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Abstract

Intrusion detection is an essential mechanism to protect wire-
less sensor networks against internal attacks that are relatively
easy and not expensive to mount in these networks. Re-
cently, we proposed, implemented and tested a framework
that helps a network operator to find a trade-off between
detection accuracy and usage of resources that are usually
highly constrained in wireless sensor networks. We used a
single-objective optimization evolutionary algorithm for this
purpose. This approach, however, has its limitations. In or-
der to eliminate them, we show benefits of multi-objective
evolutionary algorithms for intrusion detection parametriza-
tion and examine two multi-objective evolutionary algorithms
(NSGA-II and SPEA2). Our examination focuses on the im-
pact of an evolutionary algorithm (and its parameters) on the
optimality of found solutions, the speed of convergence and
the number of evaluations.

Introduction

Recent advances in wireless communications and low-cost
electronic devices enabled the development of low-cost and
high-performance wireless networking technologies. Apart
from widely used cellular networks known from mobile
phones and infrastructure local area networks, there are also
ad hoc networks operating without any given and fixed in-
frastructure, where the connections are established on de-
mand in ad hoc manner (Dressler, 2007).

Wireless sensor networks (WSNs) can be considered as a
type of ad hoc wireless networks with many specifics. The
main difference against the “ordinary” ad hoc wireless net-
works is that the WSNs consist of a large number of usu-
ally homogeneous, low-cost and resource restricted sensor
nodes. Their goal is to measure physical parameters like
temperature, humidity, intensity of light, and send it to a
base station (BS) for further processing. Since a node com-
munication range is limited to tens of meters and it is not
always feasible for the node to directly communicate with
the BS, measurements are usually sent hop-by-hop from one
node to another until they reach the BS.

Since WSNs are often deployed in physically open and
sometimes even hostile environments, they can be subject to
various security attacks ranging from passive eavesdropping
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to active interfering (Zhang and Lee, 2000). An active at-
tacker may insert a node in a network, or capture and repro-
gram an existing one in order to, e.g., drop, delay, modify or
reorder packets containing important sensor measurements
or routing information (Karlof and Wagner, 2003).

An intrusion detection system (IDS) is an essential mech-
anism to protect a network against internal attacks. Sen-
sor nodes can monitor only a small part of their surround-
ing. Hence, to enable intrusion detection even in the re-
mote parts of the network, intrusion detection agents should
be deployed at different nodes in all parts of the network
to monitor malicious events locally, in a distributed fashion
(da Silva et al., 2005; Roman et al., 2006).

An IDS for a WSN should be highly optimized for a given
application scenario, i.e., it should not consume more en-
ergy (memory) than it is necessary to achieve a required
level of detection accuracy. Otherwise, a higher detec-
tion accuracy will be at the expense of resources that are
highly constrained in sensor nodes. For example, MICAz
— a typical sensor node — is equipped with the 8 MHz At-
mel Atmegal28L microcontroller, 4 kB RAM, 512 KB flash
memory, 802.15.4 compliant Texas Instruments CC2420
transceiver and two AA batteries (Crossbow, 2013).

One can expect different requirements in network secu-
rity and resource consumption for different applications,
e.g., one for emergency-response and another for agricul-
ture. Since there is a variety of application scenarios, a sin-
gle set of IDS parameters is not optimal for all of them.
In (Stetsko, 2012), a framework that optimizes the param-
eters of an IDS for a given application scenario in terms of
the detection accuracy and resource consumption was pre-
sented. The optimization was driven by multiple objectives
that were represented by different evaluation metrics (e.g.,
number of true positives, number of true negatives, memory
usage). A single-objective optimization algorithm was used
with the need to provide weights for each objective before
the optimization process takes place. If the network opera-
tor wants to change weights, the optimization process should
run again.

In this work, we examine two multi-objective evolution-
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ary algorithms (MOEAs) that eliminate the limitation men-
tioned above. Our contribution is threefold. First, we show
that MOEAs can be utilized for optimization of an IDS in
WSNs. Second, we compare effectiveness of NSGA-II and
SPEA?2 for our scenario that is described in the following
sections. Third, we evaluate the impact of MOEA parame-
ters on the optimization process.

Optimization Framework for WSN

In this section, we present our optimization framework that
can be used for optimization of various detection techniques
in WSNss. It consists of a simulator that simulates a specific
configurable scenario of a WSN and provides statistics of
the simulation. The statistics are input for an optimization
engine that, based on them, designs new WSN configura-
tions and provides them back to the simulator for further
evaluation. The conceptual architecture of the framework
is discussed in details in (Stetsko, 2012). In the following
subsections, we present our use case that is consistent for all
experiments discussed farther in this paper.

Simulator

We evaluate the performance of the IDS using the MiXiM
simulator (Kopke et al., 2008) based on the OMNeT++ plat-
form. In the past, we made a thorough comparison of avail-
able simulators for WSNs in (Stetsko et al., 2011). The
MiXiM simulator provides complex and realistic models
suitable for our research. The simulation models are follow-
ing: wireless channel and network topology models regard-
ing the global aspects of the WSN and models of network,
data link and physical layers and energy consumption mod-
els of the sensor nodes.

In our case, we simulate a WSN consisting of sensor
nodes equipped with the CC2420 transceiver (widely used
by MICAz and TelosB platforms) in an open environment.
The description of settings of different simulation models
follows:

o Wireless channel model — An open changing environment
is simulated using the log-normal shadowing model (Rap-
paport, 2001) that is the most widely used wireless chan-
nel model among the simulators (Stetsko et al., 2011).
The pass loss exponent representing the signal propaga-
tion was set up to 2 (outdoor environment). The varia-
tions in received signal are reflected by a Gaussian ran-
dom variable with zero mean and standard deviation set
up to 2. The time interval of the changes was set up to
0.001 s.

e Network topology model — Static topology with random
uniform distribution of the sensor nodes in 2D square area
is used in the experiments.

e Network layer — The network layer uses static routing tree
generated using the following algorithm. A base station
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broadcasts a packet containing its identification together
with the value h (number of hops to the base station) set to
0. A node waits until it receives a packet from a neighbour
that is the closest one (has the highest signal strength).
Then the node sets the neighbour as its parent, increases
value h by 1 and broadcasts the value together with its
identification.

e Data link layer — Protocol CSMA-CA according to the
IEEE 802.15.4 standard is used.

e Physical layer — The radio model represents the CC2420
transceiver that is compliant to the IEEE 802.15.4
standard and is used by MICAz and TelosB sensor
nodes. The transmitting power is set up to -25 dBm
(0.00316227766017 mW) for all sensor nodes.

e Energy consumption — The energy consumption is not
taken into account in this paper because we do not use
any sleep mode of the nodes’ transceivers that saves the
energy in presented detection technique.

Optimization Engine

Various metaheuristics can be used to generate new candi-
date IDS configurations based on the previous ones evalu-
ated by the simulator. We use evolutionary algorithms (EAs)
as we found them advantageous in our previous work (Stet-
sko, 2012). The new generation of candidate configurations
is evaluated by the simulator and the process continues until
some stopping criterion is fulfilled (in our case predefined
number of generations). In this paper, we show how the
multi-objective approach can be utilized for IDS optimiza-
tion in WSN. The MOEAs are discussed in section “Opti-
mization Using MOEA”. For experiments in this paper, we
use a framework for metaheuristics ParadisEO (INRIA Lille,
2013; Liefooghe et al., 2011).

Distributed Computation

Apart from optimization using MOEAs, we decided to per-
form also exhaustive search for all our experiments. Since
it is computationally demanding, we use the BOINC dis-
tributed computing platform (Anderson, 2001). We ex-
pect the network operators to optimize even more complex
scenarios, where the exhaustive search would be unfeasi-
ble. However, to allow for a thorough comparison of the
MOEAs, as one of the goals of this paper, we precomputed
all configurations using BOINC on several tens of CPUs.

Intrusion Detection System

In our optimization scenario, we use a detection technique
the goal of which is to reveal malicious sensor nodes that
execute selective forwarding attack where the attacker for-
wards only a fraction of received packets (Karlof and Wag-
ner, 2003). In this kind of attack, it is assumed that the traffic
is routed also through these malicious nodes. These nodes



are supposed to forward the packets received from their chil-
dren to their parents towards the BS. The intent of the ma-
licious nodes is to filter the traffic and forward only some
packets which are selected randomly or based on some crite-
ria (e.g., based on the data content of the packets to suppress
information on some specific event in the environment).

Detection Technique

We use a simple but configurable technique for detection of
selective forwarding attack. Following notations are used in
the text to explain the functionality of our IDS:

Notation 1 The set A = {ay,...,an,, } is a set of all mali-
cious nodes in a network.

Notation 2 The set C = {cy, ..., cp, } is a set of all benign
nodes in a network.

Notation 3 The function x : N — N takes a sensor node in-
dex as an argument, and returns a number of the neighbours
that consider this node benign.

Notation 4 The function y : N — N takes a sensor node in-
dex as an argument, and returns a number of the neighbours
that consider this node malicious.

Notation 5 The function n : N — N takes a sensor node in-
dex as an argument, and returns a number of the neighbours
of this node.

Notation 6 The function m : N — N takes a sensor node
index as an argument, and returns the amount of memory (in
bytes) used by an IDS on this node.

An IDS is running on a sensor node and continuously
analyzing sent and overheard packets. A monitoring node
¢; € C overhears to some extent both incoming and out-
going packets of all close enough monitored neighbours
b; € C U A. Note that the set of monitored neighbours
is a subset of all neighbours limited to p; (max monitored
nodes). Neighbour of the node ¢; is every node by, € C'U A,
such that ¢; overheard at least one packet from b, during the
simulation. An IDS stores a table, where each of p; rows
corresponds to a certain monitored node. The table contains
the number of packets received (PR) and forwarded (PF) by
a monitored node.

If the IDS on a node c; overhears a packet P sent to a
monitored node b; and b; should forward the packet (e.g., b;
is not a base station), then the IDS stores P in the buffer and
increments the PR counter of the monitored node b;. The
number of buffered packets is limited by po (buffer size). If
a new packet arrives but the buffer is full, the oldest packet
is removed from the buffer. When the IDS overhears the
packet P being forwarded by the node b,, it removes P from
the buffer (if it is still there) and increments the PF counter
of the node b;. Since both the table and the buffer are limited
by parameters p; and ps, respectively, the IDS monitors only
the closest nodes and the latest packets.
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The detection is done at the end of the simulation, based
on the collected statistics. The node ¢; considers the node
b; as a selective forwarder if the dropping ratio of b;, i.e.,
ratio of a number of packets dropped to a number of pack-
ets received, is higher than p4 (detection threshold). If the
node ¢; overheard less than ps (min received packets) pack-
ets received by the node b; during the simulation, the node
b; cannot be considered malicious by the node c; because
the number of overheard packets is small and there is a high
level of uncertainty. In this case, the node b; is considered
benign. Note that the node ¢; considers the neighbour node
by, benign if it is not a monitored neighbour. To summarize
it, the detection decision is based on the following condi-
tions:

e A node b; is considered malicious by the neighbour node
c; if node b; is the monitored neighbour and the observed
dropping ratio is higher or equal to the detection threshold
and the node c¢; overheard at least min received packets
addressed to the node b;.

e A node b; is considered benign by the neighbour node c;
if node b; is not the monitored neighbour or if the drop-
ping ratio is lower than the detection threshold or the IDS
overheard less than min received packets addressed to the
node b;.

The IDS parameters that we optimize are shown in Ta-
ble 1. The number of minimum received packets is in the
range of (1,100) and detection threshold can be set from all
packets dropped to all packets forwarded. The other param-
eters are discussed in the following subsection.

’ Name \ Description \ Range \ Step ‘
pl | Max monitored nodes | (1,50) 1
p2 Buffer size (1,50) 1
p3 Min received packets | (1,100) 1
p4 Detection threshold | (0.01,1) | 0.01

Table 1: The list of IDS parameters.

Memory Consumption

The detection accuracy is influenced by the amount of mem-
ory allocated for the IDS. Each sensor node j requires the
following amount of memory (in bytes) for the IDS:

ey

where 8 bytes are required for every monitored neighbour
(4 B for node ID, 2 B for PR counter and 2 B for PF counter)
and 16 bytes are required for one slot in the buffer (4 B for
source address, 4 B for receiver address, 4 B for destination
address in a case of multiple BSs in the WSN and 4 B for
unique ID of a packet).
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We determined the upper bound for the number of nodes
being monitored by an IDS agent to 50. Table of neighbours
can occupy 400 B (50 * 8 B = 400 B) at maximum. That
would be already 10% of MicaZ RAM (4 kB). Additional
memory is needed for the buffered packets. We set the upper
bound of the buffer size to 50 because the proof-of-concept
experiments showed that bigger sizes did not influence the
IDS accuracy. Thus, 50 %« 16 B = 800 B can be allocated for
the buffer at maximum that is 20% of the RAM.

Optimization Using MOEA

In this section, we show how MOEAs can be utilized for
optimization of intrusion detection systems in complex en-
vironments of wireless sensor networks.

MOEAs can be useful for optimization of IDSs and other
aspects in WSNs, providing the network operators with a
set of non-dominated solutions. Then the network opera-
tor can choose between, e.g., an optimized solution A with
better IDS accuracy at the cost of higher memory consump-
tion and another optimized solution B with lower memory
consumption at the cost of worse IDS accuracy. The set
of non-dominated optimal solutions is called Pareto front
(Talbi, 2009) and the goal of the MOEAs is to find a good
approximation of the true Pareto front.

Several MOEAs producing approximations of the true
Pareto front have been proposed. However, a good MOEA
should produce solutions close to the true Pareto front with
high diversity and should converge in a relatively short time.
The Non-dominated Sorting Genetic Algorithm II (NSGA-
II) proposed in (Deb et al., 2002) and the Strength Pareto
Evolutionary Algorithm 2 (SPEA2) proposed in (Zitzler
et al., 2001) belong to the most widely used MOEAs (Talbi,
2009) and we compare them in this paper. Both algorithms
are implemented in the evolutionary framework ParadisEO
and also in MOGAIib (MOGALIb, 2013).

NSGA-II features two main criteria to provide good con-
vergence and diversification, respectively: 1) ranking using
non-dominance concept to sort the solutions according to
the number of other solutions they are dominated by; and 2)
crowding distance to keep the solutions spread as far from
each other as possible.

The fitness values calculated for the solutions found by
SPEA?2 are based on the number of dominating solutions and
their strength of dominance (to achieve convergence) and on
the density estimation function (to achieve diversification).

Objective Space

In the optimization of our IDS, we consider three following
objective functions: number of false positives fp, number of
false negatives fn, amount of consumed memory mem.

Objective function 1. The number of false negatives (fn)
of a solution x is calculated as follows:
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The values of fn range from 0 to 1. If every malicious
node in the network is correctly detected by all of its neigh-
bours, fn is equal to 0 and if none of malicious nodes is
detected by any of its neighbours, fn is equal to 1.

Objective function 2. The number of false positives (fp)
of a solution x is calculated as follows:

3)

n

1 y(ci)
fp(@) = =+ > :
1" 2 nle)
The values of fp range from 0 to 1. If every benign node
in the network is considered benign by all of its neighbours,

fpisequal to 0 and if all benign nodes are considered mali-
cious by all of its neighbours, fp equals to 1.

Objective function 3. The consumed memory (mem) in a
solution x is averaged over all benign nodes in the WSN
as follows:

= ﬁ % Z m(c;), 4

c,eC

where m(c;) is calculated using formula 1.

The values of mem range from 0, where the IDS is po-
tentially switched off, to 8 « p; + 16 * po that is 1200 bytes
for our upper bounds of p; = 50 and pa = 50.

All three objectives are minimized.

Pareto Front Discussion

The true Pareto front of a sparse topology (discussed in the
next section) found by exhaustive search is shown in Fig. 1.
The goal of MOEA is to find IDS configurations that are
close to the points of the true Pareto front as much as pos-
sible. In Fig. 1 (a), the view of the whole objective space is
shown from the perspective of mem, fp and fn. Fig. 1 (b)
depicts the trade-off between fp and fn, where the resulting
values depend on the detection threshold of the IDS (param-
eter py). Fig. 1 (¢) shows a slight increase of fp (see scale)
with higher number of monitored nodes (parameter p; in-
fluencing mem). The fp increase is caused by the fact that
an IDS monitors a higher number of legitimate neighbours,
each of which may be falsely considered malicious. Finally,
Fig. 1 (d) shows a rapid decrease of fn with a higher num-
ber of monitored nodes (parameter p;) that is caused by the
fact that a higher number of neighbours (and hence mali-
cious nodes) is monitored (detected).
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Figure 1: Optimal solutions on the Pareto front in our objec-
tive space.

Comparison Methodology

In this section, we present a methodology that we used to
compare NSGA-II and SPEA2 using multiple settings. We
tried different configurations (see Table 2) of the algorithms
on our problem and compare the outcome according to four
metrics that are defined further in the text.

Evolution Parameters

The evolutionary algorithms have several parameters influ-
encing the evolution process. The setting of the parameters
is presented in this subsection.

Initial population. The initial population consists of ran-
domly generated individuals (more specifically, the val-
ues of the IDS parameters are generated randomly within
the predefined range of values).

Population size. The size of the population PopSize is set
to following values: PopSize € {50,100,200}.

Crossover. The multi-point crossover operation is applied
with the probability PC'ross € {0.01,0.1,0.25,0.5}.

Mutation. The mutation operation is applied with proba-
bility PMut € {0.01,0.1,0.25,0.5} to every parameter
Pp1, ..., pq separately. When applying mutation, the pa-
rameter is changed randomly within an interval around
the previous value of that parameter covering 10% of the
overall parameter range (5% in both directions).

Number of generations. The number

NGen is set to NGen = 200.

of generations

Having the setting of the evolutionary parameters spec-
ified above, the IDS parameters were optimized with
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|PopSize| x |PCross|x |PMut| = 3 x4 x4 = 48 different
settings of both algorithms NSGA-II and SPEA2.

Metrics

Following notations are used to define metrics for the com-
parison of the algorithms:

Notation 7 The set P is a set of all vectors (solutions) on
the true Pareto front, p € P is a Pareto optimal vector and
p = |P| is a size of the set P.

Notation 8 The set N is a set of all vectors (solutions)
found by the evolution, n € N is a non-dominated vector
found by the evolution and n = |N| is a size of the set N.

Since we calculate the Euclidean distance between the so-
lutions in the objective space in Metric 2 and Metric 3 de-
fined below, we “normalize” the amount of the consumed
memory in the following way:

Notation 9 memn(z) mem(x)/1200, where 1200 is
the maximal amount of consumed memory in bytes and the
range of the function memn is < 0,1 >.

The MOEASs maintain an archive of the found non-
dominated solutions. Two following aspects are expected
of the solutions kept in the archive:

e Convergence — The approximation of the Pareto front
should converge to the true Pareto front with new gen-
erations.

e Diversification — The found solutions should be uniformly
distributed in the objective space in ideal case.

To be able to measure the effectiveness of the differently
set MOEAs with respect to the aforementioned performance
aspects, we use the following metrics to measure conver-
gence:

Metric 1. The value of M is the number nd of non-
dominated solutions nd € P found by the MOEA. The
complexity of the calculation of this metric is O(nd * p).
This metric is used to measure convergence.

Metric 2. The value of M5 (generational distance metric)
is the average of Euclidean distances from all found so-
lutions n € N to the nearest solution p € P on the true
Pareto front (Deb et al., 2002). This metric is also used
to measure convergence. Having n solutions and p Pareto
dominant solutions, the complexity of the calculation of
this metric is O(n * p).

Several metrics can be used to measure diversification,
yet with an assumption that it is straightforward to find a
neighbouring solution in the objective space. However, the
definition of the neighbouring solution is easy for a two-
dimensional objective space, but much more complicated for
three- or more-dimensional objective spaces. In our case,
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we have three objective functions. Thus, we use the follow-
ing metric for diversification specified by Schott in (Schott,
1995) as Spacing metric. Note that the calculation of this
metric does not require the set of the true Pareto front P
found in the exhaustive search:

Metric 3. Diversification is measured using Mjs as fol-
M, \/ﬁ S (d—d;)?, where d; =
ming{| (i) — faG)| + |p() — Fp()| + [memn(i) -
memn(j)|} and d is an average of all distances d;,i €
{1,...,n}. If M3 = 0, the solutions are spaced equally in
the objective space. Having n solutions, the complexity
of the calculation of this metric is O(n?).

lows:

We also calculate the time requirements of the MOEA,
where the runtime of one simulation needed to evaluate a
single individual in a population is the most time consum-
ing element (around 8 minutes for our Sparse topology dis-
cussed farther). Note that the overall time is also dependent
on the number of available CPUs:

Metric 4. M, is the number of simulations needed in the
whole evolution process.

We compare the number of individual evaluations during
MOEA with number of evaluations needed for the exhaus-
tive search for each of the experiments. In the exhaustive
search, we evaluated 25,000, 000 IDS configurations using
our BOINC distributed computation platform.

Our Test Case

We evaluated the performance of the NSGA-II and SPEA2
in two following different simulation scenarios consisting
of 250 sensor nodes and 1 BS in 1) sparse and 2) dense
topology. In both topologies, the goal of the IDSs was to
detect five malicious nodes. Their placement can be found
in (Stehlik et al., 2013).

e Sparse topology (Topology #1) — The sensor nodes are
placed in the area of 200 x 200 m. The average area for
one node is 160 m?2, i.e., the distance between two nearest
neighbours is 12.65 m in average.

e Dense topology (Topology #2) — The sensor nodes are
placed in the area of 100 x 100 m. The average area for
one node is 40 m?2, i.e., the distance between two nearest
neighbours is 6.33 m in average.

Results and Discussion

In this section, we discuss the results of NSGA-II and
SPEA2 configured in different ways. Evolutionary algo-
rithm is a stochastic process — it means that multiple runs
should be done for each configuration to get average be-
haviour of the algorithm. We ran the evolution 10 times for
all the settings and we provide the average value Avg, and

ECAL 2013

574

standard deviation o, for every metric M, computed from
results obtained for all ten evolution runs. Since we are lim-
ited in space, detailed results can be found in (Stehlik et al.,
2013), as well as IDS settings of Pareto optimal solutions.
Table 2 shows how the results of the metrics using differ-
ent set of evolution parameters are numbered in the charts
presented in this section. MOEA settings used for sets
1,...,16 (PopSize = 50) are presented in the Table 2. Sets
No. 17-32 and 33-48 have analogous MOEA settings for
PopSize = 100 and PopSize = 200, respectively.

[ No. J 1 [2[3[4]5]6[7]8]
PCross [0.010.01[0.01[0.01] 0.1 [0.1]0.1 [0.1
PMut [0.01] 0.1 [025] 0.5 [0.01[0.1]0.25]0.5
[ No. [ 9 1011 [12]13[14]15]16]
PCross[0.25]0.25[025]025] 0.5 [05] 0.5 0.5
PMut [0.01] 0.1 ]0.25[ 0.5 [0.01[0.1[025]0.5

Table 2: The MOEA parameters settings for PopSize = 50.

Sparse Topology

The lowest number of neighbours is characteristic for the
sparse topology. A node b; € C U A has 41 neighbours
in average. Hence, a lower amount of memory is needed to
achieve IDS accuracy comparable to that in dense topology.

Exhaustive Search The true Pareto front obtained for the
sparse topology is shown in Fig. 1. The results of the ex-
haustive search showed that 2,340 IDS configurations (out
of 25,000, 000) are Pareto dominant resulting in 996 unique
solutions in the objective space (some IDS configurations
have same results).

Convergence Fig. 2 shows solutions found by a single run
of the MOEAs for set No. 45 that provided good results in
a relatively short time. We consider a case where NSGA-
II found 121 mutually non-dominated solutions, where 29
were Pareto optimal. SPEA2 found 80 mutually non-
dominated solutions, where 20 were Pareto optimal. Objec-
tive space for evolution set No. 48, where solutions found
by SPEA2 are spread better, can be found in (Stehlik et al.,
2013).

In Fig. 3 (a) and (b), the impact of the evolution param-
eters on the convergence is shown. NSGA-II found more
solutions on the Pareto front (metric M) in most cases than
SPEA2. Nevertheless, SPEA2 has better results measured
by metric Ms. This is caused by NSGA-II solutions that
have redundant amount of consumed memory remained in
the population archive (e.g., solutions on the right-top cor-
ner in Fig. 2). These solutions were not dominated by other
solutions with lower fn, fp and mem during the evolution.
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Figure 3: Results of metrics for sparse topology.

We found out that higher crossover probability has a
higher impact on the speed of convergence than mutation
probability from the perspective of metric Ms. See quar-
tets in Fig. 3 (b). It is possible to obtain good results with
high crossover probability and low mutation probability, but
much more difficult if the crossover probability is very low.
However, both parameters, as well as the population size,
have a positive impact on the convergence.

Diversification There is a difference between diversifica-
tion of NSGA-II and SPEA?2 for our problem. Fig. 3 (c)
suggests that the solutions are spread better using SPEA2.
However, checking the objective space (Fig. 2) provides ad-
ditional information on spreading of the solutions within the
whole objective space that is better for NSGA-II. Note that
SPEA?2 found better spread solutions if mutation probability
is higher.
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Figure 4: Results of metrics for dense topology.

Evaluations The number of simulations needed to evalu-
ate the individuals in the population using a simulator are
depicted in Fig. 3 (d). All MOEA parameters influence
the number of evaluations, but PMut and PopSize have
a higher impact than PC'ross (see, e.g., sets No. 36, 40, 44
and 48 with different values of PCross vs. sets 33 — 36
with different values of PMut).

Note that, e.g., set No. 45 required only 3,497 simu-
lations for NSGA-II and 2, 101 simulations for SPEA2 in
average. 24.8 and 14.4 Pareto dominant solutions were
found for NSGA-II and SPEA2, respectively. Since the solu-
tions cover different parts of the Pareto front (especially for
NSGA-II), the evolution is much more efficient than eval-
uation of 25,000,000 configurations in case of exhaustive
search.

Dense Topology

In the dense topology, anode b; € C'UA has 127 neighbours
in average.

Exhaustive Search The true Pareto front obtained for the
sparse topology can be found in (Stehlik et al., 2013). The
results of the exhaustive search showed that 20,072 IDS
configurations (out of 25,000, 000) are Pareto dominant re-
sulting in 2, 219 unique solutions in the objective space.

Convergence, diversification and evaluations Results
for evolution sets No. 45 and 48 can be found in (Stehlik
et al., 2013). Similarly to the sparse topology, optimized so-
lutions are spread better for SPEA2 in case of evolution set
No. 48. The experiment showed similar characteristics of
performance based on evolution settings as for sparse topol-
ogy. The results of all performance metrics are shown in
Fig. 4.
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Conclusion

In this work, we extended our optimization framework to
utilize MOEAs in the process of IDS parametrization. The
multi-objective approach is beneficial since it provides the
network operator with a set of optimized solutions. He/she
can select a solution according to the purpose of the WSN
and change the IDS settings according to current needs. We
showed that the knowledge of the Pareto optimal solutions is
advantageous. However, the computation using exhaustive
search is extremely time-demanding. MOEAs proved to be
a good compromise between the quality of Pareto front ap-
proximation and the optimization time.

We compared two widely used MOEAs: NSGA-II and
SPEA2. The results suggest that NSGA-II might be better
for our needs. However, one should be careful with a defi-
nite conclusion. Various metrics, as well as visualization of
the objective space, provide different views of the algorithm
performance.

We also focused on the impact of MOEA parameters on
the speed of convergence, number of evaluations and qual-
ity of Pareto front approximations. Higher population size
provides better results at the cost of higher number of eval-
uations. We found out that a higher crossover probability
does not increase the number of evaluations as much as a
higher mutation probability and has a better impact on the
quality of Pareto front approximations.

In the future, we plan to optimize techniques to detect
other attacks than selective forwarding. We would also like
to extend the optimization framework to design robust so-
Iutions in complex environments. Finally, we plan to adapt
and use our framework for the optimization of a whole net-
work stack.
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