291–304.

[20] Felt, A. P., Barnes, R., King, A., Palmer, C., Bentzel, C., and Tabriz, P. Mea-

suring HTTPS adoption on the web. In 26th USENIX Security Symposium (2017),

USENIX Association, pp. 1323–1338.

[21] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., and Shmatikov,

V. The most dangerous code in the world: validating SSL certificates in non-

browser software. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security (2012), ACM, pp. 38–49.

[22] Gustafsson, J., Overier, G., Arlitt, M., and Carlsson, N. A first look at the

CT landscape: Certificate Transparency logs in practice. In Proceedings of the 18th
Passive and Active Measurement Conference (2017), Springer-Verlag, pp. 87–99.

[23] Hastings, M., Fried, J., and Heninger, N. Weak keys remain widespread

in network devices. In Proceedings of the 2016 ACM on Internet Measurement
Conference (2016), ACM, pp. 49–63.

[24] Heninger, N., Durumeric, Z., Wustrow, E., and Halderman, J. A. Mining your

Ps and Qs: Detection of widespread weak keys in network devices. In Proceeding
of USENIX Security Symposium (2012), vol. 8.

[25] The ICSI Certificate Notary, 2017. [cit. 2017-09-20]. Available from https://notary.

icsi.berkeley.edu/.

[26] Inci, M. S., Gulmezoglu, B., Eisenbarth, T., and Sunar, B. Co-location detection

on the cloud. In International Workshop on Constructive Side-Channel Analysis
and Secure Design (2016), Springer-Verlag, pp. 19–34.

[27] Irazoqi, G., IncI, M. S., Eisenbarth, T., and Sunar, B. Know thy neighbor:

crypto library detection in cloud. Proceedings on Privacy Enhancing Technologies
2015, 1 (2015), 25–40.

[28] Kaminsky, A. Parallel Java 2 library (PJ2), 2017. [cit. 2017-09-20]. Available from

https://www.cs.rit.edu/~ark/pj2.shtml.

[29] Klafter, R., and Swanson, E. Evil 32, 2015. [cit. 2017-09-20]. Available from

https://evil32.com.

[30] Lawson, C. L., and Hanson, R. J. Solving Least Squares Problems. SIAM, 1995.

[31] Lazar, D., Chen, H., Wang, X., and Zeldovich, N. Why does cryptographic

software fail?: a case study and open problems. In Proceedings of 5th Asia-Pacific
Workshop on Systems (2014), ACM, pp. 1–7.

[32] Mironov, I. Factoring RSA Moduli II. [cit. 2017-09-20]. Available from https:

//windowsontheory.org/2012/05/17/factoring-rsa-moduli-part-ii/.

[33] NetCraft April 2017 Web Server Survey, 2017. [cit. 2017-09-20]. Available from

https://news.netcraft.com/archives/2017/04/21/april-2017-web-server-survey.

html.

[34] NetCraft operating system detection, 2017. [cit. 2017-09-20]. Available from

http://uptime.netcraft.com/accuracy.html#os.

[35] Nmap Remote OS Detection, 2017. [cit. 2017-09-20]. Available from https://nmap.

org/book/osdetect.html.

[36] Svenda, P., Nemec, M., Sekan, P., Kvasnovsky, R., Formanek, D., Komarek, D.,

and Matyas, V. The million-key question — Investigating the origins of RSA

public keys. In Proceeding of USENIX Security Symposium (2016), pp. 893–910.

[37] VanderSloot, B., Amann, J., Bernhard, M., Durumeric, Z., Bailey, M., and

Halderman, J. A. Towards a complete view of the certificate ecosystem. In

Proceedings of the 2016 ACM on Internet Measurement Conference (2016), ACM,

pp. 543–549.

A ADDITIONAL RESULTS
Table 3 shows the sources considered in the analysis, together with

the relevant biases.

Figure 8 shows the number of keys attributed by us to different

cryptographic libraries in certificates from the Alexa Top 1 million

domains collected by Censys. The number of OpenSSL keys is rising

and the percentage of keys coming fromMicrosoft implementations

is much smaller than in general TLS scans.

Previous analyses of Internet-wide TLS scans [13, 16, 17, 19] com-

pared various properties of certificates. Valid and invalid certificates

were compared by [12], showing that the majority of certificates

found by scans are invalid and have interesting properties.

We compared self-signed certificates to certificates signed by

third parties in historical datasets from HTTPS Ecosystem and

Rapid7 Project Sonar. Figure 9 shows a significant difference in the

keys coming from such certificates. Most notably, Microsoft keys

are found in self-signed certificates less commonly than OpenSSL

keys. As explained in Section 4.2, the decrease in the number of

certificates between 11/2013 to 06/2015 is caused by an improper

implementation of the TLS v1.2 handshake used by Project Sonar.

09
/15

10
/15

11
/15

12
/15

01
/16

02
/16

03
/16

04
/16

05
/16

06
/16

07
/16

08
/16

09
/16

10
/16

11
/16

12
/16

01
/17

02
/17

03
/17

04
/17

0.0M

0.1M

0.1M

0.1M

0.2M

0.2M

0.3M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

1
2

3
4

5
6

7
8

9
10

11
12

13

Figure 8: More domains from the Alexa Top 1M list use
OpenSSL (Group 7) now than in 2015. Note that the number
of keys does not sum to 1M already in the original dataset
collected by Censys. Some websites do not support HTTPS
[20] or the specific cipher-suite used by the Censys scanner.

https://www.debian.org/security/2008/dsa-1571
https://www.eff.org/observatory
https://www.eff.org/observatory
https://censys.io/data/443-https-tls-alexa_top1mil
https://censys.io/data/443-https-tls-full_ipv4/historical
https://censys.io/data/443-https-tls-full_ipv4/historical
http://www.lz4.org/
https://scans.io/study/sonar.ssl
https://scans.io/study/sonar.ssl
https://qa.debian.org/popcon.php
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cryptosense.com/batch-gcding-github-ssh-keys/
https://cryptosense.com/batch-gcding-github-ssh-keys/
https://notary.icsi.berkeley.edu/
https://notary.icsi.berkeley.edu/
https://www.cs.rit.edu/~ark/pj2.shtml
https://evil32.com
https://windowsontheory.org/2012/05/17/factoring-rsa-moduli-part-ii/
https://windowsontheory.org/2012/05/17/factoring-rsa-moduli-part-ii/
https://news.netcraft.com/archives/2017/04/21/april-2017-web-server-survey.html
https://news.netcraft.com/archives/2017/04/21/april-2017-web-server-survey.html
http://uptime.netcraft.com/accuracy.html#os
https://nmap.org/book/osdetect.html
https://nmap.org/book/osdetect.html

07
/12

10
/12

01
/13

04
/13

07
/13

10
/13

01
/14

04
/14

07
/14

10
/14

01
/15

04
/15

07
/15

10
/15

01
/16

04
/16

07
/16

10
/16

01
/17

04
/17

0.0M

1.0M

2.0M

3.0M

4.0M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

HTTPS Ecosystem
Rapid7 Sonar

Group 1: G&D SmartCafe 3.2
Group 2: G&D SmartCafe 4.x & 6.0
Group 3: GNU Crypto 2.0.1
Group 4: Gemalto GXP E64
Group 5: NXP J2A080 & J2A081
 & J3A081 & JCOP 41 V2.2.1
Group 6: Oberthur Cosmo Dual 72K
Group 7: OpenSSL 0.9.7 & 1.0.2g
 & 1.0.2k & 1.1.0e
Group 8: PGPSDK 4 FIPS

Group 9: Infineon JTOP 80K, YubiKey 4 & 4 Nano
Group 10: NXP J2D081 & J2E145G, YubiKey NEO
Group 11: BouncyCastle 1.54 (Java), Crypto++ 5.6.0 & 5.6.3 & 5.6.5,
 Libgcrypt 1.7.6 FIPS, Microsoft CryptoAPI & CNG & .NET
Group 12: BouncyCastle 1.53 (Java), Cryptix JCE 20050328,
 FlexiProvider 1.7p7, HSM Utimaco Security Server Se50,
 Nettle 2.0, PolarSSL 0.10.0, PuTTY 0.67, SunRsaSign OpenJDK 1.8.0,
 mbedTLS 1.3.19 & 2.2.1 & 2.4.2
Group 13: Botan 1.5.6 & 1.11.29 & 2.1.0, Feitian JavaCOS A22 & A40,
 Gemalto GCX4 72K, HSM SafeNet Luna SA-1700, LibTomCrypt 1.17,
 Libgcrypt 1.6.0 & 1.6.5 & 1.7.6, Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS,
 Nettle 3.2 & 3.3, Oberthur Cosmo 64, OpenSSL FIPS 2.0.12 & 2.0.14,
 PGPSDK 4, WolfSSL 2.0rc1 & 3.9.0 & 3.10.2, cryptlib 3.4.3 & 3.4.3.1

07
/12

10
/12

01
/13

04
/13

07
/13

10
/13

01
/14

04
/14

07
/14

10
/14

01
/15

04
/15

07
/15

10
/15

01
/16

04
/16

07
/16

10
/16

01
/17

04
/17

0.0M

0.5M

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

HTTPS Ecosystem
Rapid7 Sonar

Group 1: G&D SmartCafe 3.2
Group 2: G&D SmartCafe 4.x & 6.0
Group 3: GNU Crypto 2.0.1
Group 4: Gemalto GXP E64
Group 5: NXP J2A080 & J2A081
 & J3A081 & JCOP 41 V2.2.1
Group 6: Oberthur Cosmo Dual 72K
Group 7: OpenSSL 0.9.7 & 1.0.2g
 & 1.0.2k & 1.1.0e
Group 8: PGPSDK 4 FIPS

Group 9: Infineon JTOP 80K, YubiKey 4 & 4 Nano
Group 10: NXP J2D081 & J2E145G, YubiKey NEO
Group 11: BouncyCastle 1.54 (Java), Crypto++ 5.6.0 & 5.6.3 & 5.6.5,
 Libgcrypt 1.7.6 FIPS, Microsoft CryptoAPI & CNG & .NET
Group 12: BouncyCastle 1.53 (Java), Cryptix JCE 20050328,
 FlexiProvider 1.7p7, HSM Utimaco Security Server Se50,
 Nettle 2.0, PolarSSL 0.10.0, PuTTY 0.67, SunRsaSign OpenJDK 1.8.0,
 mbedTLS 1.3.19 & 2.2.1 & 2.4.2
Group 13: Botan 1.5.6 & 1.11.29 & 2.1.0, Feitian JavaCOS A22 & A40,
 Gemalto GCX4 72K, HSM SafeNet Luna SA-1700, LibTomCrypt 1.17,
 Libgcrypt 1.6.0 & 1.6.5 & 1.7.6, Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS,
 Nettle 3.2 & 3.3, Oberthur Cosmo 64, OpenSSL FIPS 2.0.12 & 2.0.14,
 PGPSDK 4, WolfSSL 2.0rc1 & 3.9.0 & 3.10.2, cryptlib 3.4.3 & 3.4.3.1

10
/10

01
/11

04
/11

07
/11

10
/11

01
/12

04
/12

07
/12

10
/12

01
/13

04
/13

07
/13

10
/13

01
/14

04
/14

07
/14

10
/14

01
/15

04
/15

07
/15

10
/15

01
/16

04
/16

07
/16

10
/16

01
/17

04
/17

0M

1M

2M

3M

4M

5M

6M

7M

8M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

HTTPS Ecosystem
EFF SSL Observatory

Rapid7 Sonar
Censys IPv4 TLS scan

Sonar fixed TLS 1.2 handshake

Unfinished Sonar scan

Group 1: G&D SmartCafe 3.2
Group 2: G&D SmartCafe 4.x & 6.0
Group 3: GNU Crypto 2.0.1
Group 4: Gemalto GXP E64
Group 5: NXP J2A080 & J2A081
 & J3A081 & JCOP 41 V2.2.1
Group 6: Oberthur Cosmo Dual 72K
Group 7: OpenSSL 0.9.7 & 1.0.2g
 & 1.0.2k & 1.1.0e
Group 8: PGPSDK 4 FIPS

Group 9: Infineon JTOP 80K, YubiKey 4 & 4 Nano
Group 10: NXP J2D081 & J2E145G, YubiKey NEO
Group 11: BouncyCastle 1.54 (Java), Crypto++ 5.6.0 & 5.6.3 & 5.6.5,
 Libgcrypt 1.7.6 FIPS, Microsoft CryptoAPI & CNG & .NET
Group 12: BouncyCastle 1.53 (Java), Cryptix JCE 20050328,
 FlexiProvider 1.7p7, HSM Utimaco Security Server Se50,
 Nettle 2.0, PolarSSL 0.10.0, PuTTY 0.67, SunRsaSign OpenJDK 1.8.0,
 mbedTLS 1.3.19 & 2.2.1 & 2.4.2
Group 13: Botan 1.5.6 & 1.11.29 & 2.1.0, Feitian JavaCOS A22 & A40,
 Gemalto GCX4 72K, HSM SafeNet Luna SA-1700, LibTomCrypt 1.17,
 Libgcrypt 1.6.0 & 1.6.5 & 1.7.6, Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS,
 Nettle 3.2 & 3.3, Oberthur Cosmo 64, OpenSSL FIPS 2.0.12 & 2.0.14,
 PGPSDK 4, WolfSSL 2.0rc1 & 3.9.0 & 3.10.2, cryptlib 3.4.3 & 3.4.3.1

Figure 9: Comparison of library popularity for keys coming from certificates signed by a third party (top) and self-signed
certificates (bottom). Self-signed certificates are dominated by OpenSSL. More than 50% of OpenSSL keys observed in 2012
were found in self-signed certificates. For OpenSSL, the number of not self-signed certificates rose faster than the number of
self-signed certificates, and significantly more OpenSSL certificates are now signed by a third party. Fewer than 25% Microsoft
keys were found in self-signed certificates in majority of the scans. Self-signed certificates are implicitly not trusted by web
browsers. Only a subset of the not self-signed certificates have certificates chains leading to a browser-trusted root CA.

Source Version Year Group Prime bias Mod 4 bias Mod 3 bias
Open-source libraries
Botan 1.5.6, 1.11.29, 2.1.0 2006, 2016, 2017 13 112

Bouncy Castle (Java) 1.53 2016 12 RS

Bouncy Castle (Java) 1.54 2016 11

√
2

Cryptix JCE 20050328 2005 12 RS

cryptlib 3.4.3, 3.4.3.1 2016, 2017 13 112

Crypto++ 5.6.0, 5.6.3, 5.6.5 2009, 2015, 2016 11

√
2

FlexiProvider 1.7p7 2014 12 RS

GNU Crypto 2.0.1 2005 3 RS ✓
Libgcrypt (GnuPG) 1.6.0, 1.6.5, 1.7.6 2013, 2016, 2017 13 112

Libgcrypt (GnuPG) 1.6.0 FIPS, 1.6.5 FIPS 2013, 2016 13 112

Libgcrypt (GnuPG) 1.7.6 FIPS 2017 11

√
2

LibTomCrypt 1.17 2015 13 112

mbedTLS 2.2.1, 2.4.2 2016, 2017 12 RS

Nettle 2.0 2010 12 RS

Nettle 3.2, 3.3 2016 13 112

OpenSSL 0.9.7, 1.0.2g, 1.0.2k, 1.1.0e 2002, 2016, 2017, 2017 7 112 ✓
OpenSSL FIPS 2.0.12, 2.0.14 2016, 2017 13 112

PGP SDK 4 2011 13 112

PGP SDK 4 FIPS 2011 8 PGP

PolarSSL 0.10.0, 1.3.9 2009, 2014 12 RS

Putty 0.67 2017 12 RS

SunRsaSign Provider OpenJDK 1.8 2014 12 RS

WolfSSL 2.0rc1, 3.9.0, 3.10.2 2011, 2016, 2017 13 112

Black-box implementations
HSM Utimaco SecurityServer Se50 12 Uti

HSM SafeNet Luna SA-1700 13 112

Microsoft CNG, CryptoAPI, .NET 2016 (Windows 10) 11

√
2

YubiKey 4, 4 Nano 2015 9 Inf.

YubiKey NEO 2012 10 RS ✓ ✓

Smartcards
Feitian JavaCOS A22 2015 13 112

Feitian JavaCOS A40 2016 13 112

G&D SmartCafe 3.2 2003 1 G&D ✓
G&D SmartCafe 4.x 2007 2 G&D ✓ ✓
G&D SmartCafe 6.0 2015 2 G&D ✓ ✓
Gemalto GCX4 72K <2010 13 112

Gemalto GXP E64 <2010 4 Gem.

Infineon JTOP 80K 2012 9 Inf.

NXP J2A080 2011 5 NXP ✓
NXP J2A081 2012 5 NXP ✓
NXP J2D081 2014 10 RS ✓ ✓
NXP J2E145G 2013 10 RS ✓ ✓
NXP J3A081 2012 5 NXP ✓
NXP JCOP 41 V2.2.1 <2010 5 NXP ✓
Oberthur Cosmo Dual 72K <2010 6 112 ✓
Oberthur Cosmo 64 2007 13 112

Table 3: List of sources with biases relevant for the analysis. There are two types of modular bias – modulo 4, due to RSA
moduli being Blum integers and modulo 3, due to implementations avoiding primes p such that p − 1 is divisible by 3. The
primes are biased due to different intervals, from which they are generated. The bias propagates to public keys. Notation: 112
– the primes have the two top bits set to one; RS – the primes have the top bit set to one, then short moduli are discarded;

√
2

– the primes are chosen from the interval
[√

2 · 2
n
2
−1, 2

n
2 − 1

]
(n – length of modulus). Other proprietary implementations of

prime selection are: G&D – Giesecke & Devrient (G&D); Gem. – Gemalto; Inf. – Infineon; NXP – NXP; PGP – PGP SDK; Uti –
Utimaco (similar to RS).

	Abstract
	1 Introduction
	2 Method overview
	2.1 Choice of key features
	2.2 Clustering analysis
	2.3 Dataset classification – original approach
	2.4 Dataset classification – our approach
	2.5 Limitations

	3 Methodology in detail
	3.1 Model
	3.2 Prior probability estimation
	3.3 Key classification
	3.4 Evaluation of accuracy
	3.5 Additional accuracy considerations

	4 Results on relevant datasets
	4.1 Data preparation
	4.2 Internet-wide TLS scans
	4.3 Popularity between usage domains
	4.4 TLS to CT comparison
	4.5 Detection of transient events

	5 Related Work
	6 Conclusions
	Acknowledgments
	References
	A Additional results

