# I Want to Break Square-free: The 4p - 1Factorization Method and Its RSA Backdoor Viability

SECRYPT 2019

Vladimír Sedláček

Dušan Klinec Marek Sýs Petr Švenda Vashek Matyáš

vlada.sedlacek@mail.muni.cz

# **CR**<sup>©</sup>CS

Centre for Research on Cryptography and Security

> Masaryk University Brno, Czech Republic





- 1 Motivation and the basic idea
- 2 Complex multiplication (CM)
- 3 The algorithm and its bottlenecks
- 4 Practical evaluation
- 5 Audit of keys







- Factorization of integers an old and well studied problem
- RSA depends on its infeasibility



- Factorization of integers an old and well studied problem
- RSA depends on its infeasibility

- Pollard's  $\rho, p-1$
- Lenstra's elliptic curve method
- Quadratic sieve
- Number field sieve
- Shor's algorithm (quantum) first general polynomial



- Factorization of integers an old and well studied problem
- RSA depends on its infeasibility

- Pollard's  $\rho, p-1$
- Lenstra's elliptic curve method
- Quadratic sieve
- Number field sieve
- Shor's algorithm (quantum) first general polynomial
- The 4p 1 method Qi Cheng (2002)



- Factorization of integers an old and well studied problem
- RSA depends on its infeasibility

- Pollard's  $\rho, p-1$
- Lenstra's elliptic curve method
- Quadratic sieve
- Number field sieve
- Shor's algorithm (quantum) first general polynomial
- The 4p 1 method Qi Cheng (2002)
  - very fast, but special assumptions



- Factorization of integers an old and well studied problem
- RSA depends on its infeasibility

- Pollard's  $\rho, p-1$
- Lenstra's elliptic curve method
- Quadratic sieve
- Number field sieve
- Shor's algorithm (quantum) first general polynomial
- The 4p 1 method Qi Cheng (2002)
  - very fast, but special assumptions
  - interesting as a backdoor



#### • N = pq, where p, q > 3 are distinct primes

• 
$$N = pq$$
, where  $p, q > 3$  are distinct primes

• an elliptic curve E over  $\mathbb{Z}_N$ : given by

$$y^2 \equiv x^3 + ax + b \pmod{N},$$

forms an abelian group

• an elliptic curve E over  $\mathbb{Z}_N$ : given by

$$y^2 \equiv x^3 + ax + b \pmod{N},$$

forms an abelian group

• we have  $E(\mathbb{Z}_N) \cong E(\mathbb{F}_p) \oplus E(\mathbb{F}_q)$ 

• 
$$N = pq$$
, where  $p, q > 3$  are distinct primes

• an elliptic curve E over  $\mathbb{Z}_N$ : given by

$$y^2 \equiv x^3 + ax + b \pmod{N},$$

forms an abelian group

• we have 
$$E(\mathbb{Z}_N) \cong E(\mathbb{F}_p) \oplus E(\mathbb{F}_q)$$

if |E(𝔽<sub>p</sub>)| = p, multiplication by N annihilates the first summand, which reveals p



$$k \cdot P = \left(\frac{\phi_k(x)}{\psi_k^2(x)}, \frac{\omega_k(x, y)}{\psi_k^3(x, y)}\right)$$

for all P = (x, y) on E.



$$k \cdot P = \left(\frac{\phi_k(x)}{\psi_k^2(x)}, \frac{\omega_k(x, y)}{\psi_k^3(x, y)}\right)$$

for all P = (x, y) on E.

• if  $|E(\mathbb{F}_p)| = p$  and  $P \in E(\mathbb{Z}_N)$ , then the computation of  $N \cdot P$  usually fails



$$k \cdot P = \left(\frac{\phi_k(x)}{\psi_k^2(x)}, \frac{\omega_k(x, y)}{\psi_k^3(x, y)}\right)$$

for all P = (x, y) on E.

- if  $|E(\mathbb{F}_p)| = p$  and  $P \in E(\mathbb{Z}_N)$ , then the computation of  $N \cdot P$  usually fails
- this is because  $\psi_N(x)$  is invertible modulo q, but not modulo p



$$k \cdot P = \left(\frac{\phi_k(x)}{\psi_k^2(x)}, \frac{\omega_k(x, y)}{\psi_k^3(x, y)}\right)$$

for all P = (x, y) on E.

- if  $|E(\mathbb{F}_p)| = p$  and  $P \in E(\mathbb{Z}_N)$ , then the computation of  $N \cdot P$ usually fails
- this is because  $\psi_N(x)$  is invertible modulo q, but not modulo p
- thus we can recover  $p = \gcd(N, \psi_N(x))$





• ECs over  $\mathbb{F}_p$  are classified by their *j*-invariant (up to twists)



• ECs over  $\mathbb{F}_p$  are classified by their *j*-invariant (up to twists)

if the *j*-invariant of *E* is a root of the -D-th Hilbert class polynomial  $H_{-D}(x) \mod p$ , then  $|E(\mathbb{F}_p)| = p + 1 \pm t$ , where  $4p = t^2 + Ds^2$ 



• ECs over  $\mathbb{F}_p$  are classified by their *j*-invariant (up to twists)

- if the *j*-invariant of *E* is a root of the -D-th Hilbert class polynomial  $H_{-D}(x) \mod p$ , then  $|E(\mathbb{F}_p)| = p + 1 \pm t$ , where  $4p = t^2 + Ds^2$
- thus if  $4p 1 = Ds^2$  and  $H_{-D}(j(E)) \equiv 0 \pmod{p}$ , then  $|E(\mathbb{F}_p)| = p$  in one half of cases



Suppose that we know that  $4p - 1 = Ds^2$  for some  $s, D \in \mathbb{Z}$ , where D is known.



**1** construct  $H_{-D}$ ,

Suppose that we know that  $4p - 1 = Ds^2$  for some  $s, D \in \mathbb{Z}$ , where D is known. Ideally, we would like to do the following:

- **1** construct  $H_{-D}$ ,
- **2** find a root  $j_0$  of  $H_{-D}$  modulo p,

Suppose that we know that  $4p - 1 = Ds^2$  for some  $s, D \in \mathbb{Z}$ , where D is known. Ideally, we would like to do the following:

- **1** construct  $H_{-D}$ ,
- **2** find a root  $j_0$  of  $H_{-D}$  modulo p,
- **3** construct  $E_{j_0}$ ,

Suppose that we know that  $4p - 1 = Ds^2$  for some  $s, D \in \mathbb{Z}$ , where D is known. Ideally, we would like to do the following:

- **1** construct  $H_{-D}$ ,
- **2** find a root  $j_0$  of  $H_{-D}$  modulo p,
- 3 construct E<sub>j0</sub>,
- 4 find a point P = (x, y) on  $E_{j_0}$ ,

- **1** construct  $H_{-D}$ ,
- **2** find a root  $j_0$  of  $H_{-D}$  modulo p,
- 3 construct E<sub>j0</sub>,
- 4 find a point P = (x, y) on  $E_{j_0}$ ,
- **5** try to compute  $N \cdot P$  (or just  $\psi_N(x)$ ),

- **1** construct  $H_{-D}$ ,
- **2** find a root  $j_0$  of  $H_{-D}$  modulo p,
- 3 construct E<sub>j0</sub>,
- 4 find a point P = (x, y) on  $E_{j_0}$ ,
- **5** try to compute  $N \cdot P$  (or just  $\psi_N(x)$ ),
- 6 if the computation of  $N \cdot P$  does not fail, go back to step 3) and replace  $E_{j_0}$  with its twist,

- **1** construct  $H_{-D}$ ,
- **2** find a root  $j_0$  of  $H_{-D}$  modulo p,
- 3 construct E<sub>j0</sub>,
- 4 find a point P = (x, y) on  $E_{j_0}$ ,
- **5** try to compute  $N \cdot P$  (or just  $\psi_N(x)$ ),
- 6 if the computation of  $N \cdot P$  does not fail, go back to step 3) and replace  $E_{j_0}$  with its twist,
- **7** if the computation of  $N \cdot P$  fails, compute a factor of N as  $gcd(\psi_N(x), N)$ .



obstacle for solving nonlinear congruences modulo p



- obstacle for solving nonlinear congruences modulo p
- solution: replace  $\mathbb{Z}_N$  by  $\mathbb{Z}_N[x]/H_{-D}(x)$  and compute symbolically



- obstacle for solving nonlinear congruences modulo p
- solution: replace  $\mathbb{Z}_N$  by  $\mathbb{Z}_N[x]/H_{-D}(x)$  and compute symbolically
- not clear how to find the point P and the correct twist



- obstacle for solving nonlinear congruences modulo p
- solution: replace  $\mathbb{Z}_N$  by  $\mathbb{Z}_N[x]/H_{-D}(x)$  and compute symbolically
- not clear how to find the point P and the correct twist
- solution: probabilistic guessing



- obstacle for solving nonlinear congruences modulo p
- solution: replace  $\mathbb{Z}_N$  by  $\mathbb{Z}_N[x]/H_{-D}(x)$  and compute symbolically
- not clear how to find the point P and the correct twist
- solution: probabilistic guessing

Computation of  $H_{-D}$ :

• complicated, roughly exponential in D



- obstacle for solving nonlinear congruences modulo p
- solution: replace  $\mathbb{Z}_N$  by  $\mathbb{Z}_N[x]/H_{-D}(x)$  and compute symbolically
- not clear how to find the point P and the correct twist
- solution: probabilistic guessing

Computation of  $H_{-D}$ :

- complicated, roughly exponential in D
- current record:  $D \approx 2^{53}$







The improved (probabilistic) algorithm is polynomial in N, but exponential in D (the squarefree part of 4p - 1).



The improved (probabilistic) algorithm is polynomial in N, but exponential in D (the squarefree part of 4p - 1).

Current record for D = 11 (with our custom implementation on a single core):

- RSA 4096-bit moduli factored in around 150 seconds
- RSA 2048-bit moduli factored in under 10 seconds



The improved (probabilistic) algorithm is polynomial in N, but exponential in D (the squarefree part of 4p - 1).

Current record for D = 11 (with our custom implementation on a single core):

- RSA 4096-bit moduli factored in around 150 seconds
- RSA 2048-bit moduli factored in under 10 seconds





# ■ for random primes p, the condition 4p - 1 = Ds<sup>2</sup> with small D is extermely rare



■ for random primes *p*, the condition 4*p* − 1 = *Ds*<sup>2</sup> with small *D* is extermely rare

• only 
$$\frac{1}{\sqrt{X}}$$
 of primes  $p < X$  satisfy it



■ for random primes *p*, the condition 4*p* − 1 = *Ds*<sup>2</sup> with small *D* is extermely rare

• only 
$$\frac{1}{\sqrt{X}}$$
 of primes  $p < X$  satisfy it

 still could serve as an interesting backdoor (e.g., on black-box devices)



■ for random primes *p*, the condition 4*p* − 1 = *Ds*<sup>2</sup> with small *D* is extermely rare

• only 
$$\frac{1}{\sqrt{X}}$$
 of primes  $p < X$  satisfy it

- still could serve as an interesting backdoor (e.g., on black-box devices)
- generation of vulnerable primes for given D is easy



#### Advantages:

works for all key lengths



#### Advantages:

- works for all key lengths
- no observable bias for backdoored keys



#### Advantages:

- works for all key lengths
- no observable bias for backdoored keys
- adjustable factorization difficulty, favorable ratio

## CRŵCS

#### Advantages:

- works for all key lengths
- no observable bias for backdoored keys
- adjustable factorization difficulty, favorable ratio
- possible parallelizability

#### Advantages:

- works for all key lengths
- no observable bias for backdoored keys
- adjustable factorization difficulty, favorable ratio
- possible parallelizability

#### Disdvantages:

easy to detect from private keys if the same D is reused or for short keys (< 1280 bits)</p>

#### Advantages:

- works for all key lengths
- no observable bias for backdoored keys
- adjustable factorization difficulty, favorable ratio
- possible parallelizability

#### Disdvantages:

- easy to detect from private keys if the same D is reused or for short keys (< 1280 bits)</li>
- an unpredictable unique D for each keypair can be problematic

#### Advantages:

- works for all key lengths
- no observable bias for backdoored keys
- adjustable factorization difficulty, favorable ratio
- possible parallelizability

#### Disdvantages:

- easy to detect from private keys if the same D is reused or for short keys (< 1280 bits)</li>
- an unpredictable unique *D* for each keypair can be problematic
- if D is leaked, anyone can perform the factorization



Inquirer scenarios:

1 public keys only - need to guess



Inquirer scenarios:

- 1 public keys only need to guess
- **2** short private keys (< 768 bits) a direct factorization reveals the backdoor



Inquirer scenarios:

- 1 public keys only need to guess
- short private keys (< 768 bits) a direct factorization reveals the backdoor
- many private keys batch GCD reveals the backdoor if D is not unique per keypair



44.7 million RSA keypairs generated by 15 smartcards and 3 HSMs



- 44.7 million RSA keypairs generated by 15 smartcards and 3 HSMs
- access to private keys, keylengths 512,1024,2048 bits



- 44.7 million RSA keypairs generated by 15 smartcards and 3 HSMs
- access to private keys, keylengths 512,1024,2048 bits
- Scenario 2:
  - random selection of 5000 512-bit keys and 100 1024-bit keys



- 44.7 million RSA keypairs generated by 15 smartcards and 3 HSMs
- access to private keys, keylengths 512,1024,2048 bits
- Scenario 2:
  - random selection of 5000 512-bit keys and 100 1024-bit keys
  - square-free parts of 4p 1 and 4q 1 computed, all large enough



- 44.7 million RSA keypairs generated by 15 smartcards and 3 HSMs
- access to private keys, keylengths 512,1024,2048 bits
- Scenario 2:
  - random selection of 5000 512-bit keys and 100 1024-bit keys
  - square-free parts of 4*p* − 1 and 4*q* − 1 computed, all large enough
- Scenario 3:
  - all 44.7M keys (including 2048-bit) used

July 27, 2019 14 / 15



- 44.7 million RSA keypairs generated by 15 smartcards and 3 HSMs
- access to private keys, keylengths 512,1024,2048 bits
- Scenario 2:
  - random selection of 5000 512-bit keys and 100 1024-bit keys
  - square-free parts of 4p 1 and 4q 1 computed, all large enough
- Scenario 3:
  - all 44.7M keys (including 2048-bit) used
  - batch GCD used for all 4*p* − 1 and 4*q* − 1, as well as the product of "small" *D*'s

July 27, 2019 14 / 15



- 44.7 million RSA keypairs generated by 15 smartcards and 3 HSMs
- access to private keys, keylengths 512,1024,2048 bits
- Scenario 2:
  - random selection of 5000 512-bit keys and 100 1024-bit keys
  - square-free parts of 4p 1 and 4q 1 computed, all large enough
- Scenario 3:
  - all 44.7M keys (including 2048-bit) used
  - batch GCD used for all 4*p* − 1 and 4*q* − 1, as well as the product of "small" *D*'s
  - no small square-free parts found

July 27, 2019 14 / 15



Main contributions:

 method simplified and better analyzed, faster than claimed and asymptotically determinisitic



- method simplified and better analyzed, faster than claimed and asymptotically determinisitic
- public implementation, many experimental evaluations



- method simplified and better analyzed, faster than claimed and asymptotically determinisitic
- public implementation, many experimental evaluations
- discussion of backdoor viability and possible scenarios



- method simplified and better analyzed, faster than claimed and asymptotically determinisitic
- public implementation, many experimental evaluations
- discussion of backdoor viability and possible scenarios
- 44.7M keys analyzed, no backdoors found



- method simplified and better analyzed, faster than claimed and asymptotically determinisitic
- public implementation, many experimental evaluations
- discussion of backdoor viability and possible scenarios
- 44.7M keys analyzed, no backdoors found
- main result: an attacker would need unique D's, but the backdoor presence cannot be ruled out for longer keys (such as 2048 bits)



Main contributions:

- method simplified and better analyzed, faster than claimed and asymptotically determinisitic
- public implementation, many experimental evaluations
- discussion of backdoor viability and possible scenarios
- 44.7M keys analyzed, no backdoors found
- main result: an attacker would need unique D's, but the backdoor presence cannot be ruled out for longer keys (such as 2048 bits)

# Thank you for your attention.

All data and implementation are publicly available at https://crocs.fi.muni.cz/public/papers/Secrypt2019.