C/C++ toolchain

Static and dynamic code analysis

CR&,CS

Centre for Research on
Cryptography and Security

Karel Kubic¢ek

Masaryk University
Brno, Czech Republic

April 20, 2018

CR&CS

Questions

Who uses C/C++7?

Karel Kubic¢ek April 20, 2018 2/12

Questions

Who uses C/C++7?

= Who tried some static analysis tool? (Cpp-check, clang-tidy,
Coverity, MS VS static analyzer, PVS-Studio. . .)

Karel Kubic¢ek April 20, 2018 2/12

Questions

Who uses C/C++7?

= Who tried some static analysis tool? (Cpp-check, clang-tidy,
Coverity, MS VS static analyzer, PVS-Studio. . .)

= Who tried some dynamic analysis tool? (Valgrind + Hellgrind,
clang sanitizers, MS VS tool)

Karel Kubic¢ek April 20, 2018 2/12

Questions

Who uses C/C++7?
= Who tried some static analysis tool? (Cpp-check, clang-tidy,

Coverity, MS VS static analyzer, PVS-Studio. . .)

= Who tried some dynamic analysis tool? (Valgrind + Hellgrind,

clang sanitizers, MS VS tool)

» Who wrote 1k lines of C/C++ code without bugs (on the

Karel Kubic¢ek

first attempt)?

April 20, 2018 2/12

Questions

Who uses C/C++7?

Who tried some static analysis tool? (Cpp-check, clang-tidy,
Coverity, MS VS static analyzer, PVS-Studio. . .)

= Who tried some dynamic analysis tool? (Valgrind + Hellgrind,
clang sanitizers, MS VS tool)

» Who wrote 1k lines of C/C++ code without bugs (on the
first attempt)?

m Who is using clang?

Karel Kubic¢ek April 20, 2018 2/12

Questions

Who uses C/C++7?

Who tried some static analysis tool? (Cpp-check, clang-tidy,
Coverity, MS VS static analyzer, PVS-Studio. . .)

= Who tried some dynamic analysis tool? (Valgrind + Hellgrind,
clang sanitizers, MS VS tool)

» Who wrote 1k lines of C/C++ code without bugs (on the
first attempt)?

» Who is using clang? Clang toolchain (clang-tidy,
clang-format, clang sanitizers)?

Karel Kubic¢ek April 20, 2018 2/12

Questions

Who uses C/C++7?

Who tried some static analysis tool? (Cpp-check, clang-tidy,
Coverity, MS VS static analyzer, PVS-Studio. . .)

= Who tried some dynamic analysis tool? (Valgrind + Hellgrind,
clang sanitizers, MS VS tool)

» Who wrote 1k lines of C/C++ code without bugs (on the
first attempt)?

» Who is using clang? Clang toolchain (clang-tidy,
clang-format, clang sanitizers)?

Karel Kubic¢ek April 20, 2018 2/12

CR&CS

Static code analysis

+ Easy to setup and run

+ Quite fast

+ Complete code coverage

— Weak (can find only fixed patterns)

— False positives

Karel Kubic¢ek April 20, 2018 3/12

CR&CS

Static code analysis — tools

» cppcheck (cpp-check -enable=all path)

Karel Kubic¢ek April 20, 2018 4/12

Static code analysis — tools

» cppcheck (cpp-check -enable=all path)

Karel Kubic¢ek

checks: variable scope, out-of-bounds, memory-leaks, sizeof
args... (170 paterns)

fast, simple

weak, almost no support of modern C++ (11 years old project)
-enable=all overloads you with false positives

April 20, 2018 4/12

Static code analysis — tools

» cppcheck (cpp-check -enable=all path)

m checks: variable scope, out-of-bounds, memory-leaks, sizeof
args... (170 paterns)

+ fast, simple

— weak, almost no support of modern C++ (11 years old project)

m -enable=all overloads you with false positives

m Clang Static Analyzer

Karel Kubic¢ek

cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=O0N ..

1n -s $PWD/compile_commands.json ..
clang-check -analyze

April 20, 2018 4/12

Static code analysis — tools

» cppcheck (cpp-check -enable=all path)

m checks: variable scope, out-of-bounds, memory-leaks, sizeof
args... (170 paterns)

+ fast, simple

— weak, almost no support of modern C++ (11 years old project)

m -enable=all overloads you with false positives

m Clang Static Analyzer

Karel Kubic¢ek

cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=0N ..
1n -s $PWD/compile_commands.json ..
clang-check -analyze

m 40 patterns and new are still developed

+ fewer false positives, modern C++ support

— slower, more difficult to use, unix mainly

April 20, 2018 4/12

Static code analysis — tools

Karel Kubic¢ek

cppcheck (cpp-check -enable=all path)
checks: variable scope, out-of-bounds, memory-leaks, sizeof
args... (170 paterns)
fast, simple
weak, almost no support of modern C++ (11 years old project)
-enable=all overloads you with false positives

Clang Static Analyzer
cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=0N ..

1n -s $PWD/compile_commands.json ..
clang-check -analyze

40 patterns and new are still developed

fewer false positives, modern C+-+ support

slower, more difficult to use, unix mainly
MS VS static analyzer, PVS-Studio, Splint, OCLint, Coverity
scan...

April 20, 2018 4/12

CR&CS

Static code analysis — tools 2

m Clang tidy clang-tidy -checks=’*’ src-file.c -

Karel Kubic¢ek April 20, 2018 5/12

Static code analysis — tools 2

m Clang tidy clang-tidy -checks=’*’ src-file.c -
m Clang Static Analyzer (clang-analyze-*) + much more
(modernize-*) + C++ Core guidelines
-+ integrates static analysis with C++1x suggestions, easier to
run on single file, integration in CLion
running —-checks=’*’ might be overhelming (although the
number of false positives is not high, severity is often low)

Karel Kubic¢ek April 20, 2018 5/12

CR&CS

Static code analysis — demo

m Working: everything in static examples
m Failing:
= zune bug

® clang-tidy -checks=* asanl.cc - -std=c++17
m large codebase clang-tidy -help

m Motivation — we want modern C++
m clang-tidy examples

m clang-format examples

Karel Kubic¢ek April 20, 2018 6 /12

Dynamic code analysis

+ Easy to set up and run
-+ Super strong (none false negatives)

+ (Almost) none false positives

Slows your code (you cannot use it when debugging real-time
issue [embedded SW with interrupts, GUI])

Covers only code that is executed

Karel Kubic¢ek April 20, 2018 7/12

CR&CS

Dynamic code analysis — tools

m Valgrind

Karel Kubigek April 20, 2018 8 / 12

Dynamic code analysis — tools

= Valgrind
m Hellgrind, Cachegrind (profiler for cache access), Callgrind (records
call history), Massif (heap profiler)
m Virtual machine with just-in-time compilation (sandboxing, heap
reference counting)
+ no limitation for compiler (can run executable)
only dynamic memory, 5-50+ slow-down

Karel Kubic¢ek April 20, 2018

8 /12

Dynamic code analysis — tools

= Valgrind
m Hellgrind, Cachegrind (profiler for cache access), Callgrind (records
call history), Massif (heap profiler)
m Virtual machine with just-in-time compilation (sandboxing, heap
reference counting)
+ no limitation for compiler (can run executable)
only dynamic memory, 5-50+ slow-down

m Clang sanitizers

Karel Kubic¢ek April 20, 2018

8 /12

Dynamic code analysis — tools

Valgrind

Hellgrind, Cachegrind (profiler for cache access), Callgrind (records
call history), Massif (heap profiler)

Virtual machine with just-in-time compilation (sandboxing, heap
reference counting)

no limitation for compiler (can run executable)

only dynamic memory, 5-50+ slow-down

Clang sanitizers

Address sanitizer ASan, LeakSanitizer, Thread sanitizers TSan,
Memory sanitizer MSan, Undefined Behaviour sanitizer UBSan, thin
LTO

creates map of memory + around alocated blocks is shadow memory
both stack and heap checks

dependent on compiler (MSan requires building all code with MSan)
2x slow-down, 4x memory consumption, less "googlable" error
messages than Valgrind (but good github wiki)

crashes on first error (but
__attribute__((no_sanitize("address"))) or
continue-after-error mode)

Karel Kubic¢ek

April 20, 2018 8 /12

Dynamic code analysis — tools

Valgrind

Hellgrind, Cachegrind (profiler for cache access), Callgrind (records
call history), Massif (heap profiler)

Virtual machine with just-in-time compilation (sandboxing, heap
reference counting)

no limitation for compiler (can run executable)

only dynamic memory, 5-50+ slow-down

Clang sanitizers

Address sanitizer ASan, LeakSanitizer, Thread sanitizers TSan,
Memory sanitizer MSan, Undefined Behaviour sanitizer UBSan, thin
LTO

creates map of memory + around alocated blocks is shadow memory
both stack and heap checks

dependent on compiler (MSan requires building all code with MSan)
2x slow-down, 4x memory consumption, less "googlable" error
messages than Valgrind (but good github wiki)

crashes on first error (but
__attribute__((no_sanitize("address"))) or
continue-after-error mode)

Karel Kubicek

April 20, 2018 8/ 12

Dynamic code analysis — demo

Karel Kubic¢ek

ASan Valgrind
Heap out-of-bounds Y Y
Stack out-of-bounds Y N
Global out-of-bounds Y N
Use after free Y Y
Use after return Y N
Uninitialised memory read N Y
Initialisation order issues Y N
Leaks N Y
Slowdown 2x >10x

April 20, 2018

9/

12

CR&CS

Dynamic code analysis — demo

m Folder ./dynamic — small examples
» CryptoStreams (single execution, tests)

m Monero? On demand projects

Karel Kubic¢ek April 20, 2018 10 / 12

Summary

» Write tests (allows the project to survive longer)

m you can refactor code (and use new language features)
m allows you to use dynamic code analysis

m set up continuous integration (Travis)
m run tests under dynamic analysis (clang sanitizers)

» use llvm toolchain (clang, clang-format, clang-tidy)

m use static analysis localy (set it up in your IDE)

Karel Kubic¢ek April 20, 2018 11 /12

Sources

Pacific++ 2017: Chandler Carruth "LLVM: A Modern, Open
C++ Toolchain™:
https://www.youtube.com/watch?v=uZI_QladpNA

Tools from the C++ Ecosystem to save a leg - Anastasia
Kazakova - Meeting C++ 2017:
https://www.youtube.com/watch?v=Hlmp-zTyrxM
CppCon 2017: Kostya Serebryany "Fuzz or lose: why and how
to make fuzzing a standard practice for C++":
https://www.youtube.com/watch?v=k-Cv8Q3zWNQ

Fuzzing is really cool — together with clang sanitizers, it can

catch much more than normal tests

Another topic for OpenlLab?

Karel Kubi¢ek April 20, 2018 12 / 12

https://www.youtube.com/watch?v=uZI_Qla4pNA
https://www.youtube.com/watch?v=Hlmp-zTyrxM
https://www.youtube.com/watch?v=k-Cv8Q3zWNQ

