
Faster randomness testing with the NIST
Statistical Test Suite

Anonymized for review.

No Institute Given

Abstract. Randomness testing plays an important role in cryptography.
Randomness is typically examined by batteries of statistical tests. One of
the most frequently used test batteries is the NIST Statistical Test Suite.
The tests of randomness should be rather fast since they usually process
large volumes of data. Unfortunately, this is not the case for the NIST
STS, where a complete test can take hours. Alternative implementations
do exist, but are not very efficient either or they do not focus on the
most time-consuming tests.
We reimplemented all NIST STS tests and achieved interesting speedups
in most of the tests, including the tests with the highest time complexity.
Overall, our implementation runs 30 times faster than the original code.

Keywords: Berlekamp-Massey algorithm; NIST STS; randomness statistical
testing

1 Introduction

Randomness is connected with many areas of computer science, in particular
with cryptography. Well designed cryptographic primitives like hash functions,
stream ciphers, etc., should produce pseudorandom data. Randomness testing
therefore plays an important and fundamental role in cryptography. Random-
ness is typically examined by empirical tests of randomness. Each test examines
data by looking at a specific feature (number of ones, m-bit blocks, etc.). Tests
are usually grouped into test batteries (also called test suites) to provide more
complex randomness analysis.
All tests measure how the observed statistics of the analysed feature fit the
expected statistics. Empirical tests of randomness compare the expected and
obtained characteristics by standard statistical methods. Thus randomness is
characterized and described in the terms of probability. The result of each test
is a P -value that represents the probability that the chosen test statistic will
assume values that are equal to or worse than the observed test statistics. This
concept allows one to evaluate randomness according to several examined fea-
tures at once. Combination of several P -values increases the confidence about the
randomness/non-randomness of given data. Confidence about the data random-
ness can be also increased by increasing the analysed data volume. In practice,
the analysed data volume is usually in the order of GBs and therefore the speed

2

of these tests should be high. Unfortunately, most batteries are not implemented
efficiently.

There are five well-known batteries – NIST STS [3], Diehard[4], TestU01[6],
ENT [7] and CryptX [8]. Only the first three batteries are commonly used for
the randomness analysis, since CryptX is a commercial software and ENT pro-
vides only a very basic randomness testing. NIST STS became the most popu-
lar test battery since it is used for testing and certification of random number
generators in cryptographic applications. Diehard and its novel implementation
Dieharder were proposed for testing randomness of numbers rather than bit-
streams. The newest and most powerful battery TestU01 was introduced in 2007
by Lecleuyer and Simard. TestU01 [6] incorporates new tests and implements the
current state of the art of randomness testing. Diehard/Dieharder and TestU01
also implement some of the NIST tests, but they do not implement all NIST
tests (Diehard) or the tests are not efficient (TestU01).

The goal of our work is to rewrite the NIST STS battery into a new version,
with the same tests, with much better time-and space-efficient implementation
of empirical tests of randomness.

This paper is organised as follows: Section 2 provides an overview of the NIST
tests, alternative implementations and the performance of the original code. Sec-
tion 3 briefly describes our improvements. Section 4 discusses how we evaluated
our algorithms and Section 5 summarizes the results of the performance testing.

2 Statistical test suites

The NIST tests are defined in [3]. The NIST Statistical Test Suite (NIST STS)
package implements all the NIST tests. Although some particular NIST tests are
also implemented in other test batteries (Diehard, TestU01), we further focus
on the reimplementation of the whole NIST STS package.

2.1 NIST statistical tests

The original NIST document [1] defined 16 empirical test of randomness. During
the next two revisions [2, 3], the Lempel-Ziv test was removed due to implementa-
tion problems identified by the NIST. The current set of the NIST tests consists
of 15 tests. All tests are parameterised by a parameter n that denotes the length
(in bits) of the processed bitstream. Although all the tests are proposed to de-
tect deviations from randomness for the whole bitstream, only several tests can
detect local non-randomness. These tests are also parameterised by a second
parameter denoted by m or M [3]. Tests parameterised by m are developed to
detect the presence of too many m-bit patterns in a sequence. Tests with the
second parameter M examine distribution of the specific feature across n/M
parts (of equal size M bits) of a given bitstream. All tests in NIST STS compute
P -values using asymptotic reference distributions (χ2 or normal) and therefore
reasonable results are obtained only for appropriate settings of the parameters

3

n,m and M . Overview of all the tests and meaningful settings of their parame-
ters are summarized in Table 1.

Test # Test name n m or M

1. Frequency (Monobit) n > 100 -

2. Frequency within a Block 20 ≤M ≤ n/100

3. Runs n ≥ 100 -

4. Longest run of ones in a block

5. Binary Matrix Rank n > 38912 -

6. Discrete Fourier Transform (Spectral) n ≥ 1000 -

7. Non-overlapping Template Matching 2 ≤ m ≤ 21

8. Overlapping Template Matching 1 ≤ m ≤ n

9. Maurer’s Universal 1 ≤ m ≤ n

10. Linear complexity n > 106 500 ≤M ≤ 5000

11. Serial 3 ≤ m ≤ blog2 nc − 3

12. Approximate Entropy m ≤ blog2 nc − 6

13. Cumulative sums n > 100

14. Random Excursions n ≥ 106

15. Random Excursions Variant n ≥ 106

Table 1: The recommended size n of the bitstream for the particular tests. Some
tests are parameterised by a second parameter m, M, respectively. The table
shows meaningful settings of the second parameter depending on n.

2.2 NIST STS

The NIST test suite implements various random number generators and the 15
empirical tests developed to test randomness of binary sequences. The whole
package is written in ANSI C in order to obtain a platform independent code.
The source code of NIST STS was ported to Windows XP and Ubuntu Linux,
and with minor modifications it also may be ported to different platforms. The
NIST STS transforms an input file (stored as ASCII characters ‘0’ and ‘1’ or
as binary data) to a byte array, where each byte (value 0 or 1) represents a
single bit of the analysed bitstream. Byte representation of data allows one to
use the same implementation of tests on little- and big-endian systems. The code
universality comes at the expense of memory and time inefficiency of tests. Some
of the tests have a preprocessing phase, but it is negligible for large volumes of
data. The time complexity of each test is linear according to data volume n. The
performance of the Rank test described in Figure 2 illustrates the linearity of
tests.

Performance of the tests with the second parameter (m,M) depends on its
particular value. Table 2 shows run times of tests (implemented in the NIST
STS) obtained after processing 20 MB of pseudorandom data (n = 167772160)

4

with minimum and maximum recommended values of m or M . Table also shows
the percentage to identify the time critical tests.

Test m, M Time(ms) % m, M Time (ms) %

Frequency (Monobit) - 203 0.12 - 203 0.01

Frequency within a Block n/100 46 0.03 20 63 0.00

Runs - 1140 0.67 - 1140 0.08

Longest run of ones in a block - 656 0.39 - 656 0.04

Binary Matrix Rank - 3781 2.23 - 3781 0.25

Spectral - 24625 14.50 - 24625 1.63

Non-overlapping Template 2 1750 1.03 21 140015 9.28

Overlapping Template 2 672 0.40 24 3343 0.22

Maurer’s Universal - 2843 1.67 - 2843 0.19

Linear complexity 500 122390 72.04 5000 1187453 78.69

Serial 2 3687 2.17 24 85297 5.65

Approximate Entropy 2 4422 2.60 24 55860 3.70

Cumulative sums - 984 0.58 - 984 0.07

Random Excursions - 562 0.33 - 562 0.04

Random Excursions Variant - 2125 1.25 - 2125 0.14

Total 169886 100 1508950 100

Table 2: Run times of particular tests obtained for minimum and maximum
values of their second parameters m or M .

2.3 NIST reimplementations

There were some attempts to reimplement the NIST STS efficiently. In [9] au-
thors rewrite the NIST STS package to a byte-oriented implementation. Byte-
oriented code allows one to speed up most tests, since some precomputation
(lookup tables) can be used. Authors also made other improvements to the source
code and finally obtained 13.45 average speedup of tests. However, this average
speedup says nothing about the overall time, since it does not reflects the fact
that durations of particular tests are quite different. The most time-consuming
test (Linear complexity) is only 3 times faster in the reimplemented version [9].
Thus the overall speedup is significantly smaller and the whole testing process is
at most 4 times faster. In [10] authors also tried to reimplement the NIST STS,
but they obtained mostly worse results than in [9]. Unfortunately, both imple-
mentations are not publicly available and therefore we use only the published
textual results to compare the perfomance. We contacted the authors of both
papers, and we got some response with authors not sharing the source codes.

5

3 Improvements

Although we probably use ideas and principles similar to those in [9] to speed
up some of the tests, our optimizations have been proposed and implemented in-
dependently. Moreover, we were able to apply these ideas to speed up the most
time-consuming tests, which are Linear complexity, Non-overlapping template
matching and the Serial tests.

All our optimizations are based on three basic ideas. We use lookup tables
(LUTs), fast extraction of an integer from the byte array and word-word opera-
tions instead of bit-bit operations. Each optimization is used for a different type
of tests determined by its complexity. Although the run time of each NIST test is
linear to the number of bits n, the run times of particular tests vary significantly
as we can see in Table 2. Run times of fast (simple) tests are usually influenced
by the second parameter m. Poor performance of the most time-consuming tests
is caused by subroutines for complex algorithms like Berlekamp-Massey, Gauss
elimination or Fast Fourier Transformation.

3.1 Classes of tests

NIST STS tests can be divided (according to their complexity and used opti-
mizations) into three classes as follows:

1. Fastest tests that process each bit of bitstream once – Frequency, Block
Frequency, Runs, Longest run, Cumulative sums, Random Excursion and
Random Excursion Variant.

2. Fast tests that process m-bit blocks – Non-overlapping template matching,
Overlapping template matching, Universal, Serial and Approximate entropy.
Run times of these tests are dependent on m since each bit of the m-bit
block is compared with some pattern in the NIST STS implementation.

3. Slow and complicated tests – Linear complexity, Spectral, Rank – tests that
use quadratic algorithms (Linear complexity, Rank) or sub-quadratic algo-
rithm (Spectral).

3.2 Optimizations of simple tests

Tests from a class 1 are optimized by the LUTs since these tests compute single
value characteristics of bits like proportion of ‘0’ and ‘1’ bits, frequency of bit
change (runs), length of runs and cumulative sum of bits. Tests use LUTs that
consist of precomputed values for all k-bit blocks indexed by a block interpreted
as an integer value. In our implementations, we use k = 8 as an appropriate
value since the LUTs have a reasonable number of entries (2k = 256). To run
the tests we need to divide the bitstream into 8-bit blocks and continuously
compute bit characteristics using corresponding table values. Choosing k = 8
we have 8-bit blocks since the bitstream is stored as a byte array. The use of
LUTs can be illustrated on the Frequency test that computes the number of

6

ones in the bitstream. The frequency test uses a LUT with entries LUT [i] = vi,
where vi represents the number of ones (Hamming weight) in the index i (8-bit
block). To compute the number of ones in a bitstream, it is sufficient to sum the
corresponding LUT values for all bytes in a byte array. It should be noted that
for other tests we use several LUTs that describe the input, output and internal
characteristics of 8-bit blocks. For a more detailed description of tests from the
first 1 class, look into the source code available at [11].
Tests from the second class process m-bit blocks of the bitstream. To speed
up these tests, we implemented a fast function get nth block that can extract
arbitrary m-bit block (m ≤ 25) from a given bitstream (byte array). Upper
bound 25 of the block size is sufficient for all the tests from this class since m is
upper-bounded by log2 n− 3 (Serial test). For 20 MB of data this upper bound
has the value m = 24 and therefore function get nth block can be used. Func-
tion get nth block is fast and it is able to return all m-bit blocks from a 100 MB
bitstream within a second on a standard modern computer. More effective opti-
mization is based on the observation that all these tests (except Universal) can
be evaluated from a single histogram of m-bit blocks.
In these tests, we use the histogram represented by the array H of frequencies
(integers) of m-bit blocks indexed by blocks themselves. The histogram is com-
puted using the function get nth block that is used to extract overlapping m-bit
blocks bi for i ∈ {0, 1, · · · , n−m} from the bitstream. These blocks are used as
indexes to H for incrementing the corresponding frequencies H[bi]. Since access
to the array H and the increment are very fast operations, the histogram can be
obtained also within a second (on the standard modern computer for 100 MB of
data). Figure 1 illustrates the typical dependency between parameter m and the
performance of the test. The time complexity of the test depends on the number

Fig. 1: Run times of the Non-overlapping test.

7

of searched templates (predefined k-bit patterns), which rise exponentially with
the parameter m. Due to exponential nature of the number of templates, the
original implementation imposes a practical limit on the maximum number of
templates being tested (148). This limit is in effect for all m > 9 as we can see
in the Figure 1, where the time complexity becomes constant.

Our implementation computes a histogram H for an arbitrary m < 25 in the
same way and in a single pass. Therefore the complexity of our implementation
is constant – independent on m (the real execution is influenced by processor
cache management as you can see in Figure 1). Moreover, we compute H for all
m-bit patterns and could easily provide complete statistics, yet for the reason
of compatibility with the original version we stick to the limit of the maximum
number of templates.

3.3 Spectral test

The Spectral test is the only test that is not reimplemented in our battery. The
Spectral test uses the Fast Fourier Transformation and therefore its run time is
determined by the prime factors of n rather than by the value n itself. To speed
up this test, it suffices to use n with small factors. The best choice is to take n
of the form n = 2k, for which the Spectral test run time is comparable to fast
tests in the 1 class.

3.4 Binary matrix rank test

The Rank test uses the Gaussian elimination subroutine to examine whether the
rank of the 32x32 boolean matrix is 32, 31 or less. Our implementation is based
on the same idea as the Rank test in [9]. We use word-word operations instead of
bit-bit operations. Since the square boolean matrix has the size 32, we represent
it as an array of 32 unsigned integers, each of them representing a row of the
matrix. Rank of the matrix is computed using fast bitwise operations XOR, AND
and shift. The XOR operation realizes the row addition. Bitwise AND and shift
are used for the pivot finding. Although our implementation of the Rank test is
probably very similar to the implementation in [9], we improve it by adding the
stop condition. We stop the computation if there are two columns with no pivot
(thus the rank is less than 31).

3.5 Linear complexity test

The Linear complexity test is focused on determining the linear complexity of a
finite binary sequence. The linear complexity of a sequence equals to the length
of the smallest linear feedback shift register (LFSR) that generates the given
sequence. The Linear complexity test uses an efficient Berlekamp-Massey algo-
rithm to compute this smallest LFSR. The Berlekamp-Massey (BM) algorithm
for a binary sequence can be described by the following pseudocode:

8

Fig. 2: Run time of the Rank test.

Data: binary sequence S = {s0, s1, · · · , sn−1} of the length n
Result: shortest LFSR generating S
Set arrays b, c to 1;
Set length of c to 0;
for N ← 0 to n do

Compute d←
∑L

i=1
cisN−i ;

if d = 1 (mod) 2 then
update c by c ← c XOR (b >> N-m) ;
t ← c;
if L ≤ n/2 then

t ← b;
L ← N + 1 - L;
m ← N ;

end

end

end
return c;

Algorithm 1: Pseudocode of the Berlekamp-Massey algorithm.

The BM algorithm is an iterative method that constructs the smallest LFSR
cN generating the subsequence SN = {s0, s1, · · · , sN} of Sn = {s0, s1, · · · , sn−1},
sj ∈ {0, 1} in the N -th iteration. The BM tests whether the LFSR cN−1 that
generates the subsequence SN−1 also generates the SN sequence. The BM al-
gorithm computes the discrepancy d that denotes the Hamming weight of the
sequence SN masked with the shifted LFSR cN−1 (stored as binary array). The
BM algorithm uses another LFSR bN−1 that represents the last LFSR (different
to cN−1) computed up to N − 1 iteration. If the discrepancy d is even then

9

cN = cN−1 and bN = bN−1. Table 3 illustrates how the discrepancy is computed
from the LFSR. The table shows that the LFSR b = x2 + 1 stored as a bit-array
b = 101 forms a LFSR for S4, i.e., b4 = 101 since all discrepancies (sequence
masked by b) are even.

index 0 1 2 3 4 5 6 7

S10 = 0 1 0 1 1 0 1 1 1
b = 1 0 1 d = 2

b >> 1 = 1 0 1 d = 2
b >> 2 = 1 0 1 d = 1

index = 0 1 2 3 4 5 6 7

S10 = 0 1 0 1 1 0 1 1 1
b′ = b >> 2 = 1 0 1 d = 1
c′ = c >> 6 = 1 1 1 d = 3

c′′ = b′ XOR c′ = 1 0 1 1 1 1 d = 4

Table 3: Principles of the Berlekamp-Massey algorithm.

In the case of an odd d the LFSR cN is replaced by the right shifted c >>
(N −m) XOR-ed with bN−1 and bN is set to cN−1. The idea of combining of
cN−1, bN−1 to cN is to get even discrepancy for the application of a new cN .

Table 3 shows the principle of the combination of LFSRs bN−1, cN−1 obtain-
ing the new cN . LFSR b = 101 forms the smallest LFSR for S3, but not for
the sequence S4 and therefore the discrepancy for LFSR b and the subsequence
S4 is odd (d = 1). LFSR c = 111 forms the smallest LFSR for S7, but not for
the sequence S8 (d = 3). The new smallest LFSR c for S8 is constructed in
the way that the discrepancy (d = 1 + 3) for a new c (represented by the bit
array c′′) is combined from two odd discrepancies computed earlier for b′, c′. It
suffices to work with the shifted bit arrays b′, c′ instead of the original LFSRs
b, c. Bit-arrays b′, c′ represent b, c shifted appropriately for the computation of
d.
All improvements to the BM algorithm are based on the following observations:

1. the discrepancy d in the N -th iteration can be computed as the Hamming
weight of the masked sequence Sn by bit array c′,

2. the next discrepancy in N + 1-th iteration is computed using c′ = c′ >> 1
that is shifted one bit to the right.

Our speedup of the BM algorithm is based on word (integer, long) representation
of bit arrays Sn, c

′ and b′. This representation allows one to use fast bitwise
operations. AND is used for masking of the word array SN by the word array
c′. The discrepancy d is computed from the masked Sn using a LUT storing
the Hamming weights of bytes. XOR is used for the combination of b′ and c′

into a new c′ = c′ XOR b′. In each iteration c′ is shifted one bit to the right
c′ = c′ >> 1. We made other improvements concerning elimination of processing
zero words. For more details about the improvements look at the source code
[11].

10

Fig. 3: Run time of the Linear complexity test (note the logarithmic scale of the
y axis).

4 Implementation testing

After the implementation of the faster variants of the algorithms we ran series
of tests. The first tests were aimed at verification of the correctness. We verified
the correctness of all values that are outputs from the tests (we ran both the
original and new implementation and compared the results).

Many of the results are floating point numbers stored in the double type.
Comparing floating point numbers can be tricky. We compiled the program with
the improved consistency of floating-point operations. In majority of tests all the
results stored as doubles matched perfectly in all the bits. In exceptional cases
(Runs test) the results differed in a single (least significant) bit due to compiler
computational optimizations. In these cases we had to allow for the differences
in the least significant bit of the mantissa of the double type. Moreover we
allow for the negligible difference of FLT EPSILON for the same reasons in the
Approximate entropy tests.

We also had to consider special values of floating point numbers (e.g., the
variable a storing the INDefinite value does not fullfil the a == a condition)
during comparison of the results.

We performed series of tests of all the algorithms with many different lengths
of the bitsteams and with different parameters. We used pseudorandom bit se-
quences and also special values such as zeros, ones and alternating ones and
zeros.

We followed the NIST parameter recommendations and typically performed
the tests for all the bitstream lengths between 1 and 1’000’000 bits. We also
performed the tests for randomly chosen bitstream lengths between 1 bit and

11

800’000’000 bits such that the length ni+1 = ni ∗ 10 + rand()%8 was computed
to catch possible errors caused by bitstream lengths not being a multiple of 8.

We were not able to perform all the above mentioned tests due to time com-
plexity of the tests (Spectral, Non-overlapping template matching, Approximate
entropy, Serial, Linear complexity) or high number of possible configurations
(Block Frequency) for the time-consuming tests. Therefore we only performed a
subset of the tests.

In a few configurations our implementation does provide a result while the
original implementation is not able to compute a result (e.g., the Random Ex-
cursion test is limited in the number of cycles), in some situations our implemen-
tation does not support unusual parameters while the original implementation
does (e.g., the Serial test with m > 25). In such situations, we could not com-
pare the results. In all other situations the results do match. The limitations of
our implementation with respect to the original implementation and the NIST
recommendations (see Table 1) are:

– Overlapping template matching test: m ≤ 25,
– Serial: m ≤ 25.

The above mentioned limitation of the m above 25 can be easily shifted towards
32 as described in the Readme.txt file at [11]. The verification tests are time-
consuming, but if you are interested you can run them on your own system as
described in the source codes.

5 Performance testing

We measured both the number of CPU cycles and the time consumed in mil-
liseconds. As the results of both measurements are consistent, we present only
the results in milliseconds (for very short tests the duration in milliseconds is
recomputed from the number of CPU cycles). We performed all the tests ten
times and we used the minimum value to avoid the noise introduced by the OS
scheduling.

The source code, including the verification of the results and the speed mea-
surement, can be compiled on Linux systems (tested with gcc 4.4.7 on RHEL
6.5), but we primarily used MS Windows for testing.

The speed improvement was measured on a Windows 8.1 Fujitsu S792 note-
book equipped with Intel Core i7 having 2 cores1 running at 3 GHz and 8 GB
of memory. The code was compiled using MS Visual Studio 2013. We produced
a x64 binary in the Release mode with the default parameters.

Although the speed measurements were performed with a 64-bit binary on
a 64-bit operating system, our implementation compiles also on a 32-bit system
with a similar performance. The source code relies on the fact that the size of
int is at least 32 bits and the processor works in the little-endian architecture.

The speed improvements are summarized in the Table 4. As you can see, the
Linear complexity test significantly influences the overall numbers. We present

1 No multithreading is used in the application.

12

the final results with the Linear complexity test configured to m = 5000. For
the other extreme value of m = 500 the speedup factor of the test is 37x, which
decreases the overall speedup to 10x.

Test m,M
Original

(ms)
New
(ms)

Speedup Our
vs. NIST

Speedup [9]

vs. NIST

Frequency (Monobit) 203 15 13.5 9.82

Frequency within a Block 128 94 31 3.0 9.63

Runs 1140 31 36.8 5.84

Longest run of ones in a block 656 31 21.2 6.51

Binary Matrix Rank 3781 297 12.7 7.91

Spectral 24625 25062 0.98 -

Non-overlapping Template 9 139641 343 407.1 3.13

Overlapping Template 9 1359 406 3.3 15.15

Maurer’s Universal 2843 156 18.2 12.8

Linear complexity 5000 1187453 18421 64.5 3.92

Serial 9 24078 313 76.9 48.73

Approximate Entropy 8 16484 312 52.8 54.16

Cumulative sums 984 31 31.7 3.31

Random Excursions 562 515 1.1 1.26

Random Excursions Variant 2125 515 4.3 6.09

Total 1406028 46464 30.3 -

Table 4: Run times (for 20 MB of data) of the original implementation NIST
STS, the implementation from [9] and our new implementation. Parameters m
or M were chosen to be able to compare all three implementations.

6 Conclusion

Although batteries of statistical tests are frequently used, their implementations
are not always efficient. This is not a marginal problem as the tests can run
for several hours with usual data sizes (hundreds of MBs). Although there were
some attempts to reimplement the NIST STS, they do not achieve a significant
speedup in the time-critical tests.

We reimplemented the NIST STS with the focus on tests with the non-
linear time complexity. Significant improvements were accomplished thanks to
the byte oriented data storage, word-oriented data processing, the use of look up
tables and other smart optimisations. With the exception of the Spectral test,
where the optimisations will be aimed at the parameter n, we achieved excellent
speedup results for the three most time-consuming tests. The optimized Linear
complexity test is 27.5x faster than original implementation for m = 500 and
the speedup improves towards 64.5x for m = 5000. The speedup of the Non-
overlapping template matching test is in the interval between 5.3x and 483x,

13

where for the most usual parameters m = 9 and m = 10 the speedup of 407x is
outstanding.

Improvements of the Serial test relate to the use of a single pass calculation
of block frequencies (instead of three independent calculations) and bring the
speedup improvements in the range between 12x and 155x, in the dependence
on m. The speedup is 155x for the default value of m = 16.

Due to above mentioned improvements, we were able to achieve the overall
speedup of about 30 times (compared to the NIST STS implementation). This
means that the typical test setups that require hours to run can be executed
within dozens of minutes now.

References

1. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M.
Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo: A Sta-
tistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications. NIST Special Publication 800-22, May, 2001.
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf.

2. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Lev-
enson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo: A Statisti-
cal Test Suite for Random and Pseudorandom Number Generators for Cryp-
tographic Applications. NIST Special Publication 800-22rev1, August, 2008.
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1.pdf.

3. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo: A Statistical Test Suite for
the Validation of Random Number Generators and Pseudo Random Number Gen-
erators for Cryptographic Applications, Version STS-2.1, NIST Special Publica-
tion 800-22rev1a, April, 2010. http://csrc.nist.gov/publications/nistpubs/800-22-
rev1a/SP800-22rev1a.pdf.

4. G. Marsaglia: The Marsaglia random number CDROM including the DIEHARD
battery of tests of randomness. See http://stat.fsu.edu/pub/diehard, 1996.

5. R. G. Brown: Dieharder: A Random Number Test Suite, Version 3.31.1, 2004.
6. P. L’Ecuyer, R. Simard: TestU01: A C library for empirical testing of random num-

ber generators, ACM Trans. Math. Softw., vol 33, 2007.
7. J. Walker: ENT – A pseudorandom number sequence test program.

1993, http://www.fourmilab.ch/random/.
8. W. Caelli et. al.: Crypt X Package Documentation, Information Security Research

Centre and School of Mathematics, Queensland University of Technology, 1992.
Crypt-X: http://www.isrc.qut.edu.au/resource/cryptx/.

9. A. Suciu, K. Marton, I. Nagy, and I. Pinca: Byte-oriented efficient implementation
of the NIST statistical test suite. In Proceedings of the 2010 IEEE International
Conference on Automation, Quality and Testing, Robotics (AQTR), Vol 02 (AQTR
’10), Vol. 2. IEEE Computer Society, Washington, DC, USA, 1-6.

10. J.K.M. Sadique UZ Zaman, R. Ghosh: Review on fifteen Statistical Tests proposed
by NIST, Journal of Theoretical Physics and Cryptography, Vol. 1, November 2012.

11. Anonymized: NIST reimplementation from authors of this paper.

