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Motivation

Factorization of integers - an old and well studied problem
RSA depends on its infeasibility

Modern factorization algorithms:
Pollard’s ρ, p − 1
Lenstra’s elliptic curve method
Quadratic sieve
Number field sieve
Shor’s algorithm (quantum) - first general polynomial
The 4p − 1 method - Qi Cheng (2002)

very fast, but special assumptions
interesting as a backdoor

Vladimír Sedláček The 4p − 1 method and its RSA backdoor viability July 27, 2019 3 / 15



Motivation

Factorization of integers - an old and well studied problem
RSA depends on its infeasibility

Modern factorization algorithms:
Pollard’s ρ, p − 1
Lenstra’s elliptic curve method
Quadratic sieve
Number field sieve
Shor’s algorithm (quantum) - first general polynomial

The 4p − 1 method - Qi Cheng (2002)
very fast, but special assumptions
interesting as a backdoor

Vladimír Sedláček The 4p − 1 method and its RSA backdoor viability July 27, 2019 3 / 15



Motivation

Factorization of integers - an old and well studied problem
RSA depends on its infeasibility

Modern factorization algorithms:
Pollard’s ρ, p − 1
Lenstra’s elliptic curve method
Quadratic sieve
Number field sieve
Shor’s algorithm (quantum) - first general polynomial
The 4p − 1 method - Qi Cheng (2002)

very fast, but special assumptions
interesting as a backdoor

Vladimír Sedláček The 4p − 1 method and its RSA backdoor viability July 27, 2019 3 / 15



Motivation

Factorization of integers - an old and well studied problem
RSA depends on its infeasibility

Modern factorization algorithms:
Pollard’s ρ, p − 1
Lenstra’s elliptic curve method
Quadratic sieve
Number field sieve
Shor’s algorithm (quantum) - first general polynomial
The 4p − 1 method - Qi Cheng (2002)

very fast, but special assumptions

interesting as a backdoor

Vladimír Sedláček The 4p − 1 method and its RSA backdoor viability July 27, 2019 3 / 15



Motivation

Factorization of integers - an old and well studied problem
RSA depends on its infeasibility

Modern factorization algorithms:
Pollard’s ρ, p − 1
Lenstra’s elliptic curve method
Quadratic sieve
Number field sieve
Shor’s algorithm (quantum) - first general polynomial
The 4p − 1 method - Qi Cheng (2002)

very fast, but special assumptions
interesting as a backdoor

Vladimír Sedláček The 4p − 1 method and its RSA backdoor viability July 27, 2019 3 / 15



Cheng’s 4p − 1 method - basic ideas

N = pq, where p, q > 3 are distinct primes

an elliptic curve E over ZN : given by

y2 ≡ x3 + ax + b (mod N),

forms an abelian group

we have E (ZN) ∼= E (Fp)⊕ E (Fq)

if |E (Fp)| = p, multiplication by N annihilates the first
summand, which reveals p
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The basic idea

For any k ∈ Z, there are division polynomials ψk , φk , ωk ∈ Z[x ]:

k · P =
(
φk(x)
ψ2

k(x)
,
ωk(x , y)
ψ3

k(x , y)

)

for all P = (x , y) on E .

if |E (Fp)| = p and P ∈ E (ZN), then the computation of N · P
usually fails
this is because ψN(x) is invertible modulo q, but not modulo p
thus we can recover p = gcd(N, ψN(x))
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Complex multiplication (CM)

How to find E such that |E (Fp)| = p?

ECs over Fp are classified by their j-invariant (up to twists)

if the j-invariant of E is a root of the −D-th Hilbert class
polynomial H−D(x) mod p, then |E (Fp)| = p + 1± t, where
4p = t2 + Ds2

thus if 4p − 1 = Ds2 and H−D(j(E )) ≡ 0 (mod p), then
|E (Fp)| = p in one half of cases
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An outline of the algorithm

Suppose that we know that 4p − 1 = Ds2 for some s,D ∈ Z,
where D is known.

Ideally, we would like to do the following:
1 construct H−D,
2 find a root j0 of H−D modulo p,
3 construct Ej0 ,
4 find a point P = (x , y) on Ej0 ,
5 try to compute N · P (or just ψN(x)),
6 if the computation of N · P does not fail, go back to step 3)

and replace Ej0 with its twist,
7 if the computation of N · P fails, compute a factor of N as

gcd(ψN(x),N).
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Problems

Not knowing p:
obstacle for solving nonlinear congruences modulo p

solution: replace ZN by ZN [x ]/H−D(x) and compute
symbolically
not clear how to find the point P and the correct twist
solution: probabilistic guessing

Computation of H−D:
complicated, roughly exponential in D
current record: D ≈ 253
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Problems
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Time complexity

The improved (probabilistic) algorithm is polynomial in N, but
exponential in D (the squarefree part of 4p − 1).

Current record for D = 11 (with our custom implementation on a
single core):

RSA 4096-bit moduli factored in around 150 seconds
RSA 2048-bit moduli factored in under 10 seconds
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Applicability

for random primes p, the condition 4p − 1 = Ds2 with small
D is extermely rare

only 1√
X of primes p < X satisfy it

still could serve as an interesting backdoor (e.g., on black-box
devices)

generation of vulnerable primes for given D is easy
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Backdoor properties

Advantages:
works for all key lengths

no observable bias for backdoored keys
adjustable factorization difficulty, favorable ratio
possible parallelizability

Disdvantages:
easy to detect from private keys if the same D is reused or for
short keys (< 1280 bits)
an unpredictable unique D for each keypair can be problematic
if D is leaked, anyone can perform the factorization
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Backdoor detection

Inquirer scenarios:

1 public keys only - need to guess

2 short private keys (< 768 bits) - a direct factorization reveals
the backdoor

3 many private keys - batch GCD reveals the backdoor if D is
not unique per keypair
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Audit of keys

44.7 million RSA keypairs generated by 15 smartcards and 3
HSMs

access to private keys, keylengths 512,1024,2048 bits
Scenario 2:

random selection of 5000 512-bit keys and 100 1024-bit keys
square-free parts of 4p − 1 and 4q − 1 computed, all large
enough

Scenario 3:
all 44.7M keys (including 2048-bit) used
batch GCD used for all 4p − 1 and 4q − 1, as well as the
product of "small" D’s
no small square-free parts found
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product of "small" D’s
no small square-free parts found
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Conclusion

Main contributions:
method simplified and better analyzed, faster than claimed
and asymptotically determinisitic

public implementation, many experimental evaluations
discussion of backdoor viability and possible scenarios
44.7M keys analyzed, no backdoors found
main result: an attacker would need unique D’s, but the
backdoor presence cannot be ruled out for longer keys (such
as 2048 bits)

Thank you for your attention.
All data and implementation are publicly available at

https://crocs.fi.muni.cz/public/papers/Secrypt2019.
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