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Abstract. Usage of various key (pre-)distribution schemes (KDSs) in
networks with an active attacker results in a partially compromised net-
work where some fraction of keys used to protect link communication
is known to the attacker. The secrecy amplification protocols were pro-
posed to secure again some previously compromised communication links
by using non-compromised paths to deliver new secure keys. Design of
suitable secrecy amplification protocols remains a challenge in scenarios
where a trade-off between necessary resources (e.g., energy necessary for
transmission of message) and improvement in the number of secure links
must be balanced. We inspect classes of secrecy amplification protocols
known as node-oriented and group-oriented protocols proposed for use
in wireless sensor networks (WSN).

We combine analysis of given protocol participant placement via a simu-
lator and manual post-processing to provide a simpler, practically usable
hybrid protocol with less steps and lower communication overhead, yet
still better in terms of re-secured links than previously proposed proto-
cols.

Keywords: Evolutionary algorithms, key establishment, secrecy amplification
protocols, wireless sensor networks

1 Introduction

Secure link communication is the building block for many security services main-
tained by a wireless sensor network (WSN). Secure link is usually achieved by a
secret key shared between communicating parties, requiring suitable key manage-
ment techniques. Common assumption in WSNs is the inevitability of a partial
compromise in a network when nodes can be captured and keys extracted from
the memory as no tamper resistance is usually assumed.

Our work targets scenarios where a link between nodes can be compromised
yet the nodes themselves are not. A typical example comes with schemes based
on symmetric cryptography, where the attacker learns a fraction of used keys,
resulting in a partially compromised network. Substantial improvements in re-
silience against node capture or key exchange eavesdropping can be achieved



when a group of neighbouring nodes cooperates in an additional secrecy ampli-
fication (SA) protocol after the initial key establishment protocol. This concept
was originally introduced in [1] for the key infection plaintext key exchange,
but can be also used for a partially compromised network resulting from node
capture in probabilistic pre-distribution schemes [7]. A secrecy amplification pro-
tocol can be executed to secure again some of the compromised links, resulting
in a less compromised network. SA protocols were shown to be very effective,
but for the price of a significant communication overhead. Our aim is to provide
SA protocols that can secure a high number of links, but require only a small
number of messages and are easy to execute and synchronize parallel executions
in the real network — properties not found together in previously published SA
protocols.

Also, we like to challenge the ways how performance of key distribution
schemes is currently judged. If SA protocols are efficient enough to be used,
performance of key distribution schemes should be also compared with the option
that an SA protocol will be applied.

The contributions of our work are: 1) Detailed analysis of impact of different
node placement in previously published SA protocols; 2) design of a new class of
SA protocols combining advantages of previously known SA protocols; and 3) a
concrete efficient SA protocol outperforming previously published ones, together
with its analytical and experimental evaluation.

This paper is organized as follows: the next section provides a short intro-
duction to wireless sensor networks and compromise patterns resulting from
different KDSs and attack strategies. Section 3 highlights related security issues
and provides an overview of related work on node and group oriented secrecy
amplification protocols. Section 4 describes the proposed approach of hybrid
protocols taking the best from reviewed technique. Upper bound for secrecy am-
plification and our new manually constructed hybrid protocol are presented in
Section 5. Section 6 provides a comparison with (so far) best node- and group-
oriented protocols based on overall success rate. Conclusions are given in Section
7. The Appendix A provides detailed settings and observations of hybrid protocol
properties in terms of number of amplifications and messages.

2 Partial network compromise

A wide range of key distribution, establishment and management techniques were
proposed (see [4] for an overview). Distinct key distribution schemes behave dif-
ferently when a network is under attack targeted to disturb link key security.
The impact on link key security differs based on the attack strategy used. Al-
though various schemes significantly differ in the way how keys are distributed
and managed, similar compromise patterns can be detected. A compromise pat-
tern provides us with a conditional probability that link Y is compromised when
other link X is compromised after a relevant attack.

The characteristics of a particular compromise pattern may significantly in-
fluence the success rate of the secrecy amplification executed later. We will per-



form analysis of secrecy amplification protocols according to the following two
possible compromise patterns, but our work can be extended to additional pat-
terns as well.

2.1 Random compromise pattern

Random compromise pattern arises when a probabilistic key pre-distribution
scheme [7] and later variants [3, 6, 8] are used and an attacker extracts keys from
several randomly captured nodes.

In case of a node capture, all links to the captured node are compromised.
If some probabilistic pre-distribution scheme like [3,7] is used, then some ad-
ditional links between non-compromised nodes become compromised as well.
Probabilistic key pre-distribution schemes exhibit almost uncorrelated pattern
resulting from node capture and extraction of randomly selected keys.

2.2 Key infection compromise pattern

Compromised networks resulting from key infection distribution [1] form the
second inspected pattern. Here, link keys are exchanged in plaintext (no keys
are pre-distributed) and an attacker can compromise them if the transmission
can be recorded by an attacker’s eavesdropping device. The weakened attacker
model assumes that an attacker is not able to eavesdrop on all transmissions,
yvet has a limited number of restricted eavesdropping nodes in the field. The
closer the link transmission is to the listening node and the longer the distance
between link’s peers, the higher the probability of a compromise. Typically, if
the eavesdropping node is close to a legal node, most of the links to the latter
can be compromised.

An eavesdropping of the exchanged key in the key infection approach [1] does
not compromise nodes directly, but compromises links in the reach of eavesdrop-
per’s radio instead. Key infection distribution forms a significantly correlated
pattern due to locality of eavesdropping — links close to the eavesdropper have
a higher probability of being compromised.

3 Secrecy amplification

Several secrecy amplification protocols were previously published and can be
grouped according to general principles of their construction. In multi-path key
establishment, node A generates ¢ different random values and sends each one
along a different path via node(s) C; to node B, encrypted with existing link
keys. This operation will be denoted as the PUSH protocol. All values combined
together with the already existing key between A and B are used to create the
new key value. An attacker must eavesdrop on all paths to compromise the new
key value. A second method, called multi-hop key amplification, is basically a
1-path version of the multi-path key establishment with more than one interme-
diate node C;.

3.1 Node-oriented protocols

Node-oriented security amplification protocols were firstly introduced in [1] and
later enhanced and expanded in [5]. Node-oriented protocol is executed for all



possible k-tuples of neighbours in the network. Note that the number of such
k-tuples can be high, especially for dense networks (e.g., more than 10 direct
neighbours) and resulting communication overhead is significant?.

A variant of the PUSH protocol, called the PULL protocol, was presented in
[5]. The initial key exchange is identical to the PUSH protocol. However, node
C decides to help improving the secrecy of the key between nodes A and B
instead of node A making such decisions as in the PUSH protocol. This in turn
decreases the area affected by the attacker eavesdropping node and thus increases
the number of non-compromised link keys (valid for key infection distribution).

The impact of a key composition mechanism called mutual whispering on
subsequent amplification was also examined [5]. Mutual whispering is a key
exchange where a pairwise key between A and B is constructed simply as K15 =
K| ® Ky, where K is the key whispered* from A to B and K, from B to A.
Repeated iterations of the PULL protocols lead to a strong majority of secure
links even in networks where up to 20% of nodes are the attackers’ eavesdropping
nodes. Note that the assumption that an attacker controls only a fraction of
nodes (e.g., 10%) is reasonable, as an attacker must place his nodes before the
network is deployed and therefore the density of the deployed legal network can
be set to achieve the desired ratio. A detailed analysis of secrecy amplification
protocols with respect to the network density and number of eavesdropping
nodes was presented in [10].

One of the most advanced node-oriented protocols was defined in [11], using
the method for automatic generation of secrecy amplification protocols, which
utilized linear genetic programming (LGP) [2]. A detailed analysis showed that
the protocol consists of previously defined mutual whispering, PUSH protocol,
PULL protocol and also the multi-hop version of PULL amplification. We are
using those protocols as a base for construction of more advanced hybrid proto-
cols.

3.2 Group-oriented protocols

In group-oriented protocols, an identification of the parties in the protocol is
no longer “absolute” (e.g., node number 1, 2, 3), but it is given by the relative
distance from other parties (we are using the distance from two distinct nodes).
It is assumed that each node knows the approximate distance to its direct neigh-
bours. This distance can be approximated from the minimal transmission power
needed to communicate with a given neighbour. If the protocol has to express the
fact that two nodes N; and NN; are exchanging a message over the intermediate
node Vi, only relative distances of such node IV, from N; and IV; are indicated
in the protocol (e.g., Noy.30_0.70 is @ node positioned 0.3 of the maximum trans-
mission range from N; and 0.7 from N;). Based on the actual distribution of the

3 E.g., (avg-neigh) * (avg_neigh - 1) * msg_per_protocol_execution for a three-party
protocol, where avg_neigh is the average number of neighbours.

4 Transmission is performed with the minimal radio strength necessary to communi-
cate between two nodes, therefore nodes more distant from the sending node are not
able to hear the transmission.



neighbours, the node closest to the indicated distance(s) is chosen as the node
Ny, for a particular protocol run. There is no need to re-execute the protocol
for all k-tuples (as was the case for node-oriented protocols) as all neighbours
can be involved in a single execution, reducing the communication overhead
significantly. See [11] for a detailed description of group-oriented protocols.

Note that inferring the relative distance from the received signal strength
indication (RSSI) is usually a burden with errors resulting from the generally
unreliable propagation of wireless signal and also as the relation between distance
and RSSI is not linear. Relative distances used in group-oriented protocols are
robust against moderate inaccuracies as a precise node position is not required
for a protocol to succeed.

4 Hybrid protocols

In this paper, we propose a new kind of protocols that combine advantages of
both node- and group-oriented protocols. A protocol consists of several primi-
tive instructions as described later in Section 5.1. Its construction is based on
knowledge gained from analysis of node-oriented and group-oriented protocols.

Both mentioned types of secrecy amplification protocols covered in Section 3
have their advantages and disadvantages. As described previously, node-oriented
protocols exhibit polynomial increase of messages with respect to the number
of neighbours in the network. An additional issue is unknown number of di-
rect neighbours and their placement. A protocol prepared for a fixed number of
parties could fail due to lack of participants.

The group-oriented protocols do not share those issues and they show only a
linear increase in messages sent with respect to the number of neighbours. The
main difficulty is their complexity and complicated analysis of their behaviour.
They consist of multiple times more instructions when compared with node-
oriented protocols (e.g., the best performing group-oriented protocol presented in
[9] has 41 instructions and might include cooperation of up to 34 nodes. Compare
this to the PUSH protocol with 3 instructions and only 3 nodes involved.). Those
are issues limiting practical implementation and further adoption.

Hybrid protocols proposed in this work show only a linear increase in mes-
sages sent with respect to the number of neighbours and do not require storing
multiple values transmitted during the protocol execution, easing synchroniza-
tion during parallel runs occurring in a real network. They are using relative
distance from special nodes No and Np in the same way as group-oriented
protocols. They contain a lower number of instructions and their construction,
analysis and implementation are simpler than for group-oriented protocols.

Steps of a hybrid protocol are as follows:
1. Every node in the network is separately and independently processed once,

in the role of a central node N¢ for each amplification iteration. Only direct
neighbours of N might be involved in the protocol execution.



2. A separate protocol execution is performed once for each direct neighbour
(node in the radio transmission range), this neighbour will have a special
role in this execution and will be denoted as Np (e.g., if there are 10 direct
neighbours around N¢, then there will be only 10 protocol executions with
the same central node N¢, each one with a different Np).

3. The node Np provides a list of distances from all its neighbours (as the
minimal transmission power needed to communicate with a given neighbour)
to node N¢. Based on the actual deployment of nodes, parties of the protocol
are replaced by real identification of the nodes that are positioned as close as
possible to the relative identification given by N and Np in the protocol.

4. The key is updated after every protocol execution and only between nodes
N¢ and Np. Also the memory slots of all participants are cleared.

PUSH protocol
—_—

RNG Nc Ry
SND Nc¢ Noo.070 R Ry
SND Nozo.070 Np R1 Ry

PULL protocol

RNG Nozo.020 Rz
SND Nozo.020 Nc Rz Rz
SND Nozo.020 Ne Rz Rz

I
Multi-hop PULL protocol
>
RNG Nosgo os0 Rs
SND Nosooso Np Rz Rz
SND Noso_oso Nozo.o70 Rs Rz
SND Nozoo70 Nc R Rs

Fig. 1. An example of instructions of a basic hybrid secrecy amplification protocol. The
PUSH, PULL and multi-hop version of PULL protocol are included. Selected node-
relative identification (distance from N¢ and Np) of involved parties are displayed
as the geographically most probable areas, where such nodes will be positioned. A
probabilistic layout is shown for the case where the distance between nodes N¢ and
Np is 0.5 of the maximal transmission range.

We construct protocols with application of knowledge from node-oriented
protocols and statistical data about the most suitable placement of participating
intermediate nodes. A hybrid protocol is executed for every pair of neighbouring
nodes instead of every k-tuple as in node-oriented protocols. Other participating
intermediate nodes are used for transmission of n different values for shared key
update in the same fashion as previously described basic node-oriented protocols
(mutual whispering, PUSH, PULL, multi-hop versions of PUSH and PULL).
A visualisation of an example protocol can be seen in Figure 1. Participating
intermediate nodes are not required to store any forwarded values and can erase



them as soon as a message with the amplification value is forwarded to the next
node towards destination. This allows for a simple synchronization even within
large and dense WSNs. We incrementally improve the results of the protocol
utilizing the greedy search approach for intermediate node(s) placement. All
evaluations are performed on our reference network consisting of 100 legal nodes
(7.5 legal neighbours on average) with originally 50% links compromised.

5 Optimal node placement

As was demonstrated in previous work, secrecy amplification protocols are able
to provide a significant increase in secure links, e.g., from 50% of originally
secured links to more than 90%. To achieve such an improvement, there is a
considerable overhead in communication and on-node processing. In the subse-
quent section, we use a combination of different analysis techniques backed by
large data sets about merits of different positions of intermediate nodes in hybrid
protocols obtained from the simulator for selected compromise patterns.

5.1 Network simulator

New hybrid protocols proposed throughout this work are evaluated using the
same simulator that was developed specifically for security analysis of key dis-
tribution protocols and message routing by the authors of [11]. Commonly used
simulators like ns2 or OMNeT++ work with an unnecessary level of details for
our purposes (e.g., radio signal propagation or MAC layer collisions), signifi-
cantly slowing evaluation of given network scenarios. The simulator is able to
simulate a secrecy amplification protocol on fifty networks with 100 nodes each
in about 3 seconds when executed on one core CPU @ 1.7 GHz.
The simulator is capable of performing:

— Random or patterned deployment of a network with up to 10° nodes together
with neighbour establishment, secure links establishment and simple routing
of messages.

— Evaluation of the number of secure links of probabilistic key pre-distribution
protocols as described in [4]. Deployment of attacker’s nodes and their eaves-
dropping impact on the network and evaluation of the number of secure links
of published protocols for secrecy amplification of key infection approach (see
[1] for details).

Protocols evaluated in the simulator are described in a metalanguage of pro-
posed primitive instructions. Each party (a real node in network) in the protocol
is modelled as a computing unit with a limited number of memory slots, where all
local information is stored. Each memory slot can contain either a random value,
encryption key or message. Protocol instructions were selected with the aim of
describing all published secrecy amplification protocols and use only (crypto-
graphic) operations available on real nodes.

The instruction set is as follows:



— NOP — No operation is performed.

— RNG N, R; — Generate a random value on node N, into slot R;.

— CMB N, R; R; Ry, — Combine values from slots R; and R; on node IV, and
store the result to Ry. The combination function may vary on the application
needs (e.g., a cryptographic hash function such as SHA-3).

— SND N, Ny R; Rj — Send a value from R; on node N, to slot I2; on Ny.

— ENC N, R; R; Ry — Encrypt a value from R; on node N, using the key
from R; and store the result to Ry.

— DEC N4 R; Rj Ry — Decrypt a value from R; on node N, using the key
from R; and store the result to Ry,.

5.2 Upper bound for amplification success

At first, an upper bound for amplification success (maximum number of secure
links achievable by any sort of secrecy amplification protocol) can be established.
A given link between nodes A and B is securable if there exists at least one secure
path (no links on such a path are compromised) between nodes A and B via
other nodes Cj.
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Fig. 2. Maximal possible increase in the number of secured links with dependency on
the number of intermediate nodes. Results are displayed for both random compromise
(RC) pattern and key infection (KI) compromise pattern. As can be seen, strong major-
ity of secure links (> 90%) can be obtained even when the initial network compromise
is 50% (for RC pattern) or 70% (for KI pattern).

The upper bound of secured links can be achieved by a secrecy amplification
protocol by sending fresh new keys via all possible paths between any two nodes.
If there is a secure link, it will be used. However, there are two main practical
limitations to such approach. First is the extraordinary high number of such
paths even in a small network, resulting in unacceptable transmission overhead.
Second is a high fragility to packet loss — as a network is usually not aware when



particular links are compromised, fresh keys must be sent and combined together
(e.g., via hash function) from all such paths — if even a single fresh key is lost,
A and B will not be able to establish the same secure key value.

We used modified Floyd-Warshall algorithm to establish an upper bound for
given network. The Floyd-Warshall algorithm is a graph analysis algorithm for
finding the shortest paths in a weighted, directed graph. A single execution of the
algorithm will find the shortest path between all pairs of vertices. As the precise
compromise pattern for a given network is not known in advance (depends on
an attacker, secrecy amplification protocol, exact placement of nodes, etc.), we
perform multiple evaluations for different networks to obtain an average result.
Details of used algorithm are available in Section A.

In the rest of this paper, we will focus more on the random compromise
pattern as there are more key distribution schemes resulting in this pattern
after an attack and also a bigger potential for improvement in fraction of secure
links.

5.3 Intermediate nodes placement

We have used fifty random deployments of our reference network for the eval-
uation of the best placement of an intermediate node. We need to be able to
address a sufficient number of distinct neighbours from two specific nodes N¢
and Np. We chose granularity of 0.01 and 0.03, respectively, as they allow us
to address 10 000 (0.01 granularity used for both N¢ and Np) and 1 156 (0.03
granularity) different neighbours, respectively. Both numbers give us a satisfac-
tory number of distinct positions in two-dimension plane as we do not expect
the network density more than 100 neighbouring nodes. The granularity 0.01 is
used for placement of one intermediate node w.r.t. PUSH and PULL protocols.
The granularity 0.03 is used for multi-hop versions of PUSH and PULL proto-
cols as the placement of two intermediate nodes has to be found and it presents
(already high) computational demand increased by two orders.

In our protocol design, the basic protocols taken over from the node-oriented
approach are used. Those are mutual whispering, simple PUSH and PULL proto-
cols, and their multi-hop versions. Focusing on the random compromise pattern,
mutual whispering does not provide us with any improvements and there is no
difference between the PUSH and PULL protocol (see [5] for reasoning). The
same holds also for multi-hop versions of these.

We incrementally select five intermediate nodes for PUSH and PULL pro-
tocols with the greedy search approach. Choosing the sixth node would give us
only a negligible improvement with respect to the portion of secure links. We
have evaluated every possible placement and the resulting number of secure links
after the protocol execution. We were able to get the 83% of secure links with a
single amplification. Final results are shown in Figure 6 in Appendix.

A different approach for analysis of multi-hop versions of PUSH and PULL
protocol is necessary as it is not feasible to evaluate all possible particular results
due to exponential state explosion with every additional intermediate node. We
inspect three cases closely: 1) Specific placement of two nodes where the portion



of secure links is biggest. 2) The average number of secure links calculated across
all results for the first intermediate node placement is biggest. 3) The average
number of secure links calculated across all results for the second intermediate
node placement is biggest. In all cases, the best results were observed for place-
ment of both intermediate nodes into the same position, effectively reducing
the number of intermediate nodes. We interpret this in a way that a standard
PUSH/PULL protocol gives us better or the same results as a multi-hop version
of the PUSH/PULL protocol. The reason is that in the random compromise
pattern, less intermediate hops mean a lower probability that compromised link
will be used. Less intermediate hops also mean a lower number of all possible
paths, but hybrid protocol is constructed so that not all paths are taken anyway.

A secrecy amplification protocol might be iterated multiple times for the
same pair of nodes. As new links are secured in the first iteration, following it-
erations have a better starting position than the first one, potentially securing
additional links. The final protocol works comparably with the node-oriented ver-
sion of PUSH/PULL protocols on the random compromise pattern and consists
of 5 independent sub-protocols (each corresponds to one PUSH/PULL proto-
col), resulting in 15 instructions. With initial 50% compromised links and two
amplifications, we managed to get the network with 92.5% links secured, with
three amplifications 94% secured links. When network has 40% initially com-
promised links, 91.9% links are secured after one amplification and 97.6% after
three amplifications.

The search for intermediate node placement was conducted with simulations
executing with only one amplification of particular basic protocols. As we expect
more than one amplification of our final protocol (e.g., three) will be used (see
results above), we also inspected difference when three amplifications are used
for the search. Resulting graphs share the overall shape with those presented
in Figure 6. The difference of the lowest and the highest success rate of the
protocol is generally lower using three amplifications of the protocol than in the
case of using only one, but overall difference is not significant enough to change
instructions in the proposed protocols.

5.4 Constructing new protocol

The resulting protocol is shown in Figure 3. There are still several ways for its
optimization. We focus on minimization of the communication overhead. The
tool we use is protocol pruning. Protocol pruning is a process of progressively
removing every primitive instruction from the protocol and evaluating the change
in the success ratio after a modified protocol execution. It gives us the loss of
secured links when the instruction is removed from the protocol.

We were able to iteratively remove sub-protocols 4 and 5 with the success
ratio loss of only 0.0012 when employing three amplifications. This means that
the fraction of secured links is reduced only by 0.12 percent, which is negligible.
Removing the first block means reduction by 0.9 percent, which is also a relevant
trade-off given the fact that two messages are spared in every execution. We
tested the final protocol on five hundred of deployments with an average success



ratio 93.21% (secured links). Removing block two or three causes the success
ratio loss of 17.0% or 14.5%, respectively.

l [instructions ‘
RNG No.32_0.85 R1

SND No.32.0.85 Nc R1 R:
SND No.32_0.85 Np R1 R1

#
0
1
2
3 |RNG No.69_0.908 R2
4
5
6
7
8

SND No.so_0.0s N Re Re [#[instructions |
SND No.9_0.908 Np Rz Ro RNG N¢ R,
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12|RNG Ny s9 0.01 Rs Fig. 4. Final hybrid protocol (H PrinaL).-
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14|SND No.go_0.01 Np Rs Rs
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Fig. 3. Best performing hybrid protocol
(HPBEsT).

It is not efficient to remove more instructions as the success ratio loss becomes
excessive. However, we can achieve a higher success ratio gain by increasing
the number of repetitions of an amplification protocol. As we are taking the
number of messages sent as the primary measure of how demanding a protocol
is, we compare the efficiency of our final protocol (4 messages transmitted per
protocol execution and 3 amplifications) with only one sub-protocol (2 messages
transmitted per protocol execution and 6 amplifications). The best performing
sub-protocol was the first one from Figure 3. It was able to secure nearly 90%
links in the network, but this is worse than our original protocol. It is not possible
to substitute any of the remaining instructions by amplifications preserving the
performance of the protocol. Even if more amplifications would be able to do so,
the communication overhead would exceed our final protocol.

To simplify synchronization of parallel protocol executions, we put full control
over the protocol execution to the central node. As there is no difference between
the PUSH and PULL protocol for the random compromise pattern, originally
used PULL sub-protocols could be replaced by the PUSH ones. Both nonce
generations are performed by the central node No and consequently transmitted
to the intermediate node Nk . Nk only forwards the nonce to Np and can forget
it immediately. This will help with management of parallel protocol execution.
The final protocol is shown in Figure 4.

We tested the performance on fifty larger networks with 1 000 nodes and
initially with 50% links marked as compromised. The average number of neigh-



bours was 7.5. The performance of the protocol was very similar as computed
on smaller networks, with deviations of success ratio only around 0.5%.

6 Success rate
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Fig. 5. An increase in the number of secured links after secrecy amplification protocols
in the random compromise pattern. The best performing node-oriented protocol [11]
is denoted as NOpgsr. The best performing group-oriented protocol [9] is denoted as
GOpgEgsT. The pruned version of best hybrid protocol H Pggsrt consists of 6 instructions
(4 are SEND) is denoted as HPrinar. HPpinar is executed with 3 amplifications as
it requires a comparable communication overhead. As can be seen, a strong majority
of secure links (> 90%) can be obtained even when the initial network had one half of
compromised links.

The impact of the best known node- and group-oriented protocols together
with our final hybrid protocol (as described in Section 4) for the random com-
promise pattern is compared in Figure 5. The NOpgggr performs slightly better
than our hybrid protocol for the fraction of 20% initially secured links. For 40%
and more, the H Prynar, provides the best results among the tested protocols.
The overall success rate is also very close to the theoretical reachable maximum
computed by the modified Floyd-Warshall algorithm in Section 5.2.

The more detailed comparison covering number of required messages, the
impact of repeated secrecy amplifications and details of practical implementa-
tion for the TelosB hardware platform with the TinyOS 2.1.2 operating system
and tested on our laboratory test-bed with 30 nodes positioned atop of nine
interconnected offices can be found in Annex A.

7 Conclusions

Our work presented in this paper demonstrates that hybrid amplification proto-
cols can provide better trade-off between security and efficiency than currently



known approaches for secrecy amplification. Hybrid protocols show only a linear
increase in messages sent with respect to the number of neighbours and do not
require storing multiple values transmitted during the protocol execution. Pro-
posed hybrid protocols also contain fewer instructions and their construction,
analysis and implementation are simpler than for group-oriented protocols. The
synchronization of the protocol steps and parallel execution on multiple nodes is
easier than for previous approaches, making this approach practically usable on
current platforms like TelosB as demonstrated by our prototype implementation.
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A Protocol evaluation

A.1 Upper bound for amplification success - details

Let us define the graph G(V, E), where V represents the nodes in our WSN
deployment and E represents neighbour relationships. After basic whispering
(for the key infection compromise pattern) or after random key pre-distribution
(for the random compromise pattern), we assign weight one to the edge between
nodes IV; and N; if and only if there exists a secure link key established between
those nodes. If the link key is compromised, we assign weight equal to infinity.

After the Floyd-Warshall algorithm execution, we obtain the shortest path
between all nodes and we can interpret the results as follows:

— If the nodes N; and NN; are neighbours and there exists a shortest path
between them, the link can be secured. The length of this path reduced by
one is also the minimum number of intermediate nodes needed to secure the
link.

— If the nodes IN; and N; are neighbours and there is no shortest path calcu-
lated, the link cannot be secured.

We carried out several experimental calculations. Every calculation was con-
ducted on fifty random deployments of our reference network. As can be seen
in Figure 2, there is a significant difference between two inspected compromise
patterns. In the random compromise pattern, we are able to secure significantly
more link keys than in the key infection compromise pattern. We can explain
this situation by the fact that in the key infection compromise pattern, the com-
promised links are concentrated in particular areas around eavesdropping nodes
and it is more probable that such links cannot be secured. It can be also seen
that the most benefit can be gained using two intermediate nodes. With more
nodes, the increase in secure links fraction is very small.

A.2 Number of amplifications

Different classes of secrecy amplification protocols use different capabilities to
improve security throughout the network. A node-oriented protocol sends key
updates via every possible neighbour or neighbours by a simple protocol. Group-
oriented protocols share key updates inside the bigger group of cooperating nodes
identified by relative distances. Hybrid protocols use sub-protocols (similarly to
node-oriented), relative distances (similarly to group-oriented) and additionally
utilize several repetitions of the whole process. Figure 7 shows the performance
of particular protocols in our reference network with respect to the number of
amplifications.

The most important observation is that with an increasing number of ampli-
fications, the difference in success among distinct types of protocols is smaller,
being negligible when four or more amplifications are used. That fact implies
that protocol repetitions can substitute other methods used in node- and group-
oriented protocols. We expect that three amplifications of a protocol will be a
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Fig. 6. Iterative search of intermediate nodes for PUSH/PULL protocols. Horizontal
axis depicts distance from the node Np, depth axis depicts distance from the node
Nc, vertical axis represent the portion of secure links (quality of protocol with given
position of nodes, scaled between 0 and 1). Based on our results, the first intermediate
node is selected as No.32_0.s5 with the resulting success ratio 0.71 (a), second node as
No.69_0.98 with the success ratio 0.77 (b), third node as No.o1_0.39 with the success ratio

0.815 (c), fourth node as No.s6_0.70 With the success ratio 0.82 (d) and fifth node as
No.g9_0.01 with the final success ratio of 0.83 (e).

proper compromise between a overall success of the hybrid protocol and the
communication overhead it requires.

A.3 Number of messages

The best performing node-oriented protocol was presented in [11]. The protocol
consists of 10 instructions (6 are SEND) and requires participation of 4 different
nodes. We will refer to it as NOggsr. The best performing group-oriented proto-
col was presented in [9]. It has 41 instructions (24 are SEND) and might include
cooperation of up to 34 nodes (but does not require such a number of distinct
nodes). We will refer to is as GOgggr. Our final hybrid protocol consists of 15
instructions (10 are SEND) before pruning and it might include cooperation of
up to 7 nodes. We will refer to this protocol as HPgggt. The pruned version
of our protocol consists of 6 instructions (4 are SEND) and it might include
cooperation of up to 4 nodes. We will refer to this protocol as H Pryn L.
Figure 8 shows the number of messages sent by every node in protocol execu-
tion in our reference network with 7.5 legitimate neighbours on average. It can
be seen that our final protocol has less messages sent with 5 amplifications than
node- or group-oriented protocols with a single execution. As the communication
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overhead is our primary metric for comparison of protocols, the proposed hybrid
protocol gives more than 94% secure links (on average) from original 50% in our
reference networks. This is a better result than node- or group-oriented protocol
can provide with the same communication overhead.

The number of messages also depends on the number of participating par-
ties and the average number of neighbours. Node-oriented protocols exhibit a
polynomial increase of messages with respect to the number of neighbours in the
network and an exponential increase of messages with respect to the number of
communicating parties in the protocol execution. Group-oriented protocols ex-
hibit only a linear increase of messages and the same dynamics holds for hybrid
protocols. The growth in the number of messages depends on the count of SEND
instructions within a protocol. This favours hybrid protocols even with a higher
number of amplifications.

A.4 Test-bed results

To prove the practicality of the proposed protocol, we ran a prototype imple-
mentation for the TelosB hardware platform with the TinyOS 2.1.2 operating
system and tested it in our laboratory network with 30 nodes positioned atop of
nine interconnected offices.

Every node acts in three different roles according to a currently received
message: master (being node N¢ from the hybrid protocol), slave (being node
Np) and forwarder (being intermediate node). The implementation contains
six phases executed mostly in parallel on all nodes in a network with a partial
synchronization required only during the radio distance discovery:

1. A discovery of radio distance to neighbours — every node N; periodically
broadcasts AM_MEASURE message that is received together with the corre-
sponding RSSI by its neighbours during the defined time-frame. Once broad-
casting is finished, neighbours of N; can compute the average RSSI value
from the received packets, forming radio distance to N;. Radio distance can
be also computed from the RSSI of regular packets sent during ordinary net-
work traffic, saving necessity to transmit special AM_MEASURE messages.
This phase can be executed in parallel for all nodes with utilization of ran-
dom back-offs between AM_MEASURE messages on different nodes to limit
packet collisions.

2. A broadcast of measured distances to node’s neighbours — once radio dis-
tances to other nodes are established, neighbours are notified about values
measured by node N; by the message AM_DISTANCES containing pairs of
node’s identification and its measured RSSI together with identification of
measuring node. If node N; receives the AM_DISTANCES message from a
node that is its neighbour, measured values are stored locally. When node
N; receive measurements from all neighbours, next phase can be executed.
Synchronization of remaining phases with other nodes is not required.

3. A computation of mapping to real nodes — mapping between nodes denoted
in the hybrid protocol description and real nodes according to radio dis-



tances is performed locally. E.g., instead of node with Ny g9_g.9s identifica-
tion, a particular node N; is selected. Note that mapping from the RSSI
values distributed according to the logarithmic log-normal shadowing model
of wireless signal propagation to the linear distance from a sending node is
required. A different mapping model can be used where appropriate.

4. An execution of the hybrid protocol — node N¢ executes the protocol as
master to a selected neighbouring slave node Np via intermediate forwarder
nodes. Node N¢ prepares its message with the sub-key as well as the routing
path towards node Np and sends it by the message AM_SECAMPLIF. In-
termediate nodes act as simple forwarders with link transmission protected
by already existing link keys. This phase can be executed in parallel for all
nodes.

5. A verification phase — node N¢ asks node Np whether all sub-keys trans-
mitted during the hybrid protocol execution or some were lost (e.g., due
to packet loss) using message AM_VERIFY. If any sub-key is missing, a
relevant sub-protocol for this sub-key is executed again.

6. A combination phase — all sub-keys, together with the existing link key
between nodes N¢ and Np, are combined together using cryptographic hash
function, forming the new shared link key. Optionally, a key confirmation can
be executed before the old key is replaced by the new key value.

The hybrid protocol implementation has a small memory footprint — addi-
tional (N %41) bytes of RAM are required (where N is the number of neighbours)
and less then 3KB of additional code in EEPROM. Less then (N %4 %23 + N x
2 % 5 + 28) bytes of payload divided into about (N * 6) messages are transmit-
ted on average during hybrid protocol execution by every single node (including
verification messages, but excluding messages send during radio distance discov-
ery phase and retransmission of lost messages). When 10 neighbours on average
are assumed, around 1 KB of payload is transmitted by every node during se-
crecy amplification by the proposed hybrid protocol. Master node stores the
current state of the hybrid protocol executed with the selected slave node, the
slave node stores only received sub-keys and forwarder node stores no additional
value. Due to the parallelization possibility, execution of hybrid protocols from
the same master to different slave nodes can be interleaved without having long
message buffers on a single node.

Times required to finish different phases are highly dependent on the net-
work density and the signal propagation characteristics of the surrounding en-
vironment resulting in a different packet loss ratio. The prototype implemen-
tation performed was intended to verify memory, computational, transmission
and synchronization requirements, not to provide detailed performance results
for different environments and settings. Still, reasonable estimates about time
required to finish separate phases can be inferred from experiments performed
with our laboratory test-bed.

The radio discovery (phase one) took most of the time to complete as multiple
AM_MFEASURE messages had to be sent from every node in the network to
obtain a reliable averaged RSSI value. Required time is roughly minutes or tens



of minutes to finish, depending on the required precision and network density
(influencing the length of necessary random back-off to limit packet collisions).
A broadcast of measured RSSI (phase two) is fast and requires only one or
two messages, unless a high number of neighbours is present (more than 20).
A mapping computation (phase three) is a fast local computation taking less
than 1 second for a node with 10 neighbours and the optimized hybrid protocol
with two sub-protocols described in Section 3. An execution of the optimized
hybrid protocol (step four) takes 1-2 seconds, extending to tens of seconds when
the packet loss is high and the verification phase (phase five) has to be executed
repeatedly. Combination of received values by a hash function (phase six) is local
and negligible.



