| Want to Break Square-free: The $4 p-1$

 Factorization Method and Its RSA Backdoor ViabilitySECRYPT 2019

Vladimír Sedláček
Dušan Klinec
Marek Sýs
Petr Švenda
Vashek Matyáš

CR๒CS

Centre for Research on
Cryptography and Security
vlada.sedlacek@mail.muni.cz
Masaryk University
Brno, Czech Republic

Overview

1 Motivation and the basic idea

2 Complex multiplication (CM)

3 The algorithm and its bottlenecks

4 Practical evaluation

5 Audit of keys

6 Conclusion

Motivation

- Factorization of integers - an old and well studied problem
- RSA depends on its infeasibility
- Factorization of integers - an old and well studied problem
- RSA depends on its infeasibility

Modern factorization algorithms:

- Pollard's $\rho, p-1$
- Lenstra's elliptic curve method
- Quadratic sieve
- Number field sieve
- Shor's algorithm (quantum) - first general polynomial
- Factorization of integers - an old and well studied problem
- RSA depends on its infeasibility

Modern factorization algorithms:
■ Pollard's $\rho, p-1$

- Lenstra's elliptic curve method
- Quadratic sieve
- Number field sieve
- Shor's algorithm (quantum) - first general polynomial
- The 4p-1 method - Qi Cheng (2002)
- Factorization of integers - an old and well studied problem
- RSA depends on its infeasibility

Modern factorization algorithms:
■ Pollard's $\rho, p-1$

- Lenstra's elliptic curve method
- Quadratic sieve
- Number field sieve
- Shor's algorithm (quantum) - first general polynomial
- The 4p-1 method - Qi Cheng (2002)
- very fast, but special assumptions
- Factorization of integers - an old and well studied problem
- RSA depends on its infeasibility

Modern factorization algorithms:
■ Pollard's $\rho, p-1$

- Lenstra's elliptic curve method
- Quadratic sieve
- Number field sieve
- Shor's algorithm (quantum) - first general polynomial
- The 4p-1 method - Qi Cheng (2002)
- very fast, but special assumptions
- interesting as a backdoor

Cheng's $4 p-1$ method - basic ideas

$N=p q$, where $p, q>3$ are distinct primes

Cheng's $4 p-1$ method - basic ideas

- $N=p q$, where $p, q>3$ are distinct primes
- an elliptic curve E over \mathbb{Z}_{N} : given by

$$
y^{2} \equiv x^{3}+a x+b \quad(\bmod N)
$$

forms an abelian group

■ $N=p q$, where $p, q>3$ are distinct primes

- an elliptic curve E over \mathbb{Z}_{N} : given by

$$
y^{2} \equiv x^{3}+a x+b \quad(\bmod N)
$$

forms an abelian group

- we have $E\left(\mathbb{Z}_{N}\right) \cong E\left(\mathbb{F}_{p}\right) \oplus E\left(\mathbb{F}_{q}\right)$

■ $N=p q$, where $p, q>3$ are distinct primes

- an elliptic curve E over \mathbb{Z}_{N} : given by

$$
y^{2} \equiv x^{3}+a x+b \quad(\bmod N)
$$

forms an abelian group

- we have $E\left(\mathbb{Z}_{N}\right) \cong E\left(\mathbb{F}_{p}\right) \oplus E\left(\mathbb{F}_{q}\right)$

■ if $\left|E\left(\mathbb{F}_{p}\right)\right|=p$, multiplication by N annihilates the first summand, which reveals p

The basic idea

For any $k \in \mathbb{Z}$, there are division polynomials $\psi_{k}, \phi_{k}, \omega_{k} \in \mathbb{Z}[x]$:

$$
k \cdot P=\left(\frac{\phi_{k}(x)}{\psi_{k}^{2}(x)}, \frac{\omega_{k}(x, y)}{\psi_{k}^{3}(x, y)}\right)
$$

for all $P=(x, y)$ on E.

The basic idea

For any $k \in \mathbb{Z}$, there are division polynomials $\psi_{k}, \phi_{k}, \omega_{k} \in \mathbb{Z}[x]$:

$$
k \cdot P=\left(\frac{\phi_{k}(x)}{\psi_{k}^{2}(x)}, \frac{\omega_{k}(x, y)}{\psi_{k}^{3}(x, y)}\right)
$$

for all $P=(x, y)$ on E.

■ if $\left|E\left(\mathbb{F}_{p}\right)\right|=p$ and $P \in E\left(\mathbb{Z}_{N}\right)$, then the computation of $N \cdot P$ usually fails

For any $k \in \mathbb{Z}$, there are division polynomials $\psi_{k}, \phi_{k}, \omega_{k} \in \mathbb{Z}[x]$:

$$
k \cdot P=\left(\frac{\phi_{k}(x)}{\psi_{k}^{2}(x)}, \frac{\omega_{k}(x, y)}{\psi_{k}^{3}(x, y)}\right)
$$

for all $P=(x, y)$ on E.

■ if $\left|E\left(\mathbb{F}_{p}\right)\right|=p$ and $P \in E\left(\mathbb{Z}_{N}\right)$, then the computation of $N \cdot P$ usually fails

- this is because $\psi_{N}(x)$ is invertible modulo q, but not modulo p

For any $k \in \mathbb{Z}$, there are division polynomials $\psi_{k}, \phi_{k}, \omega_{k} \in \mathbb{Z}[x]$:

$$
k \cdot P=\left(\frac{\phi_{k}(x)}{\psi_{k}^{2}(x)}, \frac{\omega_{k}(x, y)}{\psi_{k}^{3}(x, y)}\right)
$$

for all $P=(x, y)$ on E.

- if $\left|E\left(\mathbb{F}_{p}\right)\right|=p$ and $P \in E\left(\mathbb{Z}_{N}\right)$, then the computation of $N \cdot P$ usually fails
- this is because $\psi_{N}(x)$ is invertible modulo q, but not modulo p
- thus we can recover $p=\operatorname{gcd}\left(N, \psi_{N}(x)\right)$

Complex multiplication (CM)

How to find E such that $\left|E\left(\mathbb{F}_{p}\right)\right|=p$?

Complex multiplication (CM)

How to find E such that $\left|E\left(\mathbb{F}_{p}\right)\right|=p$?

- ECs over \mathbb{F}_{p} are classified by their j-invariant (up to twists)

Complex multiplication (CM)

How to find E such that $\left|E\left(\mathbb{F}_{p}\right)\right|=p$?

■ ECs over \mathbb{F}_{p} are classified by their j-invariant (up to twists)

- if the j-invariant of E is a root of the $-D$-th Hilbert class polynomial $H_{-D}(x) \bmod p$, then $\left|E\left(\mathbb{F}_{p}\right)\right|=p+1 \pm t$, where $4 p=t^{2}+D s^{2}$

Complex multiplication (CM)

How to find E such that $\left|E\left(\mathbb{F}_{p}\right)\right|=p$?

■ ECs over \mathbb{F}_{p} are classified by their j-invariant (up to twists)

- if the j-invariant of E is a root of the $-D$-th Hilbert class polynomial $H_{-D}(x) \bmod p$, then $\left|E\left(\mathbb{F}_{p}\right)\right|=p+1 \pm t$, where $4 p=t^{2}+D s^{2}$
- thus if $4 p-1=D s^{2}$ and $H_{-D}(j(E)) \equiv 0(\bmod p)$, then $\left|E\left(\mathbb{F}_{p}\right)\right|=p$ in one half of cases

An outline of the algorithm

Suppose that we know that $4 p-1=D s^{2}$ for some $s, D \in \mathbb{Z}$, where D is known.

An outline of the algorithm

Suppose that we know that $4 p-1=D s^{2}$ for some $s, D \in \mathbb{Z}$, where D is known. Ideally, we would like to do the following:

1 construct H_{-D},

An outline of the algorithm

Suppose that we know that $4 p-1=D s^{2}$ for some $s, D \in \mathbb{Z}$, where D is known. Ideally, we would like to do the following:

1 construct H_{-D},
2 find a root j_{0} of H_{-D} modulo p,

An outline of the algorithm

Suppose that we know that $4 p-1=D s^{2}$ for some $s, D \in \mathbb{Z}$, where D is known. Ideally, we would like to do the following:

1 construct H_{-D},
2 find a root j_{0} of H_{-D} modulo p,
3 construct $E_{j_{0}}$,

An outline of the algorithm

Suppose that we know that $4 p-1=D s^{2}$ for some $s, D \in \mathbb{Z}$, where D is known. Ideally, we would like to do the following:

1 construct H_{-D},
2 find a root j_{0} of H_{-D} modulo p,
3 construct $E_{j_{0}}$,
4 find a point $P=(x, y)$ on $E_{j_{0}}$,

An outline of the algorithm

Suppose that we know that $4 p-1=D s^{2}$ for some $s, D \in \mathbb{Z}$, where D is known. Ideally, we would like to do the following:

1 construct H_{-D},
2 find a root j_{0} of H_{-D} modulo p,
3 construct $E_{j_{0}}$,
4 find a point $P=(x, y)$ on $E_{j_{0}}$,
5 try to compute $N \cdot P\left(\right.$ or just $\left.\psi_{N}(x)\right)$,

An outline of the algorithm

Suppose that we know that $4 p-1=D s^{2}$ for some $s, D \in \mathbb{Z}$, where D is known. Ideally, we would like to do the following:

1 construct H_{-D},
2 find a root j_{0} of H_{-D} modulo p,
3 construct $E_{j_{0}}$,
4 find a point $P=(x, y)$ on $E_{j_{0}}$,
5 try to compute $N \cdot P$ (or just $\left.\psi_{N}(x)\right)$,
6 if the computation of $N \cdot P$ does not fail, go back to step 3) and replace $E_{j_{0}}$ with its twist,

An outline of the algorithm

Suppose that we know that $4 p-1=D s^{2}$ for some $s, D \in \mathbb{Z}$, where D is known. Ideally, we would like to do the following:

1 construct H_{-D},
2 find a root j_{0} of H_{-D} modulo p,
3 construct $E_{j_{0}}$,
4 find a point $P=(x, y)$ on $E_{j 0}$,
5 try to compute $N \cdot P$ (or just $\left.\psi_{N}(x)\right)$,
6 if the computation of $N \cdot P$ does not fail, go back to step 3) and replace $E_{j_{0}}$ with its twist,
7 if the computation of $N \cdot P$ fails, compute a factor of N as $\operatorname{gcd}\left(\psi_{N}(x), N\right)$.

Problems

Not knowing p :

- obstacle for solving nonlinear congruences modulo p

Not knowing p :

- obstacle for solving nonlinear congruences modulo p
- solution: replace \mathbb{Z}_{N} by $\mathbb{Z}_{N}[x] / H_{-D}(x)$ and compute symbolically

Not knowing p :

- obstacle for solving nonlinear congruences modulo p
- solution: replace \mathbb{Z}_{N} by $\mathbb{Z}_{N}[x] / H_{-D}(x)$ and compute symbolically
- not clear how to find the point P and the correct twist

Not knowing p :

- obstacle for solving nonlinear congruences modulo p
- solution: replace \mathbb{Z}_{N} by $\mathbb{Z}_{N}[x] / H_{-D}(x)$ and compute symbolically
- not clear how to find the point P and the correct twist
- solution: probabilistic guessing

Not knowing p :

- obstacle for solving nonlinear congruences modulo p
- solution: replace \mathbb{Z}_{N} by $\mathbb{Z}_{N}[x] / H_{-D}(x)$ and compute symbolically
- not clear how to find the point P and the correct twist
- solution: probabilistic guessing

Computation of H_{-D} :

- complicated, roughly exponential in D

Not knowing p :

- obstacle for solving nonlinear congruences modulo p
- solution: replace \mathbb{Z}_{N} by $\mathbb{Z}_{N}[x] / H_{-D}(x)$ and compute symbolically
- not clear how to find the point P and the correct twist
- solution: probabilistic guessing

Computation of H_{-D} :

- complicated, roughly exponential in D
- current record: $D \approx 2^{53}$

The improved (probabilistic) algorithm is polynomial in N, but exponential in D (the squarefree part of $4 p-1$).

Time complexity

The improved (probabilistic) algorithm is polynomial in N, but exponential in D (the squarefree part of $4 p-1$).

Current record for $D=11$ (with our custom implementation on a single core):

- RSA 4096-bit moduli factored in around 150 seconds
- RSA 2048-bit moduli factored in under 10 seconds

Time complexity

The improved (probabilistic) algorithm is polynomial in N, but exponential in D (the squarefree part of $4 p-1$).

Current record for $D=11$ (with our custom implementation on a single core):

- RSA 4096-bit moduli factored in around 150 seconds
- RSA 2048-bit moduli factored in under 10 seconds

Applicability

for random primes p, the condition $4 p-1=D s^{2}$ with small D is extermely rare

Applicability

- for random primes p, the condition $4 p-1=D s^{2}$ with small D is extermely rare
- only $\frac{1}{\sqrt{X}}$ of primes $p<X$ satisfy it

Applicability

- for random primes p, the condition $4 p-1=D s^{2}$ with small D is extermely rare
- only $\frac{1}{\sqrt{X}}$ of primes $p<X$ satisfy it
- still could serve as an interesting backdoor (e.g., on black-box devices)

Applicability

- for random primes p, the condition $4 p-1=D s^{2}$ with small D is extermely rare
- only $\frac{1}{\sqrt{X}}$ of primes $p<X$ satisfy it
- still could serve as an interesting backdoor (e.g., on black-box devices)
- generation of vulnerable primes for given D is easy

Backdoor properties

Advantages:

- works for all key lengths

Backdoor properties

Advantages:

- works for all key lengths
- no observable bias for backdoored keys

Backdoor properties

Advantages:

- works for all key lengths
- no observable bias for backdoored keys
- adjustable factorization difficulty, favorable ratio

Backdoor properties

Advantages:

- works for all key lengths
- no observable bias for backdoored keys
- adjustable factorization difficulty, favorable ratio
- possible parallelizability

Backdoor properties

Advantages:

- works for all key lengths
- no observable bias for backdoored keys
- adjustable factorization difficulty, favorable ratio
- possible parallelizability

Disdvantages:

- easy to detect from private keys if the same D is reused or for short keys (<1280 bits)

Backdoor properties

Advantages:

- works for all key lengths
- no observable bias for backdoored keys
- adjustable factorization difficulty, favorable ratio
- possible parallelizability

Disdvantages:

- easy to detect from private keys if the same D is reused or for short keys (<1280 bits)
- an unpredictable unique D for each keypair can be problematic

Backdoor properties

Advantages:

- works for all key lengths
- no observable bias for backdoored keys
- adjustable factorization difficulty, favorable ratio
- possible parallelizability

Disdvantages:

- easy to detect from private keys if the same D is reused or for short keys (< 1280 bits)
- an unpredictable unique D for each keypair can be problematic
- if D is leaked, anyone can perform the factorization

Backdoor detection

Inquirer scenarios:

1 public keys only - need to guess

Backdoor detection

Inquirer scenarios:

1 public keys only - need to guess
2 short private keys (<768 bits) - a direct factorization reveals the backdoor

Backdoor detection

Inquirer scenarios:

1 public keys only - need to guess
2 short private keys (<768 bits) - a direct factorization reveals the backdoor

3 many private keys - batch GCD reveals the backdoor if D is not unique per keypair

Audit of keys

- 44.7 million RSA keypairs generated by 15 smartcards and 3 HSMs

Audit of keys

- 44.7 million RSA keypairs generated by 15 smartcards and 3 HSMs
- access to private keys, keylengths 512,1024,2048 bits

Audit of keys

- 44.7 million RSA keypairs generated by 15 smartcards and 3 HSMs
- access to private keys, keylengths 512,1024,2048 bits
- Scenario 2:
- random selection of 5000 512-bit keys and 100 1024-bit keys

Audit of keys

- 44.7 million RSA keypairs generated by 15 smartcards and 3 HSMs
- access to private keys, keylengths 512,1024,2048 bits
- Scenario 2:
- random selection of 5000 512-bit keys and 100 1024-bit keys
- square-free parts of $4 p-1$ and $4 q-1$ computed, all large enough

Audit of keys

- 44.7 million RSA keypairs generated by 15 smartcards and 3 HSMs
- access to private keys, keylengths 512,1024,2048 bits
- Scenario 2:
- random selection of 5000512 -bit keys and 100 1024-bit keys
- square-free parts of $4 p-1$ and $4 q-1$ computed, all large enough
- Scenario 3:
- all 44.7M keys (including 2048-bit) used

Audit of keys

- 44.7 million RSA keypairs generated by 15 smartcards and 3 HSMs
- access to private keys, keylengths 512,1024,2048 bits
- Scenario 2:
- random selection of 5000512 -bit keys and 100 1024-bit keys
- square-free parts of $4 p-1$ and $4 q-1$ computed, all large enough
- Scenario 3:
- all 44.7M keys (including 2048-bit) used
- batch GCD used for all $4 p-1$ and $4 q-1$, as well as the product of "small" D's

Audit of keys

- 44.7 million RSA keypairs generated by 15 smartcards and 3 HSMs
- access to private keys, keylengths 512,1024,2048 bits
- Scenario 2:
- random selection of 5000512 -bit keys and 100 1024-bit keys
- square-free parts of $4 p-1$ and $4 q-1$ computed, all large enough
- Scenario 3:
- all 44.7M keys (including 2048-bit) used
- batch GCD used for all $4 p-1$ and $4 q-1$, as well as the product of "small" D's
- no small square-free parts found

Main contributions:

- method simplified and better analyzed, faster than claimed and asymptotically determinisitic

Main contributions:

- method simplified and better analyzed, faster than claimed and asymptotically determinisitic
- public implementation, many experimental evaluations

Main contributions:

- method simplified and better analyzed, faster than claimed and asymptotically determinisitic
- public implementation, many experimental evaluations
- discussion of backdoor viability and possible scenarios

Main contributions:

- method simplified and better analyzed, faster than claimed and asymptotically determinisitic
- public implementation, many experimental evaluations
- discussion of backdoor viability and possible scenarios
- 44.7M keys analyzed, no backdoors found

Main contributions:

- method simplified and better analyzed, faster than claimed and asymptotically determinisitic
- public implementation, many experimental evaluations
- discussion of backdoor viability and possible scenarios

■ 44.7M keys analyzed, no backdoors found
■ main result: an attacker would need unique D's, but the backdoor presence cannot be ruled out for longer keys (such as 2048 bits)

Main contributions:

- method simplified and better analyzed, faster than claimed and asymptotically determinisitic
- public implementation, many experimental evaluations
- discussion of backdoor viability and possible scenarios
- 44.7M keys analyzed, no backdoors found
- main result: an attacker would need unique D 's, but the backdoor presence cannot be ruled out for longer keys (such as 2048 bits)

Thank you for your attention.

All data and implementation are publicly available at https://crocs.fi.muni.cz/public/papers/Secrypt2019.

