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Abstract. Cryptanalysis of a cryptographic function usually requires
advanced cryptanalytical skills and extensive amount of human labor
with an option of using randomness testing suites like ST'S NIST [15] or
Dieharder [3]. These can be applied to test statistical properties of cryp-
tographic function outputs. We propose a more open approach based on
software circuit that acts as a testing function automatically evolved by
a stochastic optimization algorithm®. Information leaked during crypto-
graphic function evaluation is used to find a distinguisher [9] of outputs
produced by 25 candidate algorithms for eStream and SHA-3 compe-
tition from truly random sequences. We obtained similar results (with
some exceptions) as those produced by STS NIST and Dieharder tests
w.r.t. the number of rounds of the inspected algorithm.

1 Introduction

Typical cryptanalytical approach against a new cryptographic function is usu-
ally based on application of various statistical testing tools (e.g., STS NIST [15],
Dieharder [3]) as the first step. Then follows application of established cryptana-
lytical procedures (algorithmic attacks, differential cryptanalysis, etc.) combined
with an in-depth knowledge of the inspected function. This, however, usually re-
quires extensive human cryptanalytical labor.

General statistical testing can be at least partly automated and easy to apply,
but will detect only the most visible defects in the function design. Additionally,
statistical testing tools are limited to a predefined set of statistical tests. That
on one hand makes the follow-up analytical work easier if the function fails a
certain test, yet on the other hand severely limits the potential to detect other
defects.

We propose a novel approach that can be used in a similar manner as general
statistical testing suites, but additionally provides the possibility to automati-
cally construct new tests. Every test is represented by an emulated hardware-like
circuit. Evolutionary algorithms are used to design the circuit layout. Although
such an automated tool will not (at least for the moment) outperform a skilled
cryptographer, it brings two major advantages:

! This paper is significantly extended version of results presented in [18].



— It can be applied automatically against multiple cryptographic functions
with no additional human labor — working implementation of the inspected
function is sufficient. Cryptographic function competitions (e.g., SHA-3 [1],
eStream [8]) are especially suitable due to standardized interface.

— Novel and/or unusual information leakage “side channels” may be used. The
proposed approach requires no pre-selection of function parts, input/output
bits or used statistics — these decisions are left for the evolutionary algorithm.

We tested our idea by evolving random distinguishers for several eStream and
SHA-3 candidate functions. To assess the success of this method, we focused on
functions with inner structure containing repeated rounds. By gradually increas-
ing the number of rounds, one can identify the point where this approach still
provides results (i.e., the function output can be distinguished with probability
significantly better than random guessing). Results are very similar to those ob-
tained from STS NIST and Dieharder statistical test suites w.r.t. the number of
rounds of the inspected function. The implementation of the whole framework
is available as an open-source project EACirc [14].

2 Previous Work

Numerous works tackled the problem of distinguisher construction between data
produced by cryptographic functions and truly random data, both with reduced
and full number of rounds. Usually, statistical testing with standard battery of
tests or additional custom tailored statistical tests are performed.

In [19], detailed examination of eStream Phase 2 candidates (full and reduced
round tests) with STS NIST battery and structural randomness tests was per-
formed, finding six ciphers deviating from expected values. More recently, the
same battery, but only a subset of tests, was applied to SHA-3 candidates with
a reduced number of rounds as well as only to their compression functions [7].

A method to test statistical properties of short sequences typically obtained
by block ciphers or hash algorithms for which some STS NIST tests can not
be applied due to insufficient length was proposed in [17]. 256-bit versions of
SHA-3 finalists were subjected to statistical tests using a GPU-accelerated eval-
uation [12]. Because of massive parallelization, superpoly tests introduced by [6]
were possible to be performed, detecting some deviations in all but the Grgstl
algorithm.

Stochastic algorithms were also applied in cryptography to some extent. A
nice review of usage of genetic algorithms in cryptography up to year 2004 can
be found in [5], a more recent review is provided by [13]. In [10] a comparison of
genetic techniques is presented, with several suggestions which genetic techniques
and parameters should be used to obtain better results. TEA algorithm [23] with
a reduced number of rounds is a frequent target for cryptanalysis with genetic
algorithms. In [4], a successful randomness distinguisher for XTEA limited to 4
rounds is evolved. The distinguisher generates a bit mask with high Hamming
weight, which, when applied to function input, results in deviated 2 Goodness



of Fit test of the output. However, no distinguisher for full number of rounds was
found. Subsequent work [11] improves an earlier attack with quantum-inspired
genetic algorithms, finding more efficient distinguishers for a reduced round TEA
algorithm succeeding for 5 rounds.

We adopted the genetic programming [2] technique with steady-state replace-
ment. An important difference of our approach is the production of a program
(in the form of a software circuit) that provides different results depending on
given inputs. Previous work produced a fixed result — e.g., a bit mask in [4,11]
that is directly applied to all inputs.

3 Software Circuits Designed by Evolution

Software circuit is a software representation of a hardware-like circuit with nodes
(“gates”) responsible for computation of simple functions (e.g., AND, OR). Nodes
are positioned in several layers with connectors (“wires”) in between. A node may
be connected to all nodes from the previous layer, to only some of them, or to
none at all. A simple circuit overview can be seen in Fig. 1. Contrary to real
single-layer hardware circuits, connectors may also cross each other.
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Fig. 1. Simple example of software-emulated circuit.

Usage is versatile — from Boolean circuits where functions computed in nodes
are limited to logical operators to artificial neural networks where nodes compute
the weighted sum of the inputs. Besides studying complexity problems, these cir-
cuits were used in various applications like construction of a fully homomorphic
scheme or in design of efficient image filters. Circuit evaluation can be performed
by a software emulator or possibly directly in hardware when FPGAs are used.



3.1 The Process of Evolution

The main goal is to find a circuit that will reveal an unwanted defect in the
inspected cryptographic function. For example, if a circuit is able to correctly
predict the n*" bit generated by a stream cipher just by observing previous (n—1)
bits, then this circuit serves as a next-bit predictor [24], breaking the security
of the given stream cipher. When a circuit is able to distinguish output of the
tested function from a truly random sequence, it serves as a random distinguisher
[9] providing a warning sign of function weakness. Note that a circuit does not
provide correct answers for all inputs — it is sufficient if a correct answer is
provided with a probability significantly better than random guessing.

The greatest challenge is the precise circuit design. It can be laid out by an
experienced human analyst or created and further optimized automatically. We
use the latter approach and combine a software circuit evaluated on a CPU/GPU
with evolutionary algorithms. The whole process of circuit design, as also de-
picted in Fig. 2, is as follows:

1. Several circuits (“candidate solutions”) are randomly initialized — both func-
tions in nodes and connectors are chosen at random. Note that such a ran-
dom circuit will, most probably, not provide any meaningful output for given
inputs and can even have disconnected layers.

2. If necessary, new test vectors used for success evaluation are generated.

3. Every individual (circuit) in the population is emulated on all test inputs.
The fitness function assigns each circuit a rating based on the obtained
outputs (e.g., what fraction of inputs were correctly recognized as being
output of a stream cipher rather than a completely random sequence, see
Sect. 3.2 for details).

4. Based on the evaluation provided by the fitness function, a potentially im-
proved population is generated from the existing individuals by mutation
and sexual crossover. Every individual (circuit) may be changed by altering
operations computed in nodes and/or adding/removing connectors between
nodes in subsequent layers.

5. The process is repeated from step 2. Usually hundreds of thousands or
more repeats are necessary until the desired success rate of distinguisher
is achieved.

3.2 The Evaluation of Circuit Success

Evolutionary algorithms need to be supplied with a metric of success — a so-
called fitness function. This is used to measure quality of candidate circuits.
Proper definition of fitness function is crucial for obtaining a working solution
to the defined problem. In this work, we limit ourselves to randomness distin-
guishability as a target goal. Other goals like next-bit predictor [24] or defector
of strict avalanche criterion [22] can be used.



mutation and survival
sexual crossover — -— =) individuals with higher
individuals are crossbred J : x fitness value
to form a new generation have better chance
of partial solutions T of surviving to the

next generation
— w — 0.498
candidate
population w \fg W > \fg — 0.524
currently considered W \%
partial solutions W
— — 0.462
fitness
l I—> N % — 0.503

assessment
each individual
from the population
o —
é quantum W — 0.571 is evaluated
test Vec_tor 3 random data 2l 5 > N on all test vectors
generation m data for 8 § current from the current set,
prepare new test data § P EEEESTE! e test vector set fitness value from 0 to 1

for circuit testing is assigned to each one

Fig. 2. Simplified work-flow of the evolution process in EACirc.

A circuit input is a sequence of bytes produced either by the inspected func-
tion (first type) or generated completely randomly (second type). A circuit out-
put is an encoding of the guessed source. Different encodings are possible: single
bit (e.g., 0 meaning “random data” and 1 meaning “function output”) or multi-
ple bits (e.g., low versus high Hamming weight of whole output byte). Results in
this work use only the byte’s highest bit for easier interpretation, but Hamming
weight seems to be a better choice for later experiments. Additionally, a circuit
can be allowed to make multiple guesses by producing multiple output bytes.
A circuit thus has the possibility to express its own certainty in the predicted
result (e.g., by setting 2 out of 3 outputs to predict random data and remaining
one to predict the function output) as well as to evolve more than one predictor
inside a single circuit.

For evaluation of a circuit performance, we use supervised learning with
test sets containing pairs of inputs and expected outputs generated prior to the
evaluation. Corresponding circuit outputs are compared with expected values to
see if the circuit predicted the input source correctly. The success rate (fitness) is
then computed as a ratio of correctly predicted test vectors to the total number.

3.3 Evolution and Circuit Parameters

For our experiments, we used the following settings to maintain a good trade-off
between the evaluation time (influenced mainly by the number of test vectors)
and the ability to prevent over-learning (influenced by the test set change fre-

quency).

— Every test set contains 1000 test vectors with exactly half taken from in-
spected function’s output and second half taken from random data. Order of



test vectors in the set is not important as test vectors are handled by circuit
completely independently.

— Every test vector has the length of 16 bytes.

— Test set is periodically changed every 100*" generation to prevent over-
learning on a given test set.

Circuit and evolution parameters were fine-tuned empirically based on previous
experiments. The settings for the presented experiments are as follows:

5 layers, 8 nodes in every internal layer, 16 input nodes (corresponding to

16 input bytes in every test vector) and 2 output nodes.

— Population consists of 20 individuals refreshed by the steady-state replace-
ment strategy with two thirds of individuals replaced every generation.

— 30000 generations were executed in a single evolution run with 30 separate
evolution runs running in parallel.

— Mutation is applied with probability of 0.05 and changes function in a given
node or connector mask by addition or removal of connector to a given node.

— Crossover is applied with a probability of 0.5 and performs single point

crossover with the first ¢ layers taken from the first parent and remaining

layers from the second parent.

Reference experiments were performed using statistical batteries (Dieharder,
STS NIST) as a more traditional approach of randomness distinguishing. Note
that we will not discuss all results for Dieharder and STS NIST in details as
such discussion was already done several times before [7,19]. We will focus only
on the identification of the highest round where some defects are still detected
and the significance of such detection — whether almost all tests fail or only a
minority of them.

STS NIST was run on 100 sub-streams, each consisting of 1000000 bits.
Random Ezxcursions and Random Ezcursions Variant tests were omitted due
to execution problems. All 15 available tests were run in all supported configu-
rations. From the Dieharder suite, only the tests corresponding to the original
Diehard collection were used (Dichard sums test was omitted due to implemen-
tation problems). Each of the chosen tests was run just once, but was allowed
to process as much data as it required.

The total volume of data processed by EACirc varies greatly from the volume
used by statistical batteries. As can be seen from (1), the results output by
EACirc are based on a sample of about 2.3 MB of assessed data.

s 30000 generations 1 vector bytes

100 %ﬁins 2 test set vector

When using STS NIST and Dieharder, we worked with an external file with
250 MB of the assessed stream. The usage of STS NIST amounts to about
11.92 MB while running the whole test set of Dieharder processed about 582 MB
altogether with the smallest test consuming about 3MB and the largest one
about 127 MB. Furthermore, we would like to stress out that EACirc makes
decisions on much smaller samples of 16 bytes at a time only.

~2290MB (1)



3.4 Implementation Details

We used the following elementary operations for nodes: no operation (NOP),
logical functions (AND, OR, XOR, NOR, NAND, NOT), bit manipulating functions
(ROTR, ROTL, BITSELECTOR), arithmetic functions (ADD, SUBS, MULT, DIV,
SuM), reading a specified input byte even from an internal layer (READX) and
producing a constant value (CONST).

As the optimization process requires many evaluations of candidate circuits,
we use our computation infrastructure to perform distributed computation with
more than a thousand CPU cores. EACirc is implemented with the ability to
recover computation based on logs and periodically saved internal state. This
provides a possibility to perform evolution with unlimited number of generations
even when a computation node itself lasts only a limited time before reboot.

Truly random data used for test vectors were produced by the Quantum Ran-
dom Bit Generator Service [16] and High Bit Rate Quantum Random Number
Generator Service [21].

To ease the analysis of the evolved circuits, we implemented an automatic
removal of nodes and connectors not contributing to the resulting fitness value.
Furthermore, circuits can be visualized using the Graphviz library.

To independently replicate results provided by a circuit emulator and to dou-
ble check for possible implementation bugs, EACirc supports exporting circuits
into the code of a plain C program. The resulting C program can be compiled
separately and computes only the circuit from which it was generated, but com-
pletely circumvents the circuit emulator.

4 Application to eStream and SHA-3 Candidates

The testing methodology described in Sect. 3 was applied against several cryp-
tographic functions in order to probe for unwanted properties of their output.
We decided to analyze randomness of stream cipher outputs from the recent eS-
tream competition [8] and candidate hash functions from SHA-3 competition [1].
Testing these implementations enabled us to utilize the unified function interface
prescribed in the competitions. After this wide-testing, one can cherry-pick only
such functions where a well-working circuit is found for further cryptanalysis.

Previous works evaluated statistical properties of candidate functions with
the full number of rounds as well as with a reduced number of rounds [19].
Testing full number of rounds usually provides only limited information — either
the function is very weak and exhibits weaknesses even in the full number of
rounds or no defect at all is detected, even when an serious exploitable attack
might exist for a limited number of rounds. In this work, we therefore inspected
the functions in reduced-round versions trying to obtain at least the same results
as with STS NIST/Dieharder batteries.

4.1 Reference Case

Before performing the experiments themselves, we needed to establish reference
values corresponding to random guessing. We therefore let circuits distinguish



between two groups of test vectors, which were both taken from truly random
data. Intuitively, our approach should fail to find a working distinguisher and
should behave as random guessing.

The predicted behavior was confirmed by an experiment with same settings as
those used for testing functions. All statistical tests from Dieharder (20/20) and
STS NIST (162/162) successfully passed on this random data, and no working
distinguisher was found.

To express the success of evolution, we inspect the fitness of the best individ-
ual in the population just after the change of the test set (so as to suppress the
influence of over-learning). We compute the average of these maximum fitness
values over the whole run. Due to the probabilistic nature of evolutionary algo-
rithms, we repeated every run 30 times and display the average of all runs. All
in all, the success of EACirc is expressed by the average fitness value of the best
individual in the population right after the change of test set, further averaged
across 30 independent runs.

The evolution success for distinguishing two sets of random data, equivalent
to random guessing, was 0.52 with independent runs differing in 34 or 4*" dec-
imal place. We anticipated that the difference from the naive value of 0.50 was
influenced by population size and the size of test set. As experimentally verified,
decreasing the number of individuals in the population or increasing the number
of vectors in a test set shifts the evolution success towards the naive value. We
can thus conclude that, in our settings, the fitness value of 0.52 corresponds to
indistinguishable streams.

4.2 Results for eStream Candidates

From 34 candidates in the eStream competition, 23 were potentially usable for
testing (due to renamed or updated versions and problems with compilation).
Out of these, we limited ourselves to only 7 (Decim, Grain, FUBUKI, Hermes,
LEX, Salsa20 and TSC), since these had internal structure that allowed for a
simple reduction of complexity by reducing a number of internal rounds. For
all used ciphers, the implementation from the last successful phase of the com-
petition was taken. The ciphers were tested in unlimited versions and then for
all lower number of rounds until reaching indistinguishability from a random
stream. We considered three scenarios with respect to the frequency of encryp-
tion key change:

1. The key is fixed for all generated test sets and vectors. Even when test sets
change, new test vectors are generated using the same key.

2. Every test set was generated using a different key. All test vectors in a
particular test set are generated with the same key.

3. Every test vector (16 bytes) was generated using a different key.

Table 1 summarizes results for the selected eStream candidates depending on a
number of algorithm rounds and key change frequency. Interpretation of values
in table is the following: Dieharder provides three levels of evaluation for a



Table 1. Results for selected eStream candidates with both full and reduced number
of internal rounds with respect to the key change frequency.

*During the first 8 rounds, TSC produces no output. This caused 4 Dieharder tests to
get stuck, effectively reducing the number of tests to 16.

IV and key reinitialization
2 once for run for each test set for each test vector
=1 H . = o B
21 2 s 2 < 2
= [ (@] - (@] [ (&)
i 2 > L > ~ 9~ ~

cpher % 5% B2 § |AZ 5Z 3 |AZ BE F
1] 0.0 0 0.99 0.0 0 0.85 0.0 5 0.99
2 0.5 0 0.54 1.0 0 0.54 15.5 146 0.52
3 1.0 0 0.53 1.0 0 0.53 15.0 160 0.52
Decim 4, 3.5 79 0.52 3.0 78 0.52 | 20.0 160 0.52
5/ 4.5 79 0.52 3.5 91 0.52 17.5 161 0.52
6| 19.0 158 0.52 19.0 159 0.52 18.0 162 0.52
7] 18.5 162 0.52 19.0 161 0.52 20.0 161 0.52
8| 20.0 162 0.52 | 20.0 159 0.52 19.0 161 0.52
1| 20.0 162 0.52 20.0 161 0.52 18.0 162 0.52
FUBUKI 4| 20.0 162 0.52 20.0 162 0.52 20.0 162 0.52
1] 0.0 0 1.00 0.0 0 0.67 | 18.5 162 0.52
Grain 2| 0.0 0 1.00 0.5 0 0.66 | 20.0 162 0.52
3| 19.5 160 0.52 | 20.0 162 0.52 | 20.0 162 0.52
13| 20.0 162 0.52 20.0 161 0.52 19.5 162 0.52
Hermes 1| 20.0 162 0.52 20.0 162 0.52 20.0 162 0.52
10/ 20.0 160 0.52 20.0 162 0.52 20.0 162 0.52
1] 0.0 0 1.00 0.0 0 0.96 3.0 1 1.00
2 4.0 1 1.00 4.0 1 1.00 3.5 1 1.00
LEX 3 0.5 1 1.00 3.5 1 1.00 4.0 1 1.00
4| 20.0 162 0.52 19.5 162 0.52 20.0 161 0.52
10| 19.5 162 0.52 19.5 160 0.52 | 20.0 160 0.52
1] 5.5 1 0.87 8.5 1 0.67 | 17.5 161 0.52
Salsa20 2 5.5 1 0.87 7.0 1 0.67 19.5 162 0.52
amsa 3] 200 162 052 | 200 162 052 | 195 161  0.52
12| 20.0 162 0.52 19.5 161 0.52 19.0 161 0.52
1-8| 0.0* 0 1.00 0.0* 0 1.00 0.0* 0 1.00
9 1.0 1 1.00 1.5 1 1.00 2.0 1 1.00
10 2.0 13 1.00 3.0 13 1.00 3.0 12 1.00
TSC 11| 10.0 157 0.52 11.5 157 0.52 14.0 159 0.52
12| 16.0 162 0.52 17.0 161 0.52 17.5 162 0.52
13| 20.0 162 0.52 20.0 162 0.52 19.0 162 0.52
32| 20.0 161 0.52 20.0 162 0.52 20.0 161 0.52




particular test: pass, weak and fail. Values 1, 0.5 and 0 were assigned to these
levels respectively and sum over all tests is computed and displayed. For STS
NIST, the number of all passed tests is displayed. This is deduced from the
distribution of p-values across all 100 runs with respect to the significance level
of a = 0.01. The values for EACirc express the average maximum success rate,
further averaged through multiple runs (for precise meaning see Sect. 4.1).

Cells representing a stream successfully distinguished from random are de-
noted by gray background for easier comprehension. Border cases (only a very
small deviation found) are shaded in light gray.

The results indicate that, in this case, EACirc performs more or less the same
as standard statistical batteries (Decim being the most prominent exception).
Dieharder sometimes performed better than STS NIST, but it has to be taken
into consideration that it is newer and made decision based on a much larger
data sample. In general, both statistical batteries processed longer streams than
EACirc (for detailed numbers see Sect. 3.3).

4.3 Results for SHA-3 Candidates

From 64 hash functions that entered the competition, 51 were selected to the first
round. Out of these, 42 were potentially usable for testing (due to source code
size, speed and compilation problems). The implementations were again taken
from the last successful phase of the competition. In the end, 18 most promis-
ing candidates were chosen: ARIRANG, Aurora, Blake, Cheetah, CubeHash,
DCH, Dynamic SHA, Dynamic SHA2, ECHO, Grgstl, Hamsi, JH, Lesamnta,
Luffa, MD6, SIMD, Tangle, and Twister. These were the candidates fulfilling
the following two requirements:

— The hash functions could be effortlessly limited in complexity by decreasing
the number of internal rounds.

— While the unlimited version produced a random-looking output, their most
limited version did not.

We generated continuous output stream by hashing a simple 4-byte counter
starting from a randomly generated value. We obtained a 256-bit digest, which
was cut in half to produce 2 independent test vector inputs of 16 bytes each. In
case of generating a continuous stream (for statistical testing), we concatenated
the digests.

The results, summarized in Tabs. 2-3, indicate that in this case EACirc per-
forms slightly worse than standard statistical batteries. Although in most of the
cases it found a statistically significant variation from a neutral success rate of
0.52, it can be seen that it often failed in the last round successfully distinguished
by statistical batteries. Once again, when interpreting these results, we must be
aware of the imbalance of test data available to statistical batteries and EACirc
(for detailed numbers see Sect. 3.3).



Table 2. Results for selected SHA-3 candidates with both full and reduced number of
internal rounds.
*Only 16 Dieharder tests were performed, due to execution problems in some cases.
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Table 3. Results for selected SHA-3 candidates with both full and reduced number of
internal rounds.
*Only 16 Dieharder tests were performed, due to execution problems in some cases.
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5 Analysis of Evolved Distinguisher

After performing a wide range of experiments, we analyzed one selected case in a
more detailed manner. We studied the dependence of distinguisher success rate
on the number of generations already computed. Further attention was paid to
the evolved circuit and the statistical properties it uses to draw the final verdict
(random vs. non-random).

5.1 Achieved Success Rate

The general relationship between fitness value and the number of evolved gener-
ations in evolutionary algorithms is very specific — the success rate rises, during
the period when the test vector set remains unchanged (100 generations in our
setting), and then suddenly drops after the set change. This is caused by the cir-
cuit over-learning on a specific test vector set (circuits are learning to distinguish
this particular set instead of general characteristics of the streams). However,
even with over-learning, the success rate of distinguishing two sets of random
data only rarely exceeded the value of 0.55.

The phenomenon of over-learning can be easily suppressed by changing the
test vectors more frequently or increasing the number of vectors in a set. On
the other hand, higher test set change frequency or more vectors would increase
computational complexity. Therefore a reasonable trade-off is used.

In Fig. 3 we see similar relationship for circuit distinguishing Salsa20 cipher
limited to 2 rounds. The over-learning tendency (repeating continual rise and
sudden drop) is partly present as well, but in contrast to the previous case the
circuits success rate reaches much higher values. Even if not evolving a universal
distinguisher, this would be a sufficient evidence for non-randomness of Salsa20
output stream. Also, the circuit is (over-)learning very quickly to a particular
data set. Such a behavior led us to inspect the over-learning speed as another
potential metric of success instead of how well the circuit is working after a test
vector change.

We can further notice that, after initial fluctuations, the circuit success rate
shows another periodic behavior about every 4 000 generations. The circuit sta-
bilizes at distinguishing the Salsa20 output and then suddenly drops back to
about a success of random guessing. It than gets better again and after about
4000 generations (equivalent to about 450 KB of data) drops again. This behav-
ior is specific to Salsa20 and its source probably comes from the cipher design.
A detailed analysis will be the part of our future work.

5.2 Detailed Distinguisher Inspection

Other type of detailed study of Salsa20 limited to 2 rounds included the evolved
distinguishers. We took an evolved distinguisher circuit, pruned it (removing
all nodes not participating in computing the final fitness), generated 1000000
random input sequences for the circuit and inspected the distribution of values
coming from every node.
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Fig. 3. Circuit success rate for distinguishing Salsa20 limited to 2 rounds from quantum
random data (note the shifted scale on y-axis). The dotted line represents the value of
0.52 (stream indistinguishable from random).

Circuits evolved in parallel runs exhibited very similar behavior — in many
of them, the output bytes (and thus the final verdict) depended only on the 7%
input byte. It is difficult to tell what is the exact form of this weakness, but it
draws our attention to the ever-mentioned byte 7. It definitely implies a possible
design flaw in Salsa20 limited to 2 rounds influencing the randomness of every
7' output byte. More details can be found in [20].

6 Discussion

Based on results obtained with the proposed software circuits designed by genetic
programming, a comparison to statistical batteries like ST'S NIST and Dieharder
can be undertaken.

On one hand, the proposed method is based on a completely different ap-
proach than statistical tests used in batteries, opening space for detecting depen-
dencies between tested function output bits not covered by tests from batteries.
It offers a possibility to construct a distinguisher based on a dynamically con-
structed algorithm, rather than a predefined one from batteries. Once a work-
ing distinguisher is found, it requires extremely short sequences (tested on 16
bytes only) to detect function output. Statistical batteries require at least sev-
eral megabytes of data. Lower amount of data extracted from a given function
is necessary to provide a working distinguisher (at maximum, we used 2.2 MB).
Data required by STS NIST and Dieharder were much larger. Note that some
tests may provide indication of failure even when less data is available.

On the other hand, subtle statistical defects may not be detected because of
very short sequences the circuit is working on. However, several modifications
to the proposed approach might enable the processing of larger sequences (e.g.,
circuit with iterative memory processing data in chunks). Furthermore, the re-
sulting distinguisher may be hard to analyze — what is the weakness detected
and what should be fixed in the function design?



The proposed approach requires significantly higher computational require-
ments during the evolution phase when compared to statistical batteries. How-
ever, evaluation of the evolved circuit on additional data is then very fast.

One has to keep in mind that the found distinguisher may be fitted to a
particular candidate function (and possibly even a particular key, if the key
is not changed periodically in the training set), instead of discovering generic
defects in the tested function.

7 Conclusions

We proposed a general design of a cryptanalytical tool based on genetic pro-
gramming and applied it to the problem of finding a random distinguisher for
25 cryptographic functions taken from eStream and SHA-3 competitions. In
general, the proposed approach proved to be capable of closely matching the
performance of ST'S NIST and Dieharder battery. A robust evaluation of various
scenarios was performed w.r.t. the key change frequency as well as the number
of internal rounds.

The proposed approach provides a novel way of inspecting statistical defects
in cryptographic functions and may provide a significant advantage when work-
ing with very short sequences once the learning phase of evolution is completed.
Our future work will cover techniques that will enable processing significantly
more data to provide more fair comparison to STS NIST and Dieharder batter-
ies, as these are making statistical analysis on tens (STS NIST) up to hundreds
(Dieharder) of megabytes of data.
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