
www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Evolutionary circuit

Petr Švenda
xsvenda@fi.muni.cz

Labak&BUSLab, FI MU Brno

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Overview

� Design of software circuits
� Evolutionary Algorithms
� Combination with Evolutionary Algorithms
� Visualization
� Practical applications
� Practical experience
� Open issues

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Evolutionary circuits (EAC)

� Distinct layers of elementary functions
� Usually same number of functions in each (internal) layer

● with exception of first “input” and last “output” layer

� Layers are interconnected by “wires”
● typically 2 connectors in hardware
● up to full interconnection with previous layer in software

● each function can obtain whole input from previous layer

� Input data are set as input for first layer
� Output of internal layer is set as input data for next layer
� Output data from last internal layer are output of circuit

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Circuit example (4 layers, 4 fncs in layer)

Inputs layer

Internal layers

Output layer

Outputs

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Node functions/connectors

� Special purpose functions
● NOP, CONST

� Bit oriented functions
● AND, OR, XOR, NOR, NAND, ROTL, ROTR, BITSELECTOR

� Byte/dword oriented functions
● SUM, SUBS, ADD, MULT, DIV

� Input of the function is given by connector mask
● 4 bytes mask => max. 32 inputs (can be limited by settings)

● connections are independent from input data (static circuit)

● special variable connection mask
● final connection mask is computed from selection of actual inputs

● (part of) connectors inside circuit change with input data (dynamic circuit)

� Some functions have one input fixed (same offset, previous layer)
● BITSELECTOR – fixed input, used to mask out specific bits

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Data processing details

� Base operation value
● bit, byte, dword
● size of operand passing through connection “wire”

� Suitable operand type depends on the problem
● e.g., if the solution should be function working with bytes

● using bits still may work but is harder to evolve (1B xor = 8x1b xor)

● but sometimes we simply don’t know
● is MD5 inverse function bit or byte oriented?

� So far, we were working only with byte-oriented circuit
● but bit selection is in instruction set

● theoretically possible for evolution to work on bit level anyway
● but may be much more difficult

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Basic circuit execution

�So we have the tool, how to find the proper
circuit now?

INPUT DATA

CIRCUIT

OUTPUT DATA

MD5 hash

Prediction of MD5 input

Circuit execution

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Method solving inspired by evolution

� Charles Darwin - On the Origin of Species (1859)
� Necessary prerequisite for evolution to work:

● elementary units – genes

● possibility to reproduction - copy itself with reasonable quality
● possibility to mutation - new information can be introduced
● natural selection – “better” specimen has more offspring

● and its genes will be more often in next generation

� Evolutionary algorithms
● “clever” search for function maximum
● candidate solution encoded as bit stream
● algorithmic function to evaluate fitness
● next generation selected from solutions with best fitness

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Types of evolutionary algorithms

� Basic idea is still same mutation/crossing/fitness
� Representation of solution may differ

● genetic algorithms: set of variables
● genetic programming: LISP-like trees
● linear genetic programming: actual instructions of “program”
● evolutionary circuits: hardware-like circuits with basic functions

� Previous work with secrecy amplification protocols was
LGP
● sequence of instructions of the protocol

� Here we focus on software version of circuits
● software emulation of circuit

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Combination with Evolutionary algorithms

1. Create “population” of several (e.g., 20) circuits
2. Initialize functions and connections at random
3. Generate random test vectors {input, correct_output}
� e.g., {MD5(dataX), dataX}, … {MD5(dataY), dataY},

4. Evaluate population
� compute degree of match between circuit output and correct_output

� different match metrics methods
� bit, parity, hamming weight, selected group, …

5. Select best performing circuits from actual generation and form new
� mutation (flip of single connection, change of function)

� crossover (half of layers from first and second parent)

6. Repeat again from step 4.
� sometimes (e.g., each 10th generation) from step 3. – new test vectors

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

EAC implementation, C++

� Circuit parameters
● num layers/fncs/connectors
● allowed functions

� Prediction methods
● bits, parity, hamming weight

� Test vectors
● MD5/SHA1 inversion
● MD5/SHA1 random distinguisher
● change frequency

� Limit algorithm rounds
● weakened algorithms

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Visualization/code export

� Very important part of the process!
● human readable form of circuit
● allow to human check of correctness
● helps to discover program bugs

� Circuit pruning
● temporarily disable connection or function
● if fitness decrease then connection/function was important
● display only important parts of circuit (usually only around 10%)

� Visualization
● Graphviz package
● source script generated automatically during evolution

� Source code generation
● automated export of compile-able circuit C source code

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Visualization / source code export
BYTE VAR_IN_5 = inputs[5];
BYTE VAR_IN_6 = inputs[6];
BYTE VAR_IN_7 = inputs[7];
BYTE VAR_IN_8 = inputs[8];
BYTE VAR_IN_9 = inputs[9];

BYTE VAR_1_4_SUB = VAR_IN_4 - VAR_IN_6 - 0;
BYTE VAR_1_5_ADD = VAR_IN_5 + VAR_IN_6 + VAR_IN_7 + 0;
BYTE VAR_1_6_DIV = VAR_IN_6 / ((VAR_IN_5 != 0) ? VAR_IN_5 : 1) / ((VAR_IN_6 != 0) ? VAR_IN_6 : 1) / 1;
BYTE VAR_1_8_DIV = VAR_IN_8 / ((VAR_IN_9 != 0) ? VAR_IN_9 : 1) / 1;
BYTE VAR_2_4_NOP = VAR_1_4_SUB ;
BYTE VAR_2_5_DIV = VAR_1_5_ADD / ((VAR_1_4_SUB != 0) ? VAR_1_4_SUB : 1) / ((VAR_1_5_ADD != 0) ? VAR_1_5_ADD : 1) / 1;
BYTE VAR_2_6_MUL = VAR_1_6_DIV * VAR_1_5_ADD * VAR_1_8_DIV * 1;
BYTE VAR_3_3_CONST_144 = 144 ;
BYTE VAR_3_4_NOP = VAR_2_4_NOP ;
BYTE VAR_3_5_OR_ = VAR_2_5_DIV | VAR_2_6_MUL | 0;
BYTE VAR_4_3_BSL_0 = VAR_3_3_CONST_144 & 0 ;
BYTE VAR_4_4_DIV = VAR_3_4_NOP / ((VAR_3_3_CONST_144 != 0) ? VAR_3_3_CONST_144 : 1) / 1;
BYTE VAR_4_5_NOP = VAR_3_5_OR_ ;
BYTE VAR_5_3_SUB = VAR_4_3_BSL_0 - VAR_4_4_DIV - VAR_4_5_NOP - 0;
BYTE VAR_5_5_SUB = VAR_4_5_NOP - VAR_4_4_DIV - 0;

outputs[3] = VAR_5_3_SUB;
outputs[5] = VAR_5_5_SUB;

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

EAC variations

� Static circuits
● all connections between layers are independent from input data
● mask of connections is fixed during evaluation

� Dynamic circuits
● special type of connection mask
● actual connection mask is taken from output of previous layer

(input data dependent)

� Circuits with state
● suitable for problems with large input data
● multiple passes of EAC
● not all input data are given to circuit at the same time
● circuit output is “state”
● state is passed as part of circuit input for next pass

state inputi

CIRCUIT

output

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Practical results - hash function inversion

� We are at very early stage
● most work on circuit development so far

� Hash function inversion
● prediction of bits / hamming weight of input
● a = x bytes random input, b = hash(a)
● circuit obtains b and outputs prediction of a
● tested on MD5

� Best results so far
● hamming weight of input for 4-round MD5 (from 64)
● circuit: 10 layers, 4 connectors

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Practical results – random distinguisher

� Random stream distinguisher
● circuit try to differentiate between completely random stream and

stream generated by target function with unknown input
● QRGBS http://random.irb.hr/index.php

● input data are either random stream or hash of structured data
● two random bytes repeated to form 16B input

● output data is 0x00 for hash function, 0xff for random stream
● tested on MD5 and SHA1

� Best results so far
● around 68% success of distinguishing for 10-round MD5 (from 64)
● around 70% success of distinguishing for 8-round SHA1 (from 80)
● circuit: 10 layers, 4 connectors

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Example: 10 rounds MD5/RNG distinguisher

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Future work

� Sequence prediction
● prediction of (some) next bits from given sequence
● unpredictability import for pseudo-random generators
● similar usage also for stream cipher sequence prediction

● ECRYPT eSTREAM candidates

� Internal secrets prediction
● function with known input and output and secret internal state
● symmetric cryptography ciphers with unknown key
● information about key is predicted

� Results better than random guessing (not 100%)
● even for weakened algorithms (smaller number of rounds)

� Any other suggestions?

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Practical experience

� Better to start with few layers (e.g., 5) and increase later
● evolution is much faster

� Better to use only few connectors instead full
interconnection
● propagation of single value is limited
● single mutation should generally have only limited impact

� Algorithms with limited rounds are useful
● starting with few rounds only gives insight into how complexity of

problems increase and parameters of circuit can increased
accordingly

� Test vectors should be changed either too rarely nor too
often
● EAC needs time for learning, but can over-learn on particular data

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Open issues/future work

� How to efficiently probe most suitable settings of EAC
● number of layers, number of internal functions, connectors, …

� Portability to hardware
● circuit is evaluated directly in FPGA (programmable hw)
● usually speedup in order of 103

� Test of idea with circuit internal state
● state enables to process long data or repeat same several times
● but much complex circuit evolve, harder to human analysis

� Circuit with modifiable connectors based on data
● dynamic circuit, probably harder to evolve and analyze

� Good candidate problem for EAC from other areas?

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

Thank you for the attention!

www.buslab.orgEvolutionary circuit, own work PA168, 28.4.2008

� for i from 0 to 63
� if 0 ≤ i ≤ 15 then
� f := (b and c) or ((not b) and d)
� …
� g := i
� temp := d
� d := c
� c := b
� b := b + leftrotate((a + f + k[i] + w[g]) , r[i])
� a := temp

