
C/C++ toolchain
Static and dynamic code analysis

Karel Kubíček
Masaryk University

Brno, Czech Republic

April 20, 2018

Questions

Who uses C/C++?

Who tried some static analysis tool? (Cpp-check, clang-tidy,
Coverity, MS VS static analyzer, PVS-Studio. . .)
Who tried some dynamic analysis tool? (Valgrind + Hellgrind,
clang sanitizers, MS VS tool)
Who wrote 1k lines of C/C++ code without bugs (on the
first attempt)?
Who is using clang? Clang toolchain (clang-tidy,
clang-format, clang sanitizers)?

Karel Kubíček C/C++ toolchain April 20, 2018 2 / 12

Questions

Who uses C/C++?
Who tried some static analysis tool? (Cpp-check, clang-tidy,
Coverity, MS VS static analyzer, PVS-Studio. . .)

Who tried some dynamic analysis tool? (Valgrind + Hellgrind,
clang sanitizers, MS VS tool)
Who wrote 1k lines of C/C++ code without bugs (on the
first attempt)?
Who is using clang? Clang toolchain (clang-tidy,
clang-format, clang sanitizers)?

Karel Kubíček C/C++ toolchain April 20, 2018 2 / 12

Questions

Who uses C/C++?
Who tried some static analysis tool? (Cpp-check, clang-tidy,
Coverity, MS VS static analyzer, PVS-Studio. . .)
Who tried some dynamic analysis tool? (Valgrind + Hellgrind,
clang sanitizers, MS VS tool)

Who wrote 1k lines of C/C++ code without bugs (on the
first attempt)?
Who is using clang? Clang toolchain (clang-tidy,
clang-format, clang sanitizers)?

Karel Kubíček C/C++ toolchain April 20, 2018 2 / 12

Questions

Who uses C/C++?
Who tried some static analysis tool? (Cpp-check, clang-tidy,
Coverity, MS VS static analyzer, PVS-Studio. . .)
Who tried some dynamic analysis tool? (Valgrind + Hellgrind,
clang sanitizers, MS VS tool)
Who wrote 1k lines of C/C++ code without bugs (on the
first attempt)?

Who is using clang? Clang toolchain (clang-tidy,
clang-format, clang sanitizers)?

Karel Kubíček C/C++ toolchain April 20, 2018 2 / 12

Questions

Who uses C/C++?
Who tried some static analysis tool? (Cpp-check, clang-tidy,
Coverity, MS VS static analyzer, PVS-Studio. . .)
Who tried some dynamic analysis tool? (Valgrind + Hellgrind,
clang sanitizers, MS VS tool)
Who wrote 1k lines of C/C++ code without bugs (on the
first attempt)?
Who is using clang?

Clang toolchain (clang-tidy,
clang-format, clang sanitizers)?

Karel Kubíček C/C++ toolchain April 20, 2018 2 / 12

Questions

Who uses C/C++?
Who tried some static analysis tool? (Cpp-check, clang-tidy,
Coverity, MS VS static analyzer, PVS-Studio. . .)
Who tried some dynamic analysis tool? (Valgrind + Hellgrind,
clang sanitizers, MS VS tool)
Who wrote 1k lines of C/C++ code without bugs (on the
first attempt)?
Who is using clang? Clang toolchain (clang-tidy,
clang-format, clang sanitizers)?

Karel Kubíček C/C++ toolchain April 20, 2018 2 / 12

Questions

Who uses C/C++?
Who tried some static analysis tool? (Cpp-check, clang-tidy,
Coverity, MS VS static analyzer, PVS-Studio. . .)
Who tried some dynamic analysis tool? (Valgrind + Hellgrind,
clang sanitizers, MS VS tool)
Who wrote 1k lines of C/C++ code without bugs (on the
first attempt)?
Who is using clang? Clang toolchain (clang-tidy,
clang-format, clang sanitizers)?

Karel Kubíček C/C++ toolchain April 20, 2018 2 / 12

Static code analysis

+ Easy to setup and run
+ Quite fast
+ Complete code coverage
− Weak (can find only fixed patterns)
− False positives

Karel Kubíček C/C++ toolchain April 20, 2018 3 / 12

Static code analysis – tools

cppcheck (cpp-check -enable=all path)

checks: variable scope, out-of-bounds, memory-leaks, sizeof
args... (170 paterns)

+ fast, simple
− weak, almost no support of modern C++ (11 years old project)

-enable=all overloads you with false positives
Clang Static Analyzer
cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON ..
ln -s $PWD/compile_commands.json ..
clang-check -analyze

40 patterns and new are still developed
+ fewer false positives, modern C++ support
− slower, more difficult to use, unix mainly

MS VS static analyzer, PVS-Studio, Splint, OCLint, Coverity
scan...

Karel Kubíček C/C++ toolchain April 20, 2018 4 / 12

Static code analysis – tools

cppcheck (cpp-check -enable=all path)
checks: variable scope, out-of-bounds, memory-leaks, sizeof
args... (170 paterns)

+ fast, simple
− weak, almost no support of modern C++ (11 years old project)

-enable=all overloads you with false positives

Clang Static Analyzer
cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON ..
ln -s $PWD/compile_commands.json ..
clang-check -analyze

40 patterns and new are still developed
+ fewer false positives, modern C++ support
− slower, more difficult to use, unix mainly

MS VS static analyzer, PVS-Studio, Splint, OCLint, Coverity
scan...

Karel Kubíček C/C++ toolchain April 20, 2018 4 / 12

Static code analysis – tools

cppcheck (cpp-check -enable=all path)
checks: variable scope, out-of-bounds, memory-leaks, sizeof
args... (170 paterns)

+ fast, simple
− weak, almost no support of modern C++ (11 years old project)

-enable=all overloads you with false positives
Clang Static Analyzer
cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON ..
ln -s $PWD/compile_commands.json ..
clang-check -analyze

40 patterns and new are still developed
+ fewer false positives, modern C++ support
− slower, more difficult to use, unix mainly

MS VS static analyzer, PVS-Studio, Splint, OCLint, Coverity
scan...

Karel Kubíček C/C++ toolchain April 20, 2018 4 / 12

Static code analysis – tools

cppcheck (cpp-check -enable=all path)
checks: variable scope, out-of-bounds, memory-leaks, sizeof
args... (170 paterns)

+ fast, simple
− weak, almost no support of modern C++ (11 years old project)

-enable=all overloads you with false positives
Clang Static Analyzer
cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON ..
ln -s $PWD/compile_commands.json ..
clang-check -analyze

40 patterns and new are still developed
+ fewer false positives, modern C++ support
− slower, more difficult to use, unix mainly

MS VS static analyzer, PVS-Studio, Splint, OCLint, Coverity
scan...

Karel Kubíček C/C++ toolchain April 20, 2018 4 / 12

Static code analysis – tools

cppcheck (cpp-check -enable=all path)
checks: variable scope, out-of-bounds, memory-leaks, sizeof
args... (170 paterns)

+ fast, simple
− weak, almost no support of modern C++ (11 years old project)

-enable=all overloads you with false positives
Clang Static Analyzer
cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON ..
ln -s $PWD/compile_commands.json ..
clang-check -analyze

40 patterns and new are still developed
+ fewer false positives, modern C++ support
− slower, more difficult to use, unix mainly

MS VS static analyzer, PVS-Studio, Splint, OCLint, Coverity
scan...

Karel Kubíček C/C++ toolchain April 20, 2018 4 / 12

Static code analysis – tools 2

Clang tidy clang-tidy -checks=’*’ src-file.c –

Clang Static Analyzer (clang-analyze-*) + much more
(modernize-*) + C++ Core guidelines

+ integrates static analysis with C++1x suggestions, easier to
run on single file, integration in CLion

− running -checks=’*’ might be overhelming (although the
number of false positives is not high, severity is often low)

Karel Kubíček C/C++ toolchain April 20, 2018 5 / 12

Static code analysis – tools 2

Clang tidy clang-tidy -checks=’*’ src-file.c –
Clang Static Analyzer (clang-analyze-*) + much more
(modernize-*) + C++ Core guidelines

+ integrates static analysis with C++1x suggestions, easier to
run on single file, integration in CLion

− running -checks=’*’ might be overhelming (although the
number of false positives is not high, severity is often low)

Karel Kubíček C/C++ toolchain April 20, 2018 5 / 12

Static code analysis – demo

Working: everything in static examples
Failing:

zune bug
clang-tidy -checks=* asan1.cc – -std=c++17
large codebase clang-tidy -help

Motivation → we want modern C++
clang-tidy examples
clang-format examples

Karel Kubíček C/C++ toolchain April 20, 2018 6 / 12

Dynamic code analysis

+ Easy to set up and run
+ Super strong (none false negatives)
+ (Almost) none false positives
− Slows your code (you cannot use it when debugging real-time

issue [embedded SW with interrupts, GUI])
− Covers only code that is executed

Karel Kubíček C/C++ toolchain April 20, 2018 7 / 12

Dynamic code analysis – tools

Valgrind

Hellgrind, Cachegrind (profiler for cache access), Callgrind (records
call history), Massif (heap profiler)
Virtual machine with just-in-time compilation (sandboxing, heap
reference counting)

+ no limitation for compiler (can run executable)
− only dynamic memory, 5-50+ slow-down

Clang sanitizers
Address sanitizer ASan, LeakSanitizer, Thread sanitizers TSan,
Memory sanitizer MSan, Undefined Behaviour sanitizer UBSan, thin
LTO
creates map of memory + around alocated blocks is shadow memory

+ both stack and heap checks
− dependent on compiler (MSan requires building all code with MSan)
− 2x slow-down, 4x memory consumption, less "googlable" error

messages than Valgrind (but good github wiki)
− crashes on first error (but

__attribute__((no_sanitize("address"))) or
continue-after-error mode)

Karel Kubíček C/C++ toolchain April 20, 2018 8 / 12

Dynamic code analysis – tools

Valgrind
Hellgrind, Cachegrind (profiler for cache access), Callgrind (records
call history), Massif (heap profiler)
Virtual machine with just-in-time compilation (sandboxing, heap
reference counting)

+ no limitation for compiler (can run executable)
− only dynamic memory, 5-50+ slow-down

Clang sanitizers
Address sanitizer ASan, LeakSanitizer, Thread sanitizers TSan,
Memory sanitizer MSan, Undefined Behaviour sanitizer UBSan, thin
LTO
creates map of memory + around alocated blocks is shadow memory

+ both stack and heap checks
− dependent on compiler (MSan requires building all code with MSan)
− 2x slow-down, 4x memory consumption, less "googlable" error

messages than Valgrind (but good github wiki)
− crashes on first error (but

__attribute__((no_sanitize("address"))) or
continue-after-error mode)

Karel Kubíček C/C++ toolchain April 20, 2018 8 / 12

Dynamic code analysis – tools

Valgrind
Hellgrind, Cachegrind (profiler for cache access), Callgrind (records
call history), Massif (heap profiler)
Virtual machine with just-in-time compilation (sandboxing, heap
reference counting)

+ no limitation for compiler (can run executable)
− only dynamic memory, 5-50+ slow-down

Clang sanitizers

Address sanitizer ASan, LeakSanitizer, Thread sanitizers TSan,
Memory sanitizer MSan, Undefined Behaviour sanitizer UBSan, thin
LTO
creates map of memory + around alocated blocks is shadow memory

+ both stack and heap checks
− dependent on compiler (MSan requires building all code with MSan)
− 2x slow-down, 4x memory consumption, less "googlable" error

messages than Valgrind (but good github wiki)
− crashes on first error (but

__attribute__((no_sanitize("address"))) or
continue-after-error mode)

Karel Kubíček C/C++ toolchain April 20, 2018 8 / 12

Dynamic code analysis – tools

Valgrind
Hellgrind, Cachegrind (profiler for cache access), Callgrind (records
call history), Massif (heap profiler)
Virtual machine with just-in-time compilation (sandboxing, heap
reference counting)

+ no limitation for compiler (can run executable)
− only dynamic memory, 5-50+ slow-down

Clang sanitizers
Address sanitizer ASan, LeakSanitizer, Thread sanitizers TSan,
Memory sanitizer MSan, Undefined Behaviour sanitizer UBSan, thin
LTO
creates map of memory + around alocated blocks is shadow memory

+ both stack and heap checks
− dependent on compiler (MSan requires building all code with MSan)
− 2x slow-down, 4x memory consumption, less "googlable" error

messages than Valgrind (but good github wiki)
− crashes on first error (but

__attribute__((no_sanitize("address"))) or
continue-after-error mode)

Karel Kubíček C/C++ toolchain April 20, 2018 8 / 12

Dynamic code analysis – tools

Valgrind
Hellgrind, Cachegrind (profiler for cache access), Callgrind (records
call history), Massif (heap profiler)
Virtual machine with just-in-time compilation (sandboxing, heap
reference counting)

+ no limitation for compiler (can run executable)
− only dynamic memory, 5-50+ slow-down

Clang sanitizers
Address sanitizer ASan, LeakSanitizer, Thread sanitizers TSan,
Memory sanitizer MSan, Undefined Behaviour sanitizer UBSan, thin
LTO
creates map of memory + around alocated blocks is shadow memory

+ both stack and heap checks
− dependent on compiler (MSan requires building all code with MSan)
− 2x slow-down, 4x memory consumption, less "googlable" error

messages than Valgrind (but good github wiki)
− crashes on first error (but

__attribute__((no_sanitize("address"))) or
continue-after-error mode)

Karel Kubíček C/C++ toolchain April 20, 2018 8 / 12

Dynamic code analysis – demo

ASan Valgrind
Heap out-of-bounds Y Y
Stack out-of-bounds Y N
Global out-of-bounds Y N
Use after free Y Y
Use after return Y N
Uninitialised memory read N Y
Initialisation order issues Y N
Leaks N Y
Slowdown 2x >10x

Karel Kubíček C/C++ toolchain April 20, 2018 9 / 12

Dynamic code analysis – demo

Folder ./dynamic – small examples
CryptoStreams (single execution, tests)
Monero? On demand projects

Karel Kubíček C/C++ toolchain April 20, 2018 10 / 12

Summary

Write tests (allows the project to survive longer)
you can refactor code (and use new language features)
allows you to use dynamic code analysis

set up continuous integration (Travis)
run tests under dynamic analysis (clang sanitizers)

use llvm toolchain (clang, clang-format, clang-tidy)
use static analysis localy (set it up in your IDE)

Karel Kubíček C/C++ toolchain April 20, 2018 11 / 12

Sources

Pacific++ 2017: Chandler Carruth "LLVM: A Modern, Open
C++ Toolchain":
https://www.youtube.com/watch?v=uZI_Qla4pNA

Tools from the C++ Ecosystem to save a leg - Anastasia
Kazakova - Meeting C++ 2017:
https://www.youtube.com/watch?v=Hlmp-zTyrxM
CppCon 2017: Kostya Serebryany "Fuzz or lose: why and how
to make fuzzing a standard practice for C++":
https://www.youtube.com/watch?v=k-Cv8Q3zWNQ

Fuzzing is really cool – together with clang sanitizers, it can
catch much more than normal tests
Another topic for OpenLab?

Karel Kubíček C/C++ toolchain April 20, 2018 12 / 12

https://www.youtube.com/watch?v=uZI_Qla4pNA
https://www.youtube.com/watch?v=Hlmp-zTyrxM
https://www.youtube.com/watch?v=k-Cv8Q3zWNQ

