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Overview

� Design of software circuits
� Evolutionary Algorithms
� Combination with Evolutionary Algorithms
� Visualization
� Practical applications
� Practical experience
� Open issues
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Evolutionary circuits (EAC)

� Distinct layers of elementary functions 
� Usually same number of functions in each (internal) layer

● with exception of first “input” and last “output” layer

� Layers are interconnected by “wires”
● typically 2 connectors in hardware
● up to full interconnection with previous layer in software

● each function can obtain whole input from previous layer

� Input data are set as input for first layer
� Output of internal layer is set as input data for next layer
� Output data from last internal layer are output of circuit
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Circuit example (4 layers, 4 fncs in layer)

Inputs layer

Internal layers

Output layer

Outputs
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Node functions/connectors

� Special purpose functions
● NOP, CONST

� Bit oriented functions
● AND, OR, XOR, NOR, NAND, ROTL, ROTR, BITSELECTOR

� Byte/dword oriented functions
● SUM, SUBS, ADD, MULT, DIV

� Input of the function is given by connector mask
● 4 bytes mask => max. 32 inputs (can be limited by settings) 

● connections are independent from input data (static circuit)

● special variable connection mask
● final connection mask is computed from selection of actual inputs 

● (part of) connectors inside circuit change with input data (dynamic circuit)

� Some functions have one input fixed (same offset, previous layer) 
● BITSELECTOR – fixed input, used to mask out specific bits 
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Data processing details

� Base operation value
● bit, byte, dword
● size of operand passing through connection “wire”

� Suitable operand type depends on the problem
● e.g., if the solution should be function working with bytes

● using bits still may work but is harder to evolve (1B xor = 8x1b xor)

● but sometimes we simply don’t know
● is MD5 inverse function bit or byte oriented?

� So far, we were working only with byte-oriented circuit
● but bit selection is in instruction set

● theoretically possible for evolution to work on bit level anyway
● but may be much more difficult 
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Basic circuit execution

�So we have the tool, how to find the proper 
circuit now?

INPUT DATA

CIRCUIT

OUTPUT DATA

MD5 hash

Prediction of MD5 input

Circuit execution
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Method solving inspired by evolution

� Charles Darwin - On the Origin of Species (1859) 
� Necessary prerequisite for evolution to work: 

● elementary units – genes

● possibility to reproduction - copy itself with reasonable quality
● possibility to mutation - new information can be introduced
● natural selection – “better” specimen has more offspring

● and its genes will be more often in next generation  

� Evolutionary algorithms
● “clever” search for function maximum
● candidate solution encoded as bit stream
● algorithmic function to evaluate fitness
● next generation selected from solutions with best fitness
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Types of evolutionary algorithms

� Basic idea is still same mutation/crossing/fitness
� Representation of solution may differ

● genetic algorithms: set of variables 
● genetic programming: LISP-like trees
● linear genetic programming: actual instructions of “program”
● evolutionary circuits: hardware-like circuits with basic functions  

� Previous work with secrecy amplification protocols was 
LGP
● sequence of instructions of the protocol 

� Here we focus on software version of circuits
● software emulation of circuit
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Combination with Evolutionary algorithms

1. Create “population” of several (e.g., 20) circuits
2. Initialize functions and connections at random
3. Generate random test vectors {input, correct_output}
� e.g., {MD5(dataX), dataX}, … {MD5(dataY), dataY}, 

4. Evaluate population
� compute degree of match between circuit output and correct_output

� different match metrics methods
� bit, parity, hamming weight, selected group, …

5. Select best performing circuits from actual generation and form new
� mutation (flip of single connection, change of function)

� crossover (half of layers from first and second parent) 

6. Repeat again from step 4.
� sometimes (e.g., each 10th generation) from step 3. – new test vectors
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EAC implementation, C++

� Circuit parameters
● num layers/fncs/connectors 
● allowed functions

� Prediction methods
● bits, parity, hamming weight

� Test vectors
● MD5/SHA1 inversion
● MD5/SHA1 random distinguisher 
● change frequency

� Limit algorithm rounds
● weakened algorithms
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Visualization/code export

� Very important part of the process!
● human readable form of circuit
● allow to human check of correctness
● helps to discover program bugs

� Circuit pruning 
● temporarily disable connection or function
● if fitness decrease then connection/function was important
● display only important parts of circuit (usually only around 10%)

� Visualization
● Graphviz package
● source script generated automatically during evolution

� Source code generation
● automated export of compile-able circuit  C source code
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Visualization / source code export
BYTE VAR_IN_5 = inputs[5];
BYTE VAR_IN_6 = inputs[6];
BYTE VAR_IN_7 = inputs[7];
BYTE VAR_IN_8 = inputs[8];
BYTE VAR_IN_9 = inputs[9];

BYTE VAR_1_4_SUB = VAR_IN_4 - VAR_IN_6 - 0;
BYTE VAR_1_5_ADD = VAR_IN_5 +  VAR_IN_6 + VAR_IN_7 + 0;
BYTE VAR_1_6_DIV = VAR_IN_6 /  ((VAR_IN_5 != 0) ? VAR_IN_5 : 1) / ((VAR_IN_6 != 0) ? VAR_IN_6 : 1) / 1;
BYTE VAR_1_8_DIV = VAR_IN_8 /  ((VAR_IN_9 != 0) ? VAR_IN_9 : 1) / 1;
BYTE VAR_2_4_NOP = VAR_1_4_SUB ;
BYTE VAR_2_5_DIV = VAR_1_5_ADD /  ((VAR_1_4_SUB != 0) ? VAR_1_4_SUB : 1) / ((VAR_1_5_ADD != 0) ? VAR_1_5_ADD : 1) / 1;
BYTE VAR_2_6_MUL = VAR_1_6_DIV *  VAR_1_5_ADD * VAR_1_8_DIV * 1;
BYTE VAR_3_3_CONST_144 = 144 ;
BYTE VAR_3_4_NOP = VAR_2_4_NOP ;
BYTE VAR_3_5_OR_ = VAR_2_5_DIV | VAR_2_6_MUL | 0;
BYTE VAR_4_3_BSL_0 = VAR_3_3_CONST_144 & 0 ;
BYTE VAR_4_4_DIV = VAR_3_4_NOP /  ((VAR_3_3_CONST_144 != 0) ? VAR_3_3_CONST_144 : 1) / 1;
BYTE VAR_4_5_NOP = VAR_3_5_OR_ ;
BYTE VAR_5_3_SUB = VAR_4_3_BSL_0 - VAR_4_4_DIV - VAR_4_5_NOP - 0;
BYTE VAR_5_5_SUB = VAR_4_5_NOP - VAR_4_4_DIV - 0;

outputs[3] = VAR_5_3_SUB;
outputs[5] = VAR_5_5_SUB;
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EAC variations

� Static circuits
● all connections between layers are independent from input data
● mask of connections is fixed during evaluation

� Dynamic circuits
● special type of connection mask
● actual connection mask is taken from output of previous layer 

(input data dependent) 

� Circuits with state
● suitable for problems with large input data
● multiple passes of EAC
● not all input data are given to circuit at the same time
● circuit output is “state”
● state is passed as part of circuit input for next pass

state inputi

CIRCUIT

output
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Practical results - hash function inversion

� We are at very early stage
● most work on circuit development so far

� Hash function inversion
● prediction of bits / hamming weight of input
● a = x bytes random input, b = hash(a)
● circuit obtains b and outputs prediction of a
● tested on MD5 

� Best results so far
● hamming weight of input for 4-round MD5 (from 64)
● circuit: 10 layers, 4 connectors
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Practical results – random distinguisher

� Random stream distinguisher
● circuit try to differentiate between completely random stream and 

stream generated by target function with unknown input 
● QRGBS http://random.irb.hr/index.php

● input data are either random stream or hash of structured data
● two random bytes repeated to form 16B input

● output data is 0x00 for hash function, 0xff for random stream 
● tested on MD5 and SHA1 

� Best results so far
● around 68% success of distinguishing for 10-round MD5 (from 64)
● around 70% success of distinguishing for 8-round SHA1 (from 80)
● circuit: 10 layers, 4 connectors
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Example: 10 rounds MD5/RNG distinguisher
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Future work

� Sequence prediction 
● prediction of (some) next bits from given sequence
● unpredictability import for pseudo-random generators
● similar usage also for stream cipher sequence prediction 

● ECRYPT eSTREAM candidates 

� Internal secrets prediction
● function with known input and output and secret internal state
● symmetric cryptography ciphers with unknown key
● information about key is predicted

� Results better than random guessing (not 100%)
● even for weakened algorithms (smaller number of rounds)

� Any other suggestions?
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Practical experience

� Better to start with few layers (e.g., 5) and increase later
● evolution is much faster

� Better to use only few connectors instead full 
interconnection
● propagation of single value is limited
● single mutation should generally have only limited impact

� Algorithms with limited rounds are useful
● starting with few rounds only gives insight into how complexity of 

problems increase and parameters of circuit can increased 
accordingly

� Test vectors should be changed either too rarely nor too 
often
● EAC needs time for learning, but can over-learn on particular data
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Open issues/future work

� How to efficiently probe most suitable settings of EAC
● number of layers, number of internal functions, connectors, …

� Portability to hardware
● circuit is evaluated directly in FPGA (programmable hw) 
● usually speedup in order of 103

� Test of idea with circuit internal state
● state enables to process long data or repeat same several times
● but much complex circuit evolve, harder to human analysis

� Circuit with modifiable connectors based on data
● dynamic circuit, probably harder to evolve and analyze

� Good candidate problem for EAC from other areas? 
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Thank you for the attention!
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� for i from 0 to 63 
� if 0 ≤ i ≤ 15 then
� f := (b and c) or ((not b) and d) 
� …
� g := i 
� temp := d 
� d := c 
� c := b 
� b := b + leftrotate((a + f + k[i] + w[g]) , r[i]) 
� a := temp


